organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,11-Di­bromo-5,8-dibut­yl[4]helicene

aDepartment of Chemistry, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
*Correspondence e-mail: isobe@m.tohoku.ac.jp

(Received 24 February 2012; accepted 26 March 2012; online 31 March 2012)

A racemic mixture of the title compound, C26H26Br2, a brominated [4]helicene, crystallizes, forming columns of stacked mol­ecules. There are two crystallographically unique mol­ecules in the asymmetric unit, both with the same helical handedness. As is typical with helicene congeners, the unique mol­ecules show short inter­atomic contacts between H atoms at the fjord region, with H⋯H distances of 1.87 and 1.94 Å. Mol­ecules with the same helical handedness segregate in the crystal packing, forming homochiral columns. The stacked mol­ecules are piled in a column with alternate orientations. The shortest C⋯C distance in the stacked mol­ecules is 3.306 (4) Å.

Related literature

For the synthesis, see: Ichikawa et al. (2008[Ichikawa, J., Yokota, M., Kudo, T. & Umezaki, S. (2008). Angew. Chem. Int. Ed. 47, 4870-4873.]); Isobe et al. (2009[Isobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T. & Ichikawa, J. (2009). Org. Lett. 11, 4026-4028.]); Nakanishi et al. (2011[Nakanishi, W., Matsuno, T., Ichikawa, J. & Isobe, H. (2011). Angew. Chem. Int. Ed. 50, 6048-6051.]). For nonsubstituted [4]helicene, see: Hirshfeld et al. (1963[Hirshfeld, F. L., Sandler, S. & Schmidt, G. M. J. (1963). J. Chem. Soc. 2108-2125.]). For halogenated [4]helicenes, see: Amsharov et al. (2009[Amsharov, K. Y., Kabdulov, M. A. & Jansen, M. (2009). Eur. J. Org. Chem. pp. 6328-6335.]); Bae et al. (2007[Bae, S., Mah, H., Chaturvedi, S., Jeknic, T. M., Baird, W. M., Katz, A. K., Carrell, H. L., Glusker, J. P., Okazaki, T., Laali, K. K., Zajc, B. & Lakshman, M. K. (2007). J. Org. Chem. 72, 7625-7633.]). For an optical application of stacking helicenes, see: Verbiest et al. (1998[Verbiest, T., Elshocht, S. V., Kauranen, M., Hellemans, L., Snauwaert, J., Nuckolls, C., Katz, T. J. & Persoons, A. (1998). Science, 30, 913-915.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26Br2

  • Mr = 498.29

  • Triclinic, [P \overline 1]

  • a = 7.611 (2) Å

  • b = 13.394 (4) Å

  • c = 22.552 (7) Å

  • α = 75.012 (4)°

  • β = 84.682 (4)°

  • γ = 79.067 (4)°

  • V = 2178.2 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.73 mm−1

  • T = 100 K

  • 0.40 × 0.10 × 0.10 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.317, Tmax = 0.707

  • 25036 measured reflections

  • 10029 independent reflections

  • 7642 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.069

  • S = 1.02

  • 10029 reflections

  • 509 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97, Yadokari-XG 2009 (Kabuto et al., 2009[Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Columnar assembly of polycyclic aromatic hydrocarbons (PAH) is attractive in materials science. The assembly of helicenes, PAH with helically aligned sp2-carbons, is of particular interest for unique applications such as second-order nonlinear optical materials from [6]helicene (Verbiest et al., 1998). Smaller helicenes, on the other hand, have been less attractive, as the molecule is too small for columnar assembly. For instance, the smallest helicene, [4]helicene, packs in a crystal with a herringbone motif (Hirshfeld et al., 1963). Recently, a few examples of halogenated [4]helicenes have been reported (Amsharov et al., 2009; Bae et al., 2007; Isobe et al., 2009), which indicate beneficial effects of halogen substituents for the stacking assembly. However, various forms of the stacking structures are found even among these rare examples. We found that additional effects from the substituents other than the halogen can affect the packing structure. We previously reported a crystallographic analysis of 2,11-dibromo-5,8-dimethyl[4]helicene and found that the enantiomers of 2,11-dibromo-5,8-dimethyl[4]helicene segregate to form homochiral columns of the stacking molecules (Isobe et al., 2009). By changing the alkyl substituents at 5,8-position, we found a different form of columnar assembly. The asymmetric unit of the title compound is shown in Fig. 1. A set of alternate molecular pairs in a column is observed as non-equivalent molecules in the asymmetric unit. The interatomic distances between the hydrogen atoms at the fjord region are 1.87 Å and 1.94 Å. The packing structures are shown in Fig. 2 and 3. Each of the enantiomers segregate to form homochiral columns (Fig. 2). Unlike 5,8-dimethyl derivative that formed the stack with a synchronized orientation (Isobe et al., 2009), the title compound with 5,8-dibutyl substituents formed the stack with an alternating orientation (Fig. 3) with the shortest intermolecular C···C distance of 3.306 (4) Å between C1 and C42 (Fig. 1).

Related literature top

For the synthesis, see: Ichikawa et al. (2008); Isobe et al. (2009); Nakanishi et al. (2011). For nonsubstituted [4]helicene, see: Hirshfeld et al. (1963). For halogenated [4]helicenes, see: Amsharov et al. (2009); Bae et al. (2007). For an optical application of stacking helicenes, see: Verbiest et al. (1998).

Experimental top

The title compound was synthesized from difluoroalkene through acid-mediated intramolecular cyclization and dehydrogenative aromatization as reported in the literatures (Ichikawa et al., 2008; Nakanishi et al., 2011). A single-crystal suitable for X-ray crystallographic analysis was obtained by slow evaporation from a mixture of hexane and 2-propanol.

Refinement top

H atoms were included in calculated positions and treated as riding atoms, with C—H = 0.95, 0.99 and 0.98 Å for CH (aromatic), CH2 and CH3, respectively, with Uiso(H) = 1.2Ueq(C) for CH (aromatic) and CH2, and Uiso(H) = 1.5Ueq(C) for CH3.

Structure description top

Columnar assembly of polycyclic aromatic hydrocarbons (PAH) is attractive in materials science. The assembly of helicenes, PAH with helically aligned sp2-carbons, is of particular interest for unique applications such as second-order nonlinear optical materials from [6]helicene (Verbiest et al., 1998). Smaller helicenes, on the other hand, have been less attractive, as the molecule is too small for columnar assembly. For instance, the smallest helicene, [4]helicene, packs in a crystal with a herringbone motif (Hirshfeld et al., 1963). Recently, a few examples of halogenated [4]helicenes have been reported (Amsharov et al., 2009; Bae et al., 2007; Isobe et al., 2009), which indicate beneficial effects of halogen substituents for the stacking assembly. However, various forms of the stacking structures are found even among these rare examples. We found that additional effects from the substituents other than the halogen can affect the packing structure. We previously reported a crystallographic analysis of 2,11-dibromo-5,8-dimethyl[4]helicene and found that the enantiomers of 2,11-dibromo-5,8-dimethyl[4]helicene segregate to form homochiral columns of the stacking molecules (Isobe et al., 2009). By changing the alkyl substituents at 5,8-position, we found a different form of columnar assembly. The asymmetric unit of the title compound is shown in Fig. 1. A set of alternate molecular pairs in a column is observed as non-equivalent molecules in the asymmetric unit. The interatomic distances between the hydrogen atoms at the fjord region are 1.87 Å and 1.94 Å. The packing structures are shown in Fig. 2 and 3. Each of the enantiomers segregate to form homochiral columns (Fig. 2). Unlike 5,8-dimethyl derivative that formed the stack with a synchronized orientation (Isobe et al., 2009), the title compound with 5,8-dibutyl substituents formed the stack with an alternating orientation (Fig. 3) with the shortest intermolecular C···C distance of 3.306 (4) Å between C1 and C42 (Fig. 1).

For the synthesis, see: Ichikawa et al. (2008); Isobe et al. (2009); Nakanishi et al. (2011). For nonsubstituted [4]helicene, see: Hirshfeld et al. (1963). For halogenated [4]helicenes, see: Amsharov et al. (2009); Bae et al. (2007). For an optical application of stacking helicenes, see: Verbiest et al. (1998).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008), Yadokari-XG 2009 (Kabuto et al., 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the title compound with displacement ellipsoids drawn at the 50% probability level. Two non-equivalent molecules for (P)-form are shown. Note that the two structures differ only slightly at the methylene chain and that the enantiomeric (M)-form can be found as the mirror geometries.
[Figure 2] Fig. 2. Packing structure of the title compound, viewed along the b axis. The carbon atoms of enantiomers are colored differently. Color code: C for (P)-form = green, C for (M)-form = blue, Br = brown. Hydrogen atoms are omitted for clarity. Note that one colomn comprise single enantiomeric molecules with an alternate stack of two crystallographically unique molecules.
[Figure 3] Fig. 3. Stacking structure of the (P)-form. Hydrogen atoms are omitted for clarity.
2,11-Dibromo-5,8-dibutyl[4]helicene top
Crystal data top
C26H26Br2Z = 4
Mr = 498.29F(000) = 1008
Triclinic, P1Dx = 1.519 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.611 (2) ÅCell parameters from 7028 reflections
b = 13.394 (4) Åθ = 2.7–27.8°
c = 22.552 (7) ŵ = 3.73 mm1
α = 75.012 (4)°T = 100 K
β = 84.682 (4)°Needle, colourless
γ = 79.067 (4)°0.40 × 0.10 × 0.10 mm
V = 2178.2 (11) Å3
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10029 independent reflections
Radiation source: Bruker TXS fine-focus rotating anode7642 reflections with I > 2σ(I)
Bruker Helios multilayer confocal mirror monochromatorRint = 0.038
Detector resolution: 8.333 pixels mm-1θmax = 28.0°, θmin = 1.6°
phi and ω scansh = 99
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1717
Tmin = 0.317, Tmax = 0.707l = 2929
25036 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0289P)2 + 0.3827P]
where P = (Fo2 + 2Fc2)/3
10029 reflections(Δ/σ)max = 0.001
509 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
C26H26Br2γ = 79.067 (4)°
Mr = 498.29V = 2178.2 (11) Å3
Triclinic, P1Z = 4
a = 7.611 (2) ÅMo Kα radiation
b = 13.394 (4) ŵ = 3.73 mm1
c = 22.552 (7) ÅT = 100 K
α = 75.012 (4)°0.40 × 0.10 × 0.10 mm
β = 84.682 (4)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
10029 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
7642 reflections with I > 2σ(I)
Tmin = 0.317, Tmax = 0.707Rint = 0.038
25036 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 1.02Δρmax = 0.58 e Å3
10029 reflectionsΔρmin = 0.40 e Å3
509 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br20.69711 (3)0.70118 (2)0.060451 (12)0.02587 (7)
Br11.16728 (4)0.43519 (2)0.260717 (13)0.02937 (7)
Br30.05183 (3)1.083930 (19)0.395653 (12)0.02066 (7)
Br40.15219 (4)1.263921 (19)0.131483 (13)0.02509 (7)
C170.7427 (3)0.84372 (19)0.20139 (11)0.0172 (5)
C110.6991 (3)0.8033 (2)0.10549 (12)0.0208 (6)
C50.8009 (3)0.76413 (19)0.39852 (11)0.0187 (5)
C240.6615 (3)1.22388 (19)0.21135 (12)0.0229 (6)
H240.56511.21750.24410.027*
H24A0.77751.20540.23140.027*
C60.7382 (3)0.8623 (2)0.36512 (11)0.0196 (5)
H60.69460.91550.38630.024*
C90.6639 (3)0.9822 (2)0.10803 (11)0.0216 (6)
H90.63781.05470.08800.026*
C140.8766 (3)0.68580 (19)0.36537 (12)0.0178 (5)
C21.0445 (3)0.53591 (19)0.30318 (12)0.0206 (6)
C200.7004 (3)0.8207 (2)0.49937 (11)0.0215 (6)
H200.76070.88280.48700.026*
H20A0.57650.84270.48520.026*
C120.7336 (3)0.7702 (2)0.16657 (12)0.0201 (5)
H120.75160.69740.18600.024*
C250.6396 (4)1.3374 (2)0.17339 (12)0.0252 (6)
H250.51731.35860.15780.030*
H25A0.72561.34180.13750.030*
C230.6547 (3)1.14628 (19)0.17281 (11)0.0204 (5)
H230.53681.16450.15400.025*
H23A0.74721.15630.13890.025*
C130.8691 (3)0.70858 (19)0.29984 (11)0.0172 (5)
C80.6825 (3)1.03148 (19)0.20605 (12)0.0185 (5)
C210.6942 (3)0.7827 (2)0.56915 (11)0.0215 (6)
H210.81810.76370.58340.026*
H21A0.63920.71860.58140.026*
C190.7995 (3)0.73642 (19)0.46809 (11)0.0200 (5)
H190.92510.71850.48060.024*
H19A0.74480.67260.48380.024*
C70.6867 (3)0.99747 (19)0.26827 (11)0.0191 (5)
H70.65651.04780.29210.023*
C31.0465 (3)0.5111 (2)0.36730 (12)0.0215 (6)
H31.10220.44410.38970.026*
C10.9613 (3)0.63116 (19)0.27019 (12)0.0194 (5)
H10.96540.64570.22660.023*
C160.7346 (3)0.88965 (19)0.29932 (11)0.0174 (5)
C220.5882 (4)0.8647 (2)0.60081 (13)0.0286 (6)
H220.63930.92920.58780.043*
H22A0.59440.83780.64550.043*
H22B0.46290.87960.58950.043*
C100.6659 (3)0.9092 (2)0.07497 (12)0.0227 (6)
H100.64500.93030.03230.027*
C180.7001 (3)0.95204 (19)0.17166 (11)0.0181 (5)
C150.7811 (3)0.81207 (19)0.26662 (11)0.0176 (5)
C40.9660 (3)0.58630 (19)0.39673 (12)0.0206 (5)
H40.97020.57100.44020.025*
C310.3858 (3)0.68314 (18)0.34132 (10)0.0130 (5)
C270.1242 (3)0.95644 (18)0.31852 (11)0.0146 (5)
H270.06741.01150.28690.018*
C280.1018 (3)0.96479 (18)0.37815 (11)0.0153 (5)
C460.5611 (3)0.49584 (18)0.37603 (11)0.0148 (5)
H460.47700.46670.35700.018*
H46A0.65830.51450.34510.018*
C340.2271 (3)0.80180 (19)0.12655 (11)0.0155 (5)
C430.2110 (3)0.93667 (18)0.18604 (11)0.0151 (5)
C470.6410 (3)0.41243 (18)0.43115 (11)0.0164 (5)
H470.71850.44300.45200.020*
H47A0.54320.38990.46070.020*
C320.3822 (3)0.66950 (18)0.28404 (11)0.0142 (5)
H320.42880.60230.27700.017*
C380.2047 (3)1.04416 (18)0.18422 (11)0.0157 (5)
H380.23131.06320.21970.019*
C390.2304 (3)0.86706 (18)0.30324 (10)0.0129 (5)
C410.2525 (3)0.85374 (18)0.24114 (10)0.0137 (5)
C370.1605 (3)1.12078 (18)0.13162 (12)0.0186 (5)
C350.1400 (3)0.99264 (19)0.07767 (11)0.0190 (5)
H350.11840.97550.04100.023*
C300.2797 (3)0.79725 (19)0.41311 (11)0.0162 (5)
H300.33330.74280.44560.019*
C510.2167 (4)0.6369 (2)0.00702 (12)0.0270 (6)
H510.31250.66690.02070.032*
H51A0.10010.67320.01040.032*
C330.2958 (3)0.72843 (18)0.17626 (10)0.0148 (5)
H330.33550.65840.17280.018*
C440.1886 (3)0.91036 (18)0.13003 (10)0.0147 (5)
C420.3111 (3)0.75217 (18)0.23372 (11)0.0136 (5)
C490.1996 (3)0.77430 (19)0.06719 (11)0.0187 (5)
H490.28380.80640.03500.022*
H49A0.07660.80670.05430.022*
C400.3019 (3)0.78316 (18)0.35275 (10)0.0129 (5)
C290.1832 (3)0.88721 (19)0.42630 (11)0.0167 (5)
H290.17230.89620.46700.020*
C480.7509 (3)0.31728 (19)0.41193 (12)0.0219 (6)
H480.67290.28430.39350.033*
H48A0.80440.26670.44810.033*
H48B0.84600.33970.38180.033*
C500.2256 (3)0.65698 (19)0.07008 (11)0.0200 (5)
H500.34330.62220.08710.024*
H50A0.13160.62570.09810.024*
C360.1230 (3)1.0964 (2)0.07799 (12)0.0212 (6)
H360.08651.15030.04260.025*
C450.4620 (3)0.59480 (18)0.39403 (10)0.0144 (5)
H450.36260.57570.42390.017*
H45A0.54540.62090.41520.017*
C260.6699 (4)1.4139 (2)0.20959 (14)0.0331 (7)
H260.58321.41140.24470.050*
H26A0.65441.48520.18290.050*
H26B0.79171.39430.22450.050*
C520.2384 (4)0.5200 (2)0.00990 (14)0.0354 (7)
H520.35150.48340.02860.053*
H52A0.23920.51040.03180.053*
H52B0.13840.49120.03470.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br20.02828 (15)0.02909 (16)0.02485 (15)0.00958 (11)0.00169 (11)0.01247 (12)
Br10.02749 (15)0.02402 (15)0.03654 (17)0.00126 (11)0.00085 (12)0.01227 (13)
Br30.02107 (13)0.01674 (13)0.02431 (15)0.00260 (10)0.00162 (10)0.00935 (11)
Br40.03039 (15)0.01316 (13)0.02919 (16)0.00265 (10)0.00684 (11)0.00038 (11)
C170.0124 (12)0.0211 (14)0.0191 (13)0.0049 (10)0.0028 (9)0.0066 (11)
C110.0158 (12)0.0281 (15)0.0231 (15)0.0081 (11)0.0034 (10)0.0130 (12)
C50.0159 (12)0.0212 (14)0.0199 (14)0.0077 (10)0.0008 (10)0.0033 (11)
C240.0257 (14)0.0182 (14)0.0229 (15)0.0035 (11)0.0013 (11)0.0019 (12)
C60.0182 (13)0.0223 (14)0.0222 (14)0.0062 (10)0.0017 (10)0.0113 (12)
C90.0199 (13)0.0235 (14)0.0197 (14)0.0020 (11)0.0009 (10)0.0040 (12)
C140.0111 (11)0.0186 (13)0.0249 (14)0.0070 (10)0.0006 (10)0.0047 (11)
C20.0136 (12)0.0188 (14)0.0318 (16)0.0044 (10)0.0036 (10)0.0108 (12)
C200.0215 (13)0.0213 (14)0.0223 (14)0.0048 (11)0.0028 (10)0.0052 (12)
C120.0154 (12)0.0192 (14)0.0247 (15)0.0036 (10)0.0015 (10)0.0043 (11)
C250.0271 (14)0.0209 (14)0.0258 (15)0.0034 (11)0.0028 (11)0.0024 (12)
C230.0192 (13)0.0198 (14)0.0216 (14)0.0022 (10)0.0028 (10)0.0040 (11)
C130.0128 (12)0.0173 (13)0.0225 (14)0.0079 (10)0.0010 (10)0.0036 (11)
C80.0122 (12)0.0176 (13)0.0247 (14)0.0015 (10)0.0012 (10)0.0043 (11)
C210.0200 (13)0.0234 (14)0.0214 (14)0.0064 (11)0.0004 (10)0.0039 (12)
C190.0206 (13)0.0203 (14)0.0186 (14)0.0073 (10)0.0004 (10)0.0018 (11)
C70.0179 (13)0.0179 (13)0.0224 (14)0.0017 (10)0.0014 (10)0.0074 (11)
C30.0180 (13)0.0153 (13)0.0294 (16)0.0043 (10)0.0022 (11)0.0010 (12)
C10.0143 (12)0.0229 (14)0.0226 (14)0.0077 (10)0.0022 (10)0.0063 (11)
C160.0127 (12)0.0202 (13)0.0207 (14)0.0050 (10)0.0010 (10)0.0056 (11)
C220.0265 (15)0.0306 (16)0.0308 (16)0.0051 (12)0.0029 (12)0.0125 (13)
C100.0188 (13)0.0294 (15)0.0195 (14)0.0045 (11)0.0011 (10)0.0058 (12)
C180.0129 (12)0.0217 (14)0.0190 (14)0.0048 (10)0.0003 (10)0.0028 (11)
C150.0131 (12)0.0197 (13)0.0209 (14)0.0058 (10)0.0007 (10)0.0048 (11)
C40.0208 (13)0.0199 (14)0.0213 (14)0.0066 (10)0.0007 (10)0.0035 (11)
C310.0113 (11)0.0134 (12)0.0135 (12)0.0030 (9)0.0008 (9)0.0019 (10)
C270.0138 (12)0.0112 (12)0.0179 (13)0.0010 (9)0.0023 (9)0.0021 (10)
C280.0148 (12)0.0109 (12)0.0211 (13)0.0011 (9)0.0013 (9)0.0069 (10)
C460.0157 (12)0.0132 (12)0.0140 (13)0.0005 (9)0.0012 (9)0.0017 (10)
C340.0126 (11)0.0200 (13)0.0134 (13)0.0030 (9)0.0007 (9)0.0034 (10)
C430.0117 (11)0.0171 (13)0.0147 (13)0.0014 (9)0.0015 (9)0.0015 (10)
C470.0185 (12)0.0129 (12)0.0156 (13)0.0004 (9)0.0005 (10)0.0017 (10)
C320.0140 (11)0.0114 (12)0.0159 (13)0.0013 (9)0.0002 (9)0.0019 (10)
C380.0142 (12)0.0178 (13)0.0148 (13)0.0025 (9)0.0011 (9)0.0037 (10)
C390.0114 (11)0.0130 (12)0.0145 (12)0.0037 (9)0.0001 (9)0.0029 (10)
C410.0115 (11)0.0173 (13)0.0120 (12)0.0032 (9)0.0007 (9)0.0024 (10)
C370.0184 (12)0.0119 (12)0.0234 (14)0.0024 (10)0.0007 (10)0.0007 (11)
C350.0176 (12)0.0218 (14)0.0161 (13)0.0017 (10)0.0027 (10)0.0027 (11)
C300.0189 (12)0.0147 (13)0.0143 (13)0.0021 (10)0.0037 (9)0.0019 (10)
C510.0380 (16)0.0217 (15)0.0223 (15)0.0033 (12)0.0067 (12)0.0068 (12)
C330.0154 (12)0.0137 (12)0.0145 (13)0.0023 (9)0.0012 (9)0.0031 (10)
C440.0141 (12)0.0153 (12)0.0121 (12)0.0028 (9)0.0000 (9)0.0010 (10)
C420.0123 (11)0.0147 (12)0.0138 (12)0.0034 (9)0.0003 (9)0.0033 (10)
C490.0222 (13)0.0197 (14)0.0133 (13)0.0022 (10)0.0035 (10)0.0026 (11)
C400.0115 (11)0.0128 (12)0.0134 (12)0.0027 (9)0.0018 (9)0.0008 (10)
C290.0211 (13)0.0173 (13)0.0132 (13)0.0044 (10)0.0003 (10)0.0054 (10)
C480.0239 (14)0.0164 (13)0.0225 (14)0.0013 (10)0.0012 (11)0.0029 (11)
C500.0235 (13)0.0207 (14)0.0153 (13)0.0038 (11)0.0024 (10)0.0031 (11)
C360.0221 (13)0.0185 (14)0.0178 (14)0.0004 (10)0.0034 (10)0.0033 (11)
C450.0145 (12)0.0156 (13)0.0133 (12)0.0012 (9)0.0015 (9)0.0047 (10)
C260.0366 (17)0.0202 (15)0.0436 (19)0.0071 (12)0.0009 (14)0.0089 (14)
C520.055 (2)0.0232 (16)0.0306 (17)0.0064 (14)0.0089 (14)0.0102 (14)
Geometric parameters (Å, º) top
Br2—C111.906 (2)C31—C401.446 (3)
Br1—C21.906 (2)C31—C451.513 (3)
Br3—C281.898 (2)C27—C281.371 (3)
Br4—C371.905 (2)C27—C391.414 (3)
C17—C181.421 (3)C27—H270.9500
C17—C121.423 (3)C28—C291.393 (3)
C17—C151.463 (3)C46—C471.525 (3)
C11—C121.367 (4)C46—C451.528 (3)
C11—C101.393 (4)C46—H460.9900
C5—C61.356 (3)C46—H46A0.9900
C5—C141.445 (3)C34—C331.357 (3)
C5—C191.515 (3)C34—C441.449 (3)
C24—C251.526 (3)C34—C491.519 (3)
C24—C231.528 (3)C43—C381.422 (3)
C24—H240.9900C43—C441.429 (3)
C24—H24A0.9900C43—C411.450 (3)
C6—C161.435 (3)C47—C481.525 (3)
C6—H60.9500C47—H470.9900
C9—C101.372 (3)C47—H47A0.9900
C9—C181.424 (3)C32—C421.430 (3)
C9—H90.9500C32—H320.9500
C14—C41.413 (3)C38—C371.374 (3)
C14—C131.434 (3)C38—H380.9500
C2—C11.368 (3)C39—C401.427 (3)
C2—C31.398 (4)C39—C411.448 (3)
C20—C211.523 (3)C41—C421.397 (3)
C20—C191.527 (3)C37—C361.398 (3)
C20—H200.9900C35—C361.372 (3)
C20—H20A0.9900C35—C441.414 (3)
C12—H120.9500C35—H350.9500
C25—C261.526 (4)C30—C291.375 (3)
C25—H250.9900C30—C401.412 (3)
C25—H25A0.9900C30—H300.9500
C23—C81.510 (3)C51—C501.523 (3)
C23—H230.9900C51—C521.528 (4)
C23—H23A0.9900C51—H510.9900
C13—C11.418 (3)C51—H51A0.9900
C13—C151.461 (3)C33—C421.431 (3)
C8—C71.360 (3)C33—H330.9500
C8—C181.451 (3)C49—C501.531 (3)
C21—C221.526 (3)C49—H490.9900
C21—H210.9900C49—H49A0.9900
C21—H21A0.9900C29—H290.9500
C19—H190.9900C48—H480.9800
C19—H19A0.9900C48—H48A0.9800
C7—C161.426 (3)C48—H48B0.9800
C7—H70.9500C50—H500.9900
C3—C41.366 (3)C50—H50A0.9900
C3—H30.9500C36—H360.9500
C1—H10.9500C45—H450.9900
C16—C151.399 (3)C45—H45A0.9900
C22—H220.9800C26—H260.9800
C22—H22A0.9800C26—H26A0.9800
C22—H22B0.9800C26—H26B0.9800
C10—H100.9500C52—H520.9800
C4—H40.9500C52—H52A0.9800
C31—C321.354 (3)C52—H52B0.9800
C18—C17—C12117.5 (2)C27—C28—C29122.1 (2)
C18—C17—C15119.6 (2)C27—C28—Br3118.65 (18)
C12—C17—C15122.8 (2)C29—C28—Br3119.19 (18)
C12—C11—C10122.2 (2)C47—C46—C45112.13 (19)
C12—C11—Br2119.0 (2)C47—C46—H46109.2
C10—C11—Br2118.81 (19)C45—C46—H46109.2
C6—C5—C14117.7 (2)C47—C46—H46A109.2
C6—C5—C19122.2 (2)C45—C46—H46A109.2
C14—C5—C19120.1 (2)H46—C46—H46A107.9
C25—C24—C23112.8 (2)C33—C34—C44117.9 (2)
C25—C24—H24109.0C33—C34—C49122.2 (2)
C23—C24—H24109.0C44—C34—C49119.8 (2)
C25—C24—H24A109.0C38—C43—C44117.9 (2)
C23—C24—H24A109.0C38—C43—C41122.3 (2)
H24—C24—H24A107.8C44—C43—C41119.6 (2)
C5—C6—C16123.1 (2)C48—C47—C46111.6 (2)
C5—C6—H6118.4C48—C47—H47109.3
C16—C6—H6118.4C46—C47—H47109.3
C10—C9—C18121.6 (2)C48—C47—H47A109.3
C10—C9—H9119.2C46—C47—H47A109.3
C18—C9—H9119.2H47—C47—H47A108.0
C4—C14—C13118.6 (2)C31—C32—C42122.6 (2)
C4—C14—C5120.5 (2)C31—C32—H32118.7
C13—C14—C5120.9 (2)C42—C32—H32118.7
C1—C2—C3121.9 (2)C37—C38—C43120.6 (2)
C1—C2—Br1119.31 (19)C37—C38—H38119.7
C3—C2—Br1118.80 (19)C43—C38—H38119.7
C21—C20—C19112.4 (2)C27—C39—C40117.3 (2)
C21—C20—H20109.1C27—C39—C41122.7 (2)
C19—C20—H20109.1C40—C39—C41119.7 (2)
C21—C20—H20A109.1C42—C41—C39117.5 (2)
C19—C20—H20A109.1C42—C41—C43117.2 (2)
H20—C20—H20A107.9C39—C41—C43125.3 (2)
C11—C12—C17120.8 (2)C38—C37—C36121.7 (2)
C11—C12—H12119.6C38—C37—Br4119.17 (19)
C17—C12—H12119.6C36—C37—Br4119.14 (18)
C24—C25—C26113.2 (2)C36—C35—C44122.3 (2)
C24—C25—H25108.9C36—C35—H35118.8
C26—C25—H25108.9C44—C35—H35118.8
C24—C25—H25A108.9C29—C30—C40122.1 (2)
C26—C25—H25A108.9C29—C30—H30118.9
H25—C25—H25A107.7C40—C30—H30118.9
C8—C23—C24116.6 (2)C50—C51—C52112.1 (2)
C8—C23—H23108.1C50—C51—H51109.2
C24—C23—H23108.1C52—C51—H51109.2
C8—C23—H23A108.1C50—C51—H51A109.2
C24—C23—H23A108.1C52—C51—H51A109.2
H23—C23—H23A107.3H51—C51—H51A107.9
C1—C13—C14117.4 (2)C34—C33—C42122.7 (2)
C1—C13—C15123.3 (2)C34—C33—H33118.7
C14—C13—C15119.2 (2)C42—C33—H33118.7
C7—C8—C18117.0 (2)C35—C44—C43118.5 (2)
C7—C8—C23122.9 (2)C35—C44—C34121.2 (2)
C18—C8—C23120.1 (2)C43—C44—C34120.1 (2)
C20—C21—C22112.8 (2)C41—C42—C32120.4 (2)
C20—C21—H21109.0C41—C42—C33120.6 (2)
C22—C21—H21109.0C32—C42—C33118.9 (2)
C20—C21—H21A109.0C34—C49—C50115.8 (2)
C22—C21—H21A109.0C34—C49—H49108.3
H21—C21—H21A107.8C50—C49—H49108.3
C5—C19—C20116.3 (2)C34—C49—H49A108.3
C5—C19—H19108.2C50—C49—H49A108.3
C20—C19—H19108.2H49—C49—H49A107.4
C5—C19—H19A108.2C30—C40—C39119.1 (2)
C20—C19—H19A108.2C30—C40—C31120.8 (2)
H19—C19—H19A107.4C39—C40—C31120.0 (2)
C8—C7—C16122.9 (2)C30—C29—C28117.9 (2)
C8—C7—H7118.5C30—C29—H29121.0
C16—C7—H7118.5C28—C29—H29121.0
C4—C3—C2118.0 (2)C47—C48—H48109.5
C4—C3—H3121.0C47—C48—H48A109.5
C2—C3—H3121.0H48—C48—H48A109.5
C2—C1—C13121.2 (2)C47—C48—H48B109.5
C2—C1—H1119.4H48—C48—H48B109.5
C13—C1—H1119.4H48A—C48—H48B109.5
C15—C16—C7121.1 (2)C51—C50—C49112.0 (2)
C15—C16—C6120.4 (2)C51—C50—H50109.2
C7—C16—C6118.5 (2)C49—C50—H50109.2
C21—C22—H22109.5C51—C50—H50A109.2
C21—C22—H22A109.5C49—C50—H50A109.2
H22—C22—H22A109.5H50—C50—H50A107.9
C21—C22—H22B109.5C35—C36—C37118.4 (2)
H22—C22—H22B109.5C35—C36—H36120.8
H22A—C22—H22B109.5C37—C36—H36120.8
C9—C10—C11118.4 (2)C31—C45—C46115.26 (19)
C9—C10—H10120.8C31—C45—H45108.5
C11—C10—H10120.8C46—C45—H45108.5
C17—C18—C9119.2 (2)C31—C45—H45A108.5
C17—C18—C8120.8 (2)C46—C45—H45A108.5
C9—C18—C8119.8 (2)H45—C45—H45A107.5
C16—C15—C13117.4 (2)C25—C26—H26109.5
C16—C15—C17116.5 (2)C25—C26—H26A109.5
C13—C15—C17126.0 (2)H26—C26—H26A109.5
C3—C4—C14122.9 (2)C25—C26—H26B109.5
C3—C4—H4118.6H26—C26—H26B109.5
C14—C4—H4118.6H26A—C26—H26B109.5
C32—C31—C40118.3 (2)C51—C52—H52109.5
C32—C31—C45121.9 (2)C51—C52—H52A109.5
C40—C31—C45119.6 (2)H52—C52—H52A109.5
C28—C27—C39121.0 (2)C51—C52—H52B109.5
C28—C27—H27119.5H52—C52—H52B109.5
C39—C27—H27119.5H52A—C52—H52B109.5
C14—C5—C6—C163.6 (3)C39—C27—C28—C290.8 (3)
C19—C5—C6—C16178.6 (2)C39—C27—C28—Br3177.06 (17)
C6—C5—C14—C4171.4 (2)C45—C46—C47—C48175.9 (2)
C19—C5—C14—C46.5 (3)C40—C31—C32—C424.8 (3)
C6—C5—C14—C136.1 (3)C45—C31—C32—C42179.9 (2)
C19—C5—C14—C13176.1 (2)C44—C43—C38—C376.4 (3)
C10—C11—C12—C172.1 (4)C41—C43—C38—C37178.4 (2)
Br2—C11—C12—C17177.71 (17)C28—C27—C39—C404.5 (3)
C18—C17—C12—C115.1 (3)C28—C27—C39—C41177.9 (2)
C15—C17—C12—C11179.3 (2)C27—C39—C41—C42160.5 (2)
C23—C24—C25—C26172.6 (2)C40—C39—C41—C4212.7 (3)
C25—C24—C23—C8177.7 (2)C27—C39—C41—C4316.6 (3)
C4—C14—C13—C13.5 (3)C40—C39—C41—C43170.2 (2)
C5—C14—C13—C1174.1 (2)C38—C43—C41—C42160.0 (2)
C4—C14—C13—C15178.4 (2)C44—C43—C41—C4215.2 (3)
C5—C14—C13—C150.9 (3)C38—C43—C41—C3922.9 (3)
C24—C23—C8—C79.6 (3)C44—C43—C41—C39161.9 (2)
C24—C23—C8—C18172.4 (2)C43—C38—C37—C361.0 (4)
C19—C20—C21—C22177.4 (2)C43—C38—C37—Br4179.58 (17)
C6—C5—C19—C208.1 (3)C44—C34—C33—C427.7 (3)
C14—C5—C19—C20174.1 (2)C49—C34—C33—C42175.7 (2)
C21—C20—C19—C5175.6 (2)C36—C35—C44—C433.5 (3)
C18—C8—C7—C1610.0 (3)C36—C35—C44—C34172.3 (2)
C23—C8—C7—C16172.1 (2)C38—C43—C44—C357.5 (3)
C1—C2—C3—C41.6 (4)C41—C43—C44—C35177.1 (2)
Br1—C2—C3—C4176.61 (18)C38—C43—C44—C34168.3 (2)
C3—C2—C1—C131.6 (4)C41—C43—C44—C347.0 (3)
Br1—C2—C1—C13179.74 (17)C33—C34—C44—C35171.3 (2)
C14—C13—C1—C24.1 (3)C49—C34—C44—C355.4 (3)
C15—C13—C1—C2178.8 (2)C33—C34—C44—C434.4 (3)
C8—C7—C16—C150.3 (4)C49—C34—C44—C43178.9 (2)
C8—C7—C16—C6178.8 (2)C39—C41—C42—C3213.0 (3)
C5—C6—C16—C156.2 (4)C43—C41—C42—C32169.7 (2)
C5—C6—C16—C7172.4 (2)C39—C41—C42—C33165.1 (2)
C18—C9—C10—C111.9 (4)C43—C41—C42—C3312.2 (3)
C12—C11—C10—C91.5 (4)C31—C32—C42—C414.4 (3)
Br2—C11—C10—C9178.69 (18)C31—C32—C42—C33173.7 (2)
C12—C17—C18—C94.7 (3)C34—C33—C42—C410.8 (3)
C15—C17—C18—C9179.6 (2)C34—C33—C42—C32178.9 (2)
C12—C17—C18—C8171.6 (2)C33—C34—C49—C509.4 (3)
C15—C17—C18—C84.1 (3)C44—C34—C49—C50174.0 (2)
C10—C9—C18—C171.3 (4)C29—C30—C40—C393.6 (3)
C10—C9—C18—C8175.0 (2)C29—C30—C40—C31172.6 (2)
C7—C8—C18—C177.8 (3)C27—C39—C40—C306.5 (3)
C23—C8—C18—C17174.1 (2)C41—C39—C40—C30179.9 (2)
C7—C8—C18—C9168.4 (2)C27—C39—C40—C31169.6 (2)
C23—C8—C18—C99.6 (3)C41—C39—C40—C313.9 (3)
C7—C16—C15—C13165.5 (2)C32—C31—C40—C30171.3 (2)
C6—C16—C15—C1313.0 (3)C45—C31—C40—C304.2 (3)
C7—C16—C15—C1712.3 (3)C32—C31—C40—C394.8 (3)
C6—C16—C15—C17169.2 (2)C45—C31—C40—C39179.71 (19)
C1—C13—C15—C16164.3 (2)C40—C30—C29—C281.7 (3)
C14—C13—C15—C1610.3 (3)C27—C28—C29—C304.0 (3)
C1—C13—C15—C1713.3 (4)Br3—C28—C29—C30173.86 (17)
C14—C13—C15—C17172.1 (2)C52—C51—C50—C49178.7 (2)
C18—C17—C15—C1613.9 (3)C34—C49—C50—C51173.3 (2)
C12—C17—C15—C16161.5 (2)C44—C35—C36—C372.0 (4)
C18—C17—C15—C13163.7 (2)C38—C37—C36—C353.3 (4)
C12—C17—C15—C1320.9 (4)Br4—C37—C36—C35176.13 (18)
C2—C3—C4—C142.1 (4)C32—C31—C45—C469.6 (3)
C13—C14—C4—C30.4 (3)C40—C31—C45—C46175.10 (19)
C5—C14—C4—C3177.1 (2)C47—C46—C45—C31177.42 (19)

Experimental details

Crystal data
Chemical formulaC26H26Br2
Mr498.29
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.611 (2), 13.394 (4), 22.552 (7)
α, β, γ (°)75.012 (4), 84.682 (4), 79.067 (4)
V3)2178.2 (11)
Z4
Radiation typeMo Kα
µ (mm1)3.73
Crystal size (mm)0.40 × 0.10 × 0.10
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.317, 0.707
No. of measured, independent and
observed [I > 2σ(I)] reflections
25036, 10029, 7642
Rint0.038
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.069, 1.02
No. of reflections10029
No. of parameters509
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.40

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008), Yadokari-XG 2009 (Kabuto et al., 2009) and publCIF (Westrip, 2010).

 

Acknowledgements

This study was partly supported by KAKENHI (21685005, 20108015, 22550094) and the Asahi Glass Foundation. We thank Professor T. Iwamoto (Tohoku University) for the X-ray instrument and JEOL for the DART MS instrument. A generous gift of HFIP from Central Glass Co. is also gratefully acknowledged.

References

First citationAmsharov, K. Y., Kabdulov, M. A. & Jansen, M. (2009). Eur. J. Org. Chem. pp. 6328–6335.  Web of Science CSD CrossRef Google Scholar
First citationBae, S., Mah, H., Chaturvedi, S., Jeknic, T. M., Baird, W. M., Katz, A. K., Carrell, H. L., Glusker, J. P., Okazaki, T., Laali, K. K., Zajc, B. & Lakshman, M. K. (2007). J. Org. Chem. 72, 7625–7633.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHirshfeld, F. L., Sandler, S. & Schmidt, G. M. J. (1963). J. Chem. Soc. 2108–2125.  Google Scholar
First citationIchikawa, J., Yokota, M., Kudo, T. & Umezaki, S. (2008). Angew. Chem. Int. Ed. 47, 4870–4873.  Web of Science CSD CrossRef CAS Google Scholar
First citationIsobe, H., Hitosugi, S., Matsuno, T., Iwamoto, T. & Ichikawa, J. (2009). Org. Lett. 11, 4026–4028.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218–224.  CrossRef Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationNakanishi, W., Matsuno, T., Ichikawa, J. & Isobe, H. (2011). Angew. Chem. Int. Ed. 50, 6048–6051.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVerbiest, T., Elshocht, S. V., Kauranen, M., Hellemans, L., Snauwaert, J., Nuckolls, C., Katz, T. J. & Persoons, A. (1998). Science, 30, 913–915.  Web of Science CrossRef Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds