organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2,4,6-Trioxo-1,3-diazinan-5-yl­­idene)thio­semicarbazide

aEscola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália km 08, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil, bDepartamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900, Santa Maria, RS, Brazil, and cDepartamento de Química, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, Campus, 49100-000, São Cristóvão, SE, Brazil
*Correspondence e-mail: adriano@daad-alumni.de

(Received 15 March 2012; accepted 20 March 2012; online 24 March 2012)

The title mol­ecule, C5H5N5O3S, is approximately planar, with a maximum deviation from the mean plane through the non-H atoms of 0.182 (3) Å for the amine N atom. In the crystal, mol­ecules are connected via N—H⋯O and N—H⋯S inter­actions, building a three-dimensional hydrogen-bonded network. Additionally, a weak intra­molecular N—H⋯O hydrogen bond is observed.

Related literature

For the synthesis of alloxan-5-thio­semicarbazone, see: Beyer et al. (1956[Beyer, H., Bischoff, C. & Wolter, G. (1956). Chem. Ber. 89, 1095-1099.]). For the anti­bacterial activity of alloxan-5-thio­semicarbazone against Staphylococcus aureus and Escherichia coli, see: Douros et al. (1973[Douros, J. D. Jr, Brokl, M. & Kerst, A. F. (1973). German Patent DE2232717A1.]).

[Scheme 1]

Experimental

Crystal data
  • C5H5N5O3S

  • Mr = 215.20

  • Monoclinic, P 21 /n

  • a = 10.6415 (8) Å

  • b = 7.3370 (6) Å

  • c = 11.160 (1) Å

  • β = 107.380 (5)°

  • V = 831.55 (12) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 293 K

  • 0.14 × 0.10 × 0.09 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.967

  • 15454 measured reflections

  • 1929 independent reflections

  • 955 reflections with I > 2σ(I)

  • Rint = 0.090

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.148

  • S = 1.00

  • 1929 reflections

  • 147 parameters

  • All H-atom parameters refined

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H4⋯O2i 0.91 (4) 2.26 (4) 3.036 (4) 143 (3)
N2—H2⋯O3ii 0.86 (4) 1.98 (4) 2.837 (4) 173 (4)
N5—H5⋯O1iii 0.89 (5) 2.08 (5) 2.916 (4) 158 (4)
N4—H3⋯O1 0.88 (4) 2.01 (4) 2.631 (4) 126 (4)
N1—H1⋯O3iv 0.70 (4) 2.46 (4) 2.923 (4) 125 (4)
N1—H1⋯S1v 0.70 (4) 3.03 (4) 3.468 (4) 123 (4)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+1, -y, -z+2; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x, -y+1, -z+2.

Data collection: COSMO (Bruker, 2005[Bruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT (Bruker, 2005[Bruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Thiosemicarbazone derivatives have a wide range of biological properties. For example, an alloxan-thiosemicarbazone derivative shows antibacterial activity against several pathologic agents like Staphylococcus aureus and Escherichia coli (Douros et al., 1973). As part of our study of thiosemicarbazone derivatives, we report herein the crystal structure of alloxan-5-thiosemicarbazone. In the title compound (Fig. 1), the molecule is planar and the maximal deviation from the least squares plane through all non-hydrogen atoms is observed for N5 (-0,1822 (30) Å). The mean deviations from the least squares planes for the alloxan fragment C1/C2/C3/C4/N1/N2/O1/O2/O3 and for the thiosemicarbazone fragment C5/N3/N4/N5/S1 amount to 0.0319 (23) Å for O3 and -0.0278 (26) Å for N4, respectively, and the dihedral angle between the two planes is 8,16 (17)°. The bond angles suggest sp2 hybridization for the C and N atoms and explain the planarity of the molecule. The crystal packing is stabilized by intermolecular N—H···O and N—H···S as well as intramolecular N—H···O hydrogen bonding building a three-dimensional H-bonded network (Fig. 2 and Table 1).

Related literature top

For the synthesis of alloxan-5-thiosemicarbazone, see: Beyer et al. (1956). For the antibacterial activity of alloxan-5-thiosemicarbazone against Staphylococcus aureus and Escherichia coli, see: Douros et al. (1973).

Experimental top

Starting materials were commercially available and were used without further purification. The synthesis was adapted from a procedure reported previously (Beyer et al., 1956). The hydrochloric acid catalyzed reaction of alloxan monohydrate (6,25 mmol) and thiosemicarbazide (6,25 mmol) in ethanol (60 ml) was refluxed for 7 h. After cooling and filtering, crystals suitable for X-ray diffraction were obtained from a recrystallization in methanol.

Refinement top

All hydrogen atoms were localized in a difference density Fourier map. Their positions and isotropic displacement parameters were refined.

Structure description top

Thiosemicarbazone derivatives have a wide range of biological properties. For example, an alloxan-thiosemicarbazone derivative shows antibacterial activity against several pathologic agents like Staphylococcus aureus and Escherichia coli (Douros et al., 1973). As part of our study of thiosemicarbazone derivatives, we report herein the crystal structure of alloxan-5-thiosemicarbazone. In the title compound (Fig. 1), the molecule is planar and the maximal deviation from the least squares plane through all non-hydrogen atoms is observed for N5 (-0,1822 (30) Å). The mean deviations from the least squares planes for the alloxan fragment C1/C2/C3/C4/N1/N2/O1/O2/O3 and for the thiosemicarbazone fragment C5/N3/N4/N5/S1 amount to 0.0319 (23) Å for O3 and -0.0278 (26) Å for N4, respectively, and the dihedral angle between the two planes is 8,16 (17)°. The bond angles suggest sp2 hybridization for the C and N atoms and explain the planarity of the molecule. The crystal packing is stabilized by intermolecular N—H···O and N—H···S as well as intramolecular N—H···O hydrogen bonding building a three-dimensional H-bonded network (Fig. 2 and Table 1).

For the synthesis of alloxan-5-thiosemicarbazone, see: Beyer et al. (1956). For the antibacterial activity of alloxan-5-thiosemicarbazone against Staphylococcus aureus and Escherichia coli, see: Douros et al. (1973).

Computing details top

Data collection: COSMO (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. : The molecular structure of the title compound with labeling and displacement ellipsoids drawn at the 40% probability level.
[Figure 2] Fig. 2. : The crystal structure of the title compound showing the molecules connected through N—H···S hydrogen bonds. Hydrogen bonding is indicated as dashed lines. Symmetry codes: (i) x + 1/2, -y + 1/2, z + 1/2; (ii) -x + 1/2, -y, -z + 2; (iii) x + 1/2, -y + 3/2, z + 1/2; (iv) x - 1/2, -y + 1/2, z - 1/2; (v) -x, -y + 1, -z + 2.
1-(2,4,6-Trioxo-1,3-diazinan-5-ylidene)thiosemicarbazide top
Crystal data top
C5H5N5O3SF(000) = 440
Mr = 215.20Dx = 1.719 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1283 reflections
a = 10.6415 (8) Åθ = 2.3–19.9°
b = 7.3370 (6) ŵ = 0.38 mm1
c = 11.160 (1) ÅT = 293 K
β = 107.380 (5)°Block, red
V = 831.55 (12) Å30.14 × 0.10 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1929 independent reflections
Radiation source: fine-focus sealed tube955 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.090
φ and ω scansθmax = 27.6°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1313
Tmin = 0.949, Tmax = 0.967k = 99
15454 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: difference Fourier map
wR(F2) = 0.148All H-atom parameters refined
S = 1.00 w = 1/[σ2(Fo2) + (0.0543P)2 + 0.6101P]
where P = (Fo2 + 2Fc2)/3
1929 reflections(Δ/σ)max < 0.001
147 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
C5H5N5O3SV = 831.55 (12) Å3
Mr = 215.20Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.6415 (8) ŵ = 0.38 mm1
b = 7.3370 (6) ÅT = 293 K
c = 11.160 (1) Å0.14 × 0.10 × 0.09 mm
β = 107.380 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1929 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
955 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.967Rint = 0.090
15454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.148All H-atom parameters refined
S = 1.00Δρmax = 0.27 e Å3
1929 reflectionsΔρmin = 0.39 e Å3
147 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.17866 (11)0.94933 (14)1.13122 (11)0.0487 (4)
O30.4802 (2)0.2077 (3)1.0689 (2)0.0426 (8)
O20.1726 (2)0.0867 (4)0.7631 (3)0.0486 (8)
O10.0566 (2)0.4570 (3)0.8863 (3)0.0456 (8)
N50.4116 (3)0.7883 (5)1.1940 (3)0.0412 (9)
N30.3183 (3)0.4951 (4)1.0600 (3)0.0335 (8)
N40.2392 (3)0.6328 (4)1.0593 (3)0.0385 (9)
N20.3282 (3)0.0686 (4)0.9108 (3)0.0321 (8)
N10.1178 (3)0.1858 (4)0.8272 (3)0.0356 (9)
C50.2851 (4)0.7858 (5)1.1334 (4)0.0340 (9)
C40.3687 (3)0.2088 (5)0.9943 (4)0.0322 (9)
C30.2034 (3)0.0473 (5)0.8282 (4)0.0329 (9)
C10.2734 (3)0.3545 (4)0.9874 (3)0.0294 (9)
C20.1418 (3)0.3399 (5)0.8981 (3)0.0335 (9)
H40.465 (4)0.694 (5)1.189 (3)0.043 (12)*
H20.382 (4)0.019 (5)0.912 (3)0.040 (12)*
H50.440 (5)0.887 (7)1.240 (5)0.083 (17)*
H30.156 (5)0.639 (6)1.015 (4)0.072 (15)*
H10.054 (4)0.175 (5)0.785 (4)0.044 (14)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0504 (7)0.0356 (6)0.0614 (8)0.0045 (5)0.0185 (5)0.0041 (6)
O30.0296 (14)0.0404 (15)0.0424 (17)0.0099 (12)0.0126 (13)0.0101 (13)
O20.0382 (15)0.0385 (17)0.057 (2)0.0004 (12)0.0034 (14)0.0207 (14)
O10.0344 (15)0.0366 (16)0.0530 (19)0.0122 (13)0.0066 (13)0.0042 (14)
N50.034 (2)0.031 (2)0.052 (2)0.0026 (16)0.0027 (17)0.0090 (18)
N30.0344 (18)0.0289 (17)0.0325 (19)0.0029 (14)0.0027 (14)0.0003 (14)
N40.0332 (19)0.0305 (18)0.044 (2)0.0037 (15)0.0001 (17)0.0064 (16)
N20.0257 (17)0.0281 (17)0.034 (2)0.0058 (14)0.0034 (14)0.0037 (14)
N10.0248 (18)0.0354 (19)0.037 (2)0.0010 (15)0.0055 (16)0.0062 (16)
C50.039 (2)0.0248 (19)0.037 (2)0.0024 (17)0.0101 (18)0.0021 (17)
C40.0299 (19)0.030 (2)0.033 (2)0.0011 (16)0.0035 (17)0.0035 (17)
C30.027 (2)0.033 (2)0.036 (2)0.0024 (17)0.0047 (17)0.0017 (19)
C10.0280 (19)0.0268 (19)0.029 (2)0.0048 (15)0.0015 (16)0.0018 (16)
C20.029 (2)0.032 (2)0.033 (2)0.0023 (17)0.0000 (17)0.0010 (17)
Geometric parameters (Å, º) top
S1—C51.645 (4)N4—H30.88 (4)
O3—C41.229 (4)N2—C41.368 (4)
O2—C31.208 (4)N2—C31.380 (4)
O1—C21.227 (4)N2—H20.86 (4)
N5—C51.314 (4)N1—C21.360 (5)
N5—H40.91 (4)N1—C31.362 (5)
N5—H50.89 (5)N1—H10.70 (4)
N3—C11.311 (4)C4—C11.460 (5)
N3—N41.313 (4)C1—C21.460 (5)
N4—C51.394 (4)
C5—N5—H4121 (2)N5—C5—S1126.3 (3)
C5—N5—H5115 (3)N4—C5—S1117.5 (3)
H4—N5—H5123 (4)O3—C4—N2120.1 (3)
C1—N3—N4119.1 (3)O3—C4—C1123.7 (3)
N3—N4—C5120.4 (3)N2—C4—C1116.2 (3)
N3—N4—H3126 (3)O2—C3—N1122.8 (3)
C5—N4—H3114 (3)O2—C3—N2121.8 (3)
C4—N2—C3125.8 (3)N1—C3—N2115.4 (3)
C4—N2—H2119 (2)N3—C1—C2125.4 (3)
C3—N2—H2115 (2)N3—C1—C4115.1 (3)
C2—N1—C3127.3 (3)C2—C1—C4119.5 (3)
C2—N1—H1117 (3)O1—C2—N1121.0 (3)
C3—N1—H1116 (3)O1—C2—C1123.3 (3)
N5—C5—N4116.1 (3)N1—C2—C1115.7 (3)
C1—N3—N4—C5178.6 (4)O3—C4—C1—N35.6 (6)
N3—N4—C5—N55.3 (5)N2—C4—C1—N3174.0 (3)
N3—N4—C5—S1177.8 (3)O3—C4—C1—C2178.0 (4)
C3—N2—C4—O3175.4 (4)N2—C4—C1—C22.5 (5)
C3—N2—C4—C15.1 (6)C3—N1—C2—O1178.4 (4)
C2—N1—C3—O2178.7 (4)C3—N1—C2—C11.7 (6)
C2—N1—C3—N20.4 (6)N3—C1—C2—O13.5 (6)
C4—N2—C3—O2175.0 (4)C4—C1—C2—O1179.6 (4)
C4—N2—C3—N14.1 (6)N3—C1—C2—N1176.6 (4)
N4—N3—C1—C23.5 (6)C4—C1—C2—N10.6 (5)
N4—N3—C1—C4179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H4···O2i0.91 (4)2.26 (4)3.036 (4)143 (3)
N2—H2···O3ii0.86 (4)1.98 (4)2.837 (4)173 (4)
N5—H5···O1iii0.89 (5)2.08 (5)2.916 (4)158 (4)
N4—H3···O10.88 (4)2.01 (4)2.631 (4)126 (4)
N1—H1···O3iv0.70 (4)2.46 (4)2.923 (4)125 (4)
N1—H1···S1v0.70 (4)3.03 (4)3.468 (4)123 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x+1/2, y+3/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC5H5N5O3S
Mr215.20
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)10.6415 (8), 7.3370 (6), 11.160 (1)
β (°) 107.380 (5)
V3)831.55 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.14 × 0.10 × 0.09
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.967
No. of measured, independent and
observed [I > 2σ(I)] reflections
15454, 1929, 955
Rint0.090
(sin θ/λ)max1)0.652
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.148, 1.00
No. of reflections1929
No. of parameters147
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.27, 0.39

Computer programs: COSMO (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H4···O2i0.91 (4)2.26 (4)3.036 (4)143 (3)
N2—H2···O3ii0.86 (4)1.98 (4)2.837 (4)173 (4)
N5—H5···O1iii0.89 (5)2.08 (5)2.916 (4)158 (4)
N4—H3···O10.88 (4)2.01 (4)2.631 (4)126 (4)
N1—H1···O3iv0.70 (4)2.46 (4)2.923 (4)125 (4)
N1—H1···S1v0.70 (4)3.03 (4)3.468 (4)123 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1, y, z+2; (iii) x+1/2, y+3/2, z+1/2; (iv) x1/2, y+1/2, z1/2; (v) x, y+1, z+2.
 

Acknowledgements

We gratefully acknowledge Professor Dr Manfredo Hörner (Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements. We also acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-# 11/2029–1 and PRONEX-CNPq-FAPERGS projects.

References

First citationBeyer, H., Bischoff, C. & Wolter, G. (1956). Chem. Ber. 89, 1095–1099.  CrossRef CAS Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). COSMO, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDouros, J. D. Jr, Brokl, M. & Kerst, A. F. (1973). German Patent DE2232717A1.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds