organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o927-o928

Absolute configuration of (1S,2S)-3-methyl-2-phenyl-2,3-di­hydro­thia­zolo[2,3-b]quinazolin-5-one

aMedicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, bDepartment of Pharmacognosy, College of Pharmacy, Salman Bin Abdulaziz University, PO Box 173, Al-Kharji 1194, Saudi Arabia, and cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 10 February 2012; accepted 24 February 2012; online 3 March 2012)

The absolute structure of the molecule in the crystal of the title compound, C17H14N2OS, was determined by the refinement of the Flack parameter to 0.0 (2) based on 1011 Friedel pairs. The quinazoline ring is essentially planar, with a maximum deviation of 0.037 (2) Å. The thia­zole ring is distorted from planarity [maximum deviation = 0.168 (2) Å] and adopts a slightly twisted envelope conformation, with the C atom as the flap atom. The central thia­zole ring makes dihedral angles of 7.01 (8) and 76.80 (10)° with the quinazoline and phenyl rings, respectively. The corresponding angle between the quinazoline and phenyl rings is 3.74 (9)°. In the crystal, there are no classical hydrogen bonds but stabilization is provided by weak C—H⋯π inter­actions, involving the centroids of the phenyl rings.

Related literature

For details and applications of quinazoline derivatives, see: Ghorab et al. (2010a[Ghorab, M. M., Ismail, Z. H. & Abdalla, M. (2010a). Arzneim. Forsch. Drug Res. 60, 87-95.],b[Ghorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El-Gazzar, M. G. (2010b). Bioorg. Med. Chem. Lett., 20, 6316-6320.],c[Ghorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010c). Eur. J. Med. Chem, 45, 3677-3684.]). For related crystal structures, see: Al-Salahi et al. (2012[Al-Salahi, R., Geffken, D. & Bari, A. (2012). Acta Cryst. E68, o101.]); Priya et al. (2011[Priya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2310.]); Liu et al. (2010[Liu, B., Chen, X.-B., Yang, X.-H., Pan, D.-F. & Ma, J.-K. (2010). Acta Cryst. E66, o2225-o2226.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14N2OS

  • Mr = 294.36

  • Orthorhombic, P 21 21 21

  • a = 8.4865 (1) Å

  • b = 10.0846 (2) Å

  • c = 16.8290 (3) Å

  • V = 1440.28 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.99 mm−1

  • T = 296 K

  • 0.96 × 0.64 × 0.51 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.251, Tmax = 0.431

  • 8654 measured reflections

  • 2637 independent reflections

  • 2521 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.08

  • 2637 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), with 1011 Friedel pairs

  • Flack parameter: 0.00 (2)

Table 1
Hydrogen-bond geometry (Å, °)

Cg3 and Cg4 are the centroids of the C4–C9 and C11–C16 phenyl rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2BCg3i 0.98 2.91 3.824 (2) 155
C6—H6ACg4ii 0.93 2.81 3.637 (3) 146
Symmetry codes: (i) [-x-1, y+{\script{3\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{3\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Quinazoline derivatives are well known as biologically active compounds. Consequently, quinazolines have been intensively studied for their interesting pharmacological properties such as anticancer activity (Ghorab et al., 2010a,b,c). The crystal structures of 2-Ethoxy-5-methylbis[1,2,4]triazolo[1,5-a:4',3'-c] quinazoline (Al-Salahi et al., 2012), 3-(4-Chlorophenyl)quinazolin-4(3H)-one (Priya et al., 2011) and 2-Anilino-3-(2-hydroxyphenyl)quinazolin-4(3H)-one methanol monosolvate (Liu et al., 2010) have been reported in the literature. Herein, we report the crystal structure of title compound (I).

The asymmetric unit of the title compound is shown in Fig. 1. The quinazoline (N1,N2/C3–C10) ring is essentially planar, with a maximum deviation of 0.037 (2) Å for atom C8. The thiazole (S1/N2/C7–C9) rings adopt an envelope conformation with the C2 (0.168 (2) Å) atom as the flap atom and with puckering parameter, Q = 0.2724 (19) Å and θ = 226.7 (4)° (Cremer & Pople, 1975). The central thiazole (S1/N1/C1–C2,C10) ring makes dihedral angles of 7.01 (8)° and 76.80 (10)° with the quinazoline (N1,N2/C3–C10) and phenyl (C11–C16) rings, respectively. The corresponding angle between the quinazoline (N1,N2/C3–C10) and phenyl (C11–C16) rings is 73.74 (9)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

The absolute configuration of the molecule were determined by the refinement of the Flack parameter to 0.0 (2). There are two chiral centres in the molecule. From the structure presented, these centers exhibit the following chiralities: C1 = S and C2 = S.

In the crystal structure (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak C—H···π interactions (Table 1) involving the centroids of the (C4–C9) and (C11–C16) phenyl rings.

Related literature top

For details and applications of quinazoline derivatives, see: Ghorab et al. (2010a,b,c). For related crystal structures, see: Al-Salahi et al. (2012); Priya et al. (2011); Liu et al. (2010). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Experimental top

A mixture of 2-isothiocyanatobenzoate (1.93 g, 0.01 mole) and 2-amino-1-phenylpropan-1-ol (1.51 g, 0.01 mole) in dry dimethylformamide (30 ml) containing a catalytic amount of triethylamine was refluxed for 6 h. The solid obtained was recrystallized from ethanol to give the title thiazoloquinazline derivative compound. Single crystals suitable for X-ray structural analysis were obtained by slow evaporation from ethanol at room temperature.

Refinement top

All H atoms were positioned geometrically [C—H = 0.93–0.98 Å] and were refined using a riding model, with Uiso(H) = 1.2 or 1.5Ueq(C). A rotating group model was applied to the methyl groups. 1011 Friedel pairs were used to determine the absolute configuration.

Structure description top

Quinazoline derivatives are well known as biologically active compounds. Consequently, quinazolines have been intensively studied for their interesting pharmacological properties such as anticancer activity (Ghorab et al., 2010a,b,c). The crystal structures of 2-Ethoxy-5-methylbis[1,2,4]triazolo[1,5-a:4',3'-c] quinazoline (Al-Salahi et al., 2012), 3-(4-Chlorophenyl)quinazolin-4(3H)-one (Priya et al., 2011) and 2-Anilino-3-(2-hydroxyphenyl)quinazolin-4(3H)-one methanol monosolvate (Liu et al., 2010) have been reported in the literature. Herein, we report the crystal structure of title compound (I).

The asymmetric unit of the title compound is shown in Fig. 1. The quinazoline (N1,N2/C3–C10) ring is essentially planar, with a maximum deviation of 0.037 (2) Å for atom C8. The thiazole (S1/N2/C7–C9) rings adopt an envelope conformation with the C2 (0.168 (2) Å) atom as the flap atom and with puckering parameter, Q = 0.2724 (19) Å and θ = 226.7 (4)° (Cremer & Pople, 1975). The central thiazole (S1/N1/C1–C2,C10) ring makes dihedral angles of 7.01 (8)° and 76.80 (10)° with the quinazoline (N1,N2/C3–C10) and phenyl (C11–C16) rings, respectively. The corresponding angle between the quinazoline (N1,N2/C3–C10) and phenyl (C11–C16) rings is 73.74 (9)°. The bond lengths (Allen et al., 1987) and angles are within normal ranges.

The absolute configuration of the molecule were determined by the refinement of the Flack parameter to 0.0 (2). There are two chiral centres in the molecule. From the structure presented, these centers exhibit the following chiralities: C1 = S and C2 = S.

In the crystal structure (Fig. 2), there are no classical hydrogen bonds but stabilization is provided by weak C—H···π interactions (Table 1) involving the centroids of the (C4–C9) and (C11–C16) phenyl rings.

For details and applications of quinazoline derivatives, see: Ghorab et al. (2010a,b,c). For related crystal structures, see: Al-Salahi et al. (2012); Priya et al. (2011); Liu et al. (2010). For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title compound, showing 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound (I).
(1S,2S)-3-methyl-2-phenyl- 2,3-dihydrothiazolo[2,3-b]quinazolin-5-one top
Crystal data top
C17H14N2OSF(000) = 616
Mr = 294.36Dx = 1.358 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 4079 reflections
a = 8.4865 (1) Åθ = 4.4–71.7°
b = 10.0846 (2) ŵ = 1.99 mm1
c = 16.8290 (3) ÅT = 296 K
V = 1440.28 (4) Å3Block, colourless
Z = 40.96 × 0.64 × 0.51 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2637 independent reflections
Radiation source: fine-focus sealed tube2521 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
φ and ω scansθmax = 71.9°, θmin = 5.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1010
Tmin = 0.251, Tmax = 0.431k = 812
8654 measured reflectionsl = 2020
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.0729P)2 + 0.0628P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.109(Δ/σ)max = 0.001
S = 1.08Δρmax = 0.22 e Å3
2637 reflectionsΔρmin = 0.23 e Å3
192 parametersExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.107 (4)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), with 1011 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.00 (2)
Crystal data top
C17H14N2OSV = 1440.28 (4) Å3
Mr = 294.36Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 8.4865 (1) ŵ = 1.99 mm1
b = 10.0846 (2) ÅT = 296 K
c = 16.8290 (3) Å0.96 × 0.64 × 0.51 mm
Data collection top
Bruker SMART APEXII CCD
diffractometer
2637 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
2521 reflections with I > 2σ(I)
Tmin = 0.251, Tmax = 0.431Rint = 0.028
8654 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.109Δρmax = 0.22 e Å3
S = 1.08Δρmin = 0.23 e Å3
2637 reflectionsAbsolute structure: Flack (1983), with 1011 Friedel pairs
192 parametersAbsolute structure parameter: 0.00 (2)
0 restraints
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.93740 (6)0.77405 (8)0.26159 (3)0.0835 (3)
N10.84292 (17)0.75544 (18)0.40678 (9)0.0558 (4)
N20.99073 (19)0.57264 (18)0.35894 (9)0.0585 (4)
O10.7394 (3)0.7625 (3)0.53134 (11)0.0983 (7)
C30.8142 (2)0.7024 (3)0.48182 (12)0.0654 (5)
C100.9264 (2)0.6865 (2)0.35080 (10)0.0540 (4)
C90.9715 (2)0.51345 (19)0.43270 (11)0.0561 (4)
C120.5242 (2)0.8021 (2)0.28662 (15)0.0693 (6)
H12A0.54790.74960.33040.083*
C110.6379 (2)0.88563 (18)0.25601 (12)0.0556 (4)
C40.8811 (2)0.5710 (2)0.49297 (11)0.0598 (5)
C130.3752 (3)0.7954 (3)0.25291 (17)0.0743 (6)
H13A0.29930.73960.27460.089*
C50.8607 (3)0.5028 (3)0.56509 (14)0.0774 (6)
H5A0.80070.54050.60550.093*
C140.3400 (3)0.8704 (2)0.18807 (17)0.0730 (6)
H14A0.23960.86700.16600.088*
C160.6023 (3)0.9594 (2)0.18898 (14)0.0633 (5)
H16A0.67831.01440.16660.076*
C60.9290 (4)0.3807 (3)0.57612 (17)0.0875 (8)
H6A0.91310.33500.62350.105*
C10.7973 (2)0.9010 (2)0.29489 (15)0.0659 (5)
H1A0.83960.98780.27980.079*
C150.4533 (3)0.9515 (2)0.15507 (14)0.0723 (6)
H15A0.42991.00100.11000.087*
C81.0433 (3)0.3896 (2)0.44566 (15)0.0744 (6)
H8A1.10520.35170.40610.089*
C20.7980 (2)0.8926 (2)0.38635 (14)0.0659 (5)
H2B0.69110.90940.40600.079*
C170.9107 (4)0.9910 (3)0.4252 (3)0.1039 (11)
H17A0.90700.98060.48180.156*
H17C0.88021.07970.41130.156*
H17D1.01600.97460.40670.156*
C71.0225 (4)0.3247 (3)0.51644 (19)0.0874 (8)
H7A1.07070.24310.52480.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0541 (3)0.1285 (5)0.0680 (3)0.0297 (3)0.0168 (2)0.0362 (3)
N10.0436 (7)0.0702 (9)0.0535 (8)0.0037 (6)0.0037 (6)0.0028 (7)
N20.0529 (8)0.0726 (10)0.0500 (7)0.0055 (7)0.0055 (6)0.0051 (7)
O10.1001 (14)0.1344 (18)0.0602 (9)0.0463 (14)0.0130 (8)0.0049 (10)
C30.0512 (9)0.0952 (14)0.0497 (9)0.0092 (10)0.0022 (8)0.0043 (9)
C100.0393 (7)0.0739 (11)0.0490 (8)0.0004 (7)0.0014 (7)0.0020 (7)
C90.0526 (9)0.0635 (10)0.0522 (9)0.0071 (7)0.0092 (7)0.0034 (7)
C120.0519 (10)0.0741 (12)0.0820 (13)0.0033 (8)0.0106 (9)0.0223 (10)
C110.0469 (8)0.0523 (8)0.0675 (10)0.0055 (6)0.0032 (8)0.0022 (8)
C40.0472 (8)0.0815 (12)0.0507 (9)0.0083 (8)0.0059 (7)0.0028 (8)
C130.0491 (10)0.0816 (13)0.0923 (16)0.0055 (9)0.0084 (10)0.0104 (12)
C50.0615 (12)0.1126 (18)0.0579 (11)0.0103 (12)0.0015 (9)0.0107 (12)
C140.0527 (10)0.0768 (13)0.0896 (15)0.0096 (9)0.0178 (11)0.0050 (11)
C160.0634 (11)0.0560 (9)0.0705 (11)0.0068 (8)0.0005 (9)0.0064 (8)
C60.0857 (16)0.0934 (17)0.0833 (15)0.0174 (14)0.0132 (14)0.0307 (13)
C10.0460 (9)0.0666 (10)0.0850 (14)0.0021 (8)0.0040 (9)0.0180 (10)
C150.0745 (13)0.0697 (11)0.0727 (12)0.0158 (10)0.0151 (10)0.0056 (9)
C80.0880 (15)0.0662 (11)0.0691 (11)0.0015 (11)0.0152 (12)0.0065 (9)
C20.0505 (9)0.0676 (11)0.0795 (13)0.0061 (8)0.0114 (9)0.0047 (10)
C170.0876 (19)0.0806 (16)0.143 (3)0.0012 (14)0.038 (2)0.0195 (18)
C70.107 (2)0.0709 (13)0.0845 (15)0.0052 (13)0.0216 (15)0.0107 (11)
Geometric parameters (Å, º) top
S1—C101.7439 (18)C5—C61.374 (5)
S1—C11.835 (2)C5—H5A0.9300
N1—C101.368 (3)C14—C151.379 (4)
N1—C31.393 (3)C14—H14A0.9300
N1—C21.475 (3)C16—C151.390 (3)
N2—C101.279 (3)C16—H16A0.9300
N2—C91.387 (3)C6—C71.399 (5)
O1—C31.211 (3)C6—H6A0.9300
C3—C41.454 (3)C1—C21.542 (3)
C9—C41.398 (3)C1—H1A0.9800
C9—C81.406 (3)C15—H15A0.9300
C12—C111.380 (3)C8—C71.371 (4)
C12—C131.388 (3)C8—H8A0.9300
C12—H12A0.9300C2—C171.526 (3)
C11—C161.385 (3)C2—H2B0.9800
C11—C11.511 (3)C17—H17A0.9600
C4—C51.406 (3)C17—H17C0.9600
C13—C141.361 (4)C17—H17D0.9600
C13—H13A0.9300C7—H7A0.9300
C10—S1—C193.18 (10)C11—C16—H16A119.9
C10—N1—C3121.33 (18)C15—C16—H16A119.9
C10—N1—C2116.71 (17)C5—C6—C7120.3 (2)
C3—N1—C2121.72 (18)C5—C6—H6A119.9
C10—N2—C9115.61 (16)C7—C6—H6A119.9
O1—C3—N1121.6 (2)C11—C1—C2115.45 (17)
O1—C3—C4124.9 (2)C11—C1—S1112.12 (16)
N1—C3—C4113.49 (18)C2—C1—S1105.33 (14)
N2—C10—N1127.10 (17)C11—C1—H1A107.9
N2—C10—S1121.59 (14)C2—C1—H1A107.9
N1—C10—S1111.31 (14)S1—C1—H1A107.9
N2—C9—C4122.34 (19)C14—C15—C16120.2 (2)
N2—C9—C8118.0 (2)C14—C15—H15A119.9
C4—C9—C8119.6 (2)C16—C15—H15A119.9
C11—C12—C13120.9 (2)C7—C8—C9120.2 (3)
C11—C12—H12A119.5C7—C8—H8A119.9
C13—C12—H12A119.5C9—C8—H8A119.9
C12—C11—C16118.68 (18)N1—C2—C17110.36 (19)
C12—C11—C1121.78 (18)N1—C2—C1106.58 (17)
C16—C11—C1119.52 (18)C17—C2—C1113.2 (2)
C9—C4—C5119.4 (2)N1—C2—H2B108.9
C9—C4—C3119.94 (18)C17—C2—H2B108.9
C5—C4—C3120.6 (2)C1—C2—H2B108.9
C14—C13—C12120.0 (2)C2—C17—H17A109.5
C14—C13—H13A120.0C2—C17—H17C109.5
C12—C13—H13A120.0H17A—C17—H17C109.5
C6—C5—C4120.2 (3)C2—C17—H17D109.5
C6—C5—H5A119.9H17A—C17—H17D109.5
C4—C5—H5A119.9H17C—C17—H17D109.5
C13—C14—C15120.0 (2)C8—C7—C6120.3 (3)
C13—C14—H14A120.0C8—C7—H7A119.8
C15—C14—H14A120.0C6—C7—H7A119.8
C11—C16—C15120.1 (2)
C10—N1—C3—O1179.4 (2)C3—C4—C5—C6177.7 (2)
C2—N1—C3—O16.4 (3)C12—C13—C14—C151.1 (4)
C10—N1—C3—C40.1 (3)C12—C11—C16—C151.8 (3)
C2—N1—C3—C4174.12 (17)C1—C11—C16—C15176.6 (2)
C9—N2—C10—N10.6 (3)C4—C5—C6—C71.6 (4)
C9—N2—C10—S1179.34 (13)C12—C11—C1—C234.8 (3)
C3—N1—C10—N22.2 (3)C16—C11—C1—C2143.6 (2)
C2—N1—C10—N2172.28 (18)C12—C11—C1—S185.8 (2)
C3—N1—C10—S1177.70 (15)C16—C11—C1—S195.81 (19)
C2—N1—C10—S17.8 (2)C10—S1—C1—C11105.81 (15)
C1—S1—C10—N2171.57 (16)C10—S1—C1—C220.52 (15)
C1—S1—C10—N18.37 (15)C13—C14—C15—C161.6 (4)
C10—N2—C9—C43.2 (3)C11—C16—C15—C140.1 (3)
C10—N2—C9—C8178.35 (18)N2—C9—C8—C7177.4 (2)
C13—C12—C11—C162.4 (4)C4—C9—C8—C71.2 (3)
C13—C12—C11—C1176.0 (2)C10—N1—C2—C1799.9 (3)
N2—C9—C4—C5177.15 (19)C3—N1—C2—C1774.6 (3)
C8—C9—C4—C51.3 (3)C10—N1—C2—C123.4 (2)
N2—C9—C4—C35.2 (3)C3—N1—C2—C1162.12 (17)
C8—C9—C4—C3176.33 (19)C11—C1—C2—N197.6 (2)
O1—C3—C4—C9177.2 (2)S1—C1—C2—N126.69 (19)
N1—C3—C4—C93.3 (3)C11—C1—C2—C17140.9 (2)
O1—C3—C4—C50.4 (4)S1—C1—C2—C1794.8 (2)
N1—C3—C4—C5179.06 (19)C9—C8—C7—C60.3 (4)
C11—C12—C13—C140.9 (4)C5—C6—C7—C81.7 (4)
C9—C4—C5—C60.0 (3)
Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C4–C9 and C11–C16 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg3i0.982.913.824 (2)155
C6—H6A···Cg4ii0.932.813.637 (3)146
Symmetry codes: (i) x1, y+3/2, z+3/2; (ii) x+3/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC17H14N2OS
Mr294.36
Crystal system, space groupOrthorhombic, P212121
Temperature (K)296
a, b, c (Å)8.4865 (1), 10.0846 (2), 16.8290 (3)
V3)1440.28 (4)
Z4
Radiation typeCu Kα
µ (mm1)1.99
Crystal size (mm)0.96 × 0.64 × 0.51
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.251, 0.431
No. of measured, independent and
observed [I > 2σ(I)] reflections
8654, 2637, 2521
Rint0.028
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.08
No. of reflections2637
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.23
Absolute structureFlack (1983), with 1011 Friedel pairs
Absolute structure parameter0.00 (2)

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg3 and Cg4 are the centroids of the C4–C9 and C11–C16 phenyl rings, respectively.
D—H···AD—HH···AD···AD—H···A
C2—H2B···Cg3i0.982.913.824 (2)155.00
C6—H6A···Cg4ii0.932.813.637 (3)146.00
Symmetry codes: (i) x1, y+3/2, z+3/2; (ii) x+3/2, y+1, z+1/2.
 

Footnotes

Alternative address: College of Pharmacy (Visiting Professor), King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia. Thomson Reuters ResearcherID: A-3561-2009.

Acknowledgements

MMG, MSA and MSA are grateful for sponsorship of the Research Center, College of Pharmacy, and the Deanship of Scientific Research, King Saud University, Riyadh, Saudia Arabia. MH and HFK thank the Malaysian Government and Universiti Sains Malaysia for Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a postdoctoral research fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAl-Salahi, R., Geffken, D. & Bari, A. (2012). Acta Cryst. E68, o101.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGhorab, M. M., Ismail, Z. H. & Abdalla, M. (2010a). Arzneim. Forsch. Drug Res. 60, 87–95.  CAS Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., Arafa, R. K. & El-Hossary, E. M. (2010c). Eur. J. Med. Chem, 45, 3677–3684.  Web of Science CrossRef CAS PubMed Google Scholar
First citationGhorab, M. M., Ragab, F. A., Heiba, H. I., Youssef, H. A. & El-Gazzar, M. G. (2010b). Bioorg. Med. Chem. Lett., 20, 6316–6320.  Web of Science CrossRef CAS PubMed Google Scholar
First citationLiu, B., Chen, X.-B., Yang, X.-H., Pan, D.-F. & Ma, J.-K. (2010). Acta Cryst. E66, o2225–o2226.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationPriya, M. G. R., Srinivasan, T., Girija, K., Chandran, N. R. & Velmurugan, D. (2011). Acta Cryst. E67, o2310.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o927-o928
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds