organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o998-o999

Marbofloxacin

aCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, and bCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn

(Received 4 January 2012; accepted 2 March 2012; online 10 March 2012)

In the title compound, [systematic name: 9-fluoro-2,3-dihydro-3-methyl-10-(4-methyl­piperazin-1-yl)-7-oxo-7H-pyrido[1,2,3-ij][1,2,4]benzoxadiazine-6-carb­oxy­lic acid], C17H19FN4O4, the carbonyl and carboxyl groups are coplanar with the quinoline ring, making a dihedral angle of 2.39 (2)°. The piperazine ring adopts a chair conformation and the oxadiazinane ring displays an envelope conformation with the CH2 group at the flap displaced by 0.650 (2) Å from the plane through the other five atoms. The mol­ecular structure exhibits an S(6) ring motif, owing to an intra­molecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯F hydrogen bonds link mol­ecules into layers parallel to the ab plane.

Related literature

Marbofloxacin is a third-generation fluoro­quinolone for veterinary use, the anti­microbial activity of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001[Paradis, M., Abbey, L., Baker, B., Coyne, M., Hannigan, M., Joffe, D., Pukay, B., Trettien, A., Waisglass, S. & Wellington, J. (2001). Vet. Dermatol. 12, 163-169.]; Thomas et al., 2001[Thomas, E., Caldow, G. L., Borell, D. & Davot, J. L. (2001). J. Vet. Pharmacol. Ther. 24, 353-358.]; Voermans et al., 2006[Voermans, M., van Soest, J. M., van Duijkeren, E. & Ensink, J. M. (2006). J. Vet. Pharmacol. Ther. 29, 555-560.]). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections resulting from both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998[Lefebvre, H. P., Schneider, M., Dupouy, V., Laroute, V., Costes, G., Delesalle, L. & Toutain, P. L. (1998). J. Vet. Pharmacol. Ther. 21, 453-461.]) and Mycoplasma (Spreng et al., 1995[Spreng, M., Deleforge, J., Thomas, V., Boisrame, B. & Drugeon, H. (1995). J. Vet. Pharmacol. Ther. 18, 284-289.]; Dossin et al., 1998[Dossin, O., Gruet, P. & Thomas, E. (1998). J. Small Anim. Pract. 39, 286-289.]; Carlotti et al., 1999[Carlotti, D. N., Guaguere, E., Pin, D., Jasmin, P., Thomas, E. & Guiral, V. (1999). J. Small Anim. Pract. 40, 265-270.]; Ishak et al., 2008[Ishak, A. M., Dowers, K. L., Cavanaugh, M. T., Powell, C. C., Hawley, J. R., Radecki, S. V. & Lappin, M. R. (2008). J. Vet. Intern. Med. 22, 288-292.]).

[Scheme 1]

Experimental

Crystal data
  • C17H19FN4O4

  • Mr = 362.36

  • Triclinic, [P \overline 1]

  • a = 8.0145 (5) Å

  • b = 8.9218 (6) Å

  • c = 13.0874 (8) Å

  • α = 91.65 (3)°

  • β = 99.65 (3)°

  • γ = 115.091 (10)°

  • V = 830.26 (16) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 296 K

  • 0.31 × 0.13 × 0.03 mm

Data collection
  • Rigaku RAXIS-RAPID/ZJUG diffractometer

  • Absorption correction: multi-scan (Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.956, Tmax = 0.997

  • 6601 measured reflections

  • 2925 independent reflections

  • 1428 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.203

  • S = 1.00

  • 2925 reflections

  • 241 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3 0.83 (3) 1.77 (2) 2.560 (4) 159 (5)
C12—H12B⋯F1i 0.96 2.62 3.422 (3) 140 (4)
C15—H15B⋯F1ii 0.97 2.54 3.446 (3) 155 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Data collection: PROCESS-AUTO (Rigaku, 2006[Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007[Rigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections due to both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008). But up till now, no single-crystal structure of marbofloxacin has been reported. In the prestent study, we report the crystal structure of marbofloxacin, recrystallized from methanol.

In the crystal structure of marbofloxacin (Fig.1), the carbonyl and carboxyl group are coplanar with the quinoline ring system. The least-squares plane through atoms O1, C1, C2, C3 and O3 is rotated by 2.39 (2)° with respect to the least-scqures plane of quinolinemoiety. The quionline moiety is planar, with the maximum displacement from the least-squares plane being observed for atom C2 [0.020 Å].

The piperazine ring adopts a chair conformation, with the distance of 0.663 (7) Å, -0.662 (7) Å for N4 and N3 to the plane of C13, C14, C15, C16, respectively. The oxadiazinane ring diaplays an envelop conformation. The methyl substituent on N1 is perpendicular to the quinoline moiety, with a C12—N1—N2—C10 torsion angle of -88.8 (4)°.

The carboxyl atom O1 and carbonyl atom O3 is connected by intramolecular hydrogen bond O1—H1···O3 and formed a six-membered ring. Weak intermolecular C15—H15B···F1i[Symmetric code:(i)1 + x,y,z] interaction link molecules into chains along a axis, which is stacked along b axis through another weak intermolecular interaction C12—H12B···F1ii[Symmetric code:(ii)1 + x,1 + y,z].

Related literature top

Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections resulting from both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008).

Experimental top

The crude product is supplied by Zhejiang Excel Pharmaceutical Co.,Ltd. It was recrystallized from methanol solution, giving yellow crystal of marbofloxacin suitable for X-ray diffraction.

Refinement top

Atom H1 was placed from the difference fourier density and refined free with restraints to the OH bond of O1—H1=0.82 (1) Å. All other H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and included in the refinement in riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq(carrier atom).

Structure description top

Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections due to both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008). But up till now, no single-crystal structure of marbofloxacin has been reported. In the prestent study, we report the crystal structure of marbofloxacin, recrystallized from methanol.

In the crystal structure of marbofloxacin (Fig.1), the carbonyl and carboxyl group are coplanar with the quinoline ring system. The least-squares plane through atoms O1, C1, C2, C3 and O3 is rotated by 2.39 (2)° with respect to the least-scqures plane of quinolinemoiety. The quionline moiety is planar, with the maximum displacement from the least-squares plane being observed for atom C2 [0.020 Å].

The piperazine ring adopts a chair conformation, with the distance of 0.663 (7) Å, -0.662 (7) Å for N4 and N3 to the plane of C13, C14, C15, C16, respectively. The oxadiazinane ring diaplays an envelop conformation. The methyl substituent on N1 is perpendicular to the quinoline moiety, with a C12—N1—N2—C10 torsion angle of -88.8 (4)°.

The carboxyl atom O1 and carbonyl atom O3 is connected by intramolecular hydrogen bond O1—H1···O3 and formed a six-membered ring. Weak intermolecular C15—H15B···F1i[Symmetric code:(i)1 + x,y,z] interaction link molecules into chains along a axis, which is stacked along b axis through another weak intermolecular interaction C12—H12B···F1ii[Symmetric code:(ii)1 + x,1 + y,z].

Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections resulting from both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 2006); cell refinement: PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of marbofloxacin showing atom-labelling scheme and displacement ellipsoids at 40% probability level. H atoms are shown as small circles of arbitary radii.
[Figure 2] Fig. 2. Part of the crystal packing of Marbofloxacin. Weak Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity. Symmetric code: (i)1 + x,y,z; (ii)1 + x,1 + y,z.
7-fluoro-2-methyl-6-(4-methylpiperazin-1-yl)-10-oxo-4-oxa-1,2- diazatricyclo[7.3.1.05,13]trideca-5,7,9(13),11-tetraene-11-carboxylic acid top
Crystal data top
C17H19FN4O4Z = 2
Mr = 362.36F(000) = 380
Triclinic, P1Dx = 1.449 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0145 (5) ÅCell parameters from 4017 reflections
b = 8.9218 (6) Åθ = 3.1–27.4°
c = 13.0874 (8) ŵ = 0.11 mm1
α = 91.65 (3)°T = 296 K
β = 99.65 (3)°Plates, yellow
γ = 115.091 (10)°0.31 × 0.13 × 0.03 mm
V = 830.26 (16) Å3
Data collection top
Rigaku RAXIS-RAPID/ZJUG
diffractometer
2925 independent reflections
Radiation source: rolling anode1428 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
Detector resolution: 10.00 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 99
Absorption correction: multi-scan
(Higashi, 1995)
k = 1010
Tmin = 0.956, Tmax = 0.997l = 1515
6601 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.072P)2 + 0.8525P]
where P = (Fo2 + 2Fc2)/3
2925 reflections(Δ/σ)max < 0.001
241 parametersΔρmax = 0.29 e Å3
1 restraintΔρmin = 0.34 e Å3
Crystal data top
C17H19FN4O4γ = 115.091 (10)°
Mr = 362.36V = 830.26 (16) Å3
Triclinic, P1Z = 2
a = 8.0145 (5) ÅMo Kα radiation
b = 8.9218 (6) ŵ = 0.11 mm1
c = 13.0874 (8) ÅT = 296 K
α = 91.65 (3)°0.31 × 0.13 × 0.03 mm
β = 99.65 (3)°
Data collection top
Rigaku RAXIS-RAPID/ZJUG
diffractometer
2925 independent reflections
Absorption correction: multi-scan
(Higashi, 1995)
1428 reflections with I > 2σ(I)
Tmin = 0.956, Tmax = 0.997Rint = 0.052
6601 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0551 restraint
wR(F2) = 0.203H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.29 e Å3
2925 reflectionsΔρmin = 0.34 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.2105 (3)0.1945 (3)0.64667 (19)0.0642 (7)
O10.2871 (5)0.7762 (4)1.0967 (2)0.0680 (9)
H10.230 (6)0.693 (4)1.053 (3)0.09 (2)*
O20.5831 (5)0.9686 (4)1.1352 (2)0.0732 (10)
O30.1921 (4)0.5352 (4)0.9550 (2)0.0594 (8)
O40.8358 (3)0.6152 (3)0.7475 (2)0.0539 (8)
N10.9081 (4)0.8423 (4)0.8761 (3)0.0499 (9)
N20.7233 (4)0.7572 (4)0.8983 (2)0.0455 (8)
N30.5854 (4)0.3404 (4)0.6136 (2)0.0494 (9)
N40.7031 (5)0.1924 (4)0.4634 (3)0.0551 (9)
C10.4644 (7)0.8439 (6)1.0818 (3)0.0576 (11)
C20.5010 (5)0.7549 (5)0.9964 (3)0.0451 (10)
C30.3568 (6)0.6070 (5)0.9367 (3)0.0467 (10)
C40.4097 (5)0.5369 (4)0.8514 (3)0.0414 (9)
C50.2802 (5)0.3970 (5)0.7853 (3)0.0475 (10)
H50.15540.34640.79260.057*
C60.3386 (5)0.3344 (5)0.7091 (3)0.0484 (10)
C70.5238 (5)0.4014 (4)0.6918 (3)0.0436 (9)
C80.6516 (5)0.5420 (5)0.7594 (3)0.0441 (9)
C90.9600 (5)0.7160 (5)0.8421 (3)0.0557 (11)
H9A0.95740.64460.89690.067*
H9B1.08760.76880.83020.067*
C100.6778 (5)0.8265 (5)0.9749 (3)0.0463 (10)
H100.76780.92471.01400.056*
C110.5951 (5)0.6118 (4)0.8364 (3)0.0400 (9)
C120.9089 (7)0.9603 (5)0.7983 (4)0.0665 (13)
H12A0.82520.89960.73430.100*
H12B1.03391.01960.78560.100*
H12C0.86811.03800.82460.100*
C130.4605 (6)0.2587 (6)0.5132 (3)0.0628 (12)
H13A0.37990.31290.49200.075*
H13B0.38170.14280.51900.075*
C140.5809 (7)0.2709 (6)0.4340 (3)0.0684 (13)
H14A0.50070.21810.36670.082*
H14B0.65600.38720.42720.082*
C150.8245 (6)0.2699 (6)0.5640 (3)0.0651 (13)
H15A0.90560.38550.55870.078*
H15B0.90340.21380.58410.078*
C160.7106 (6)0.2613 (5)0.6461 (3)0.0546 (11)
H16A0.63670.14590.65570.065*
H16B0.79390.31800.71200.065*
C170.8116 (7)0.1965 (6)0.3831 (4)0.0840 (17)
H17A0.72720.13990.31850.126*
H17B0.89060.14220.40420.126*
H17C0.88810.31010.37400.126*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0504 (14)0.0478 (13)0.0771 (17)0.0064 (11)0.0123 (12)0.0136 (12)
O10.077 (2)0.081 (2)0.0573 (19)0.0394 (19)0.0278 (17)0.0012 (18)
O20.084 (2)0.072 (2)0.0611 (19)0.0311 (18)0.0186 (17)0.0087 (17)
O30.0514 (17)0.0659 (18)0.0658 (19)0.0245 (15)0.0267 (15)0.0086 (15)
O40.0438 (15)0.0543 (16)0.0548 (17)0.0115 (13)0.0164 (13)0.0057 (13)
N10.0444 (19)0.0450 (18)0.056 (2)0.0129 (15)0.0172 (16)0.0015 (16)
N20.0415 (18)0.0460 (18)0.0441 (18)0.0137 (15)0.0112 (14)0.0023 (15)
N30.053 (2)0.060 (2)0.0391 (17)0.0302 (17)0.0041 (15)0.0071 (15)
N40.067 (2)0.0451 (19)0.052 (2)0.0196 (17)0.0221 (17)0.0016 (16)
C10.066 (3)0.068 (3)0.051 (3)0.038 (2)0.020 (2)0.010 (2)
C20.059 (3)0.048 (2)0.036 (2)0.029 (2)0.0121 (18)0.0061 (17)
C30.051 (2)0.053 (2)0.044 (2)0.0278 (19)0.0146 (19)0.0114 (19)
C40.049 (2)0.0373 (19)0.040 (2)0.0200 (17)0.0092 (17)0.0053 (16)
C50.042 (2)0.045 (2)0.055 (2)0.0169 (18)0.0115 (18)0.0051 (19)
C60.042 (2)0.038 (2)0.056 (2)0.0102 (17)0.0063 (18)0.0031 (18)
C70.051 (2)0.0363 (19)0.046 (2)0.0205 (17)0.0110 (18)0.0056 (17)
C80.042 (2)0.046 (2)0.044 (2)0.0186 (17)0.0121 (17)0.0003 (18)
C90.042 (2)0.057 (2)0.059 (3)0.0149 (19)0.0090 (19)0.007 (2)
C100.054 (2)0.048 (2)0.038 (2)0.0236 (19)0.0104 (18)0.0031 (17)
C110.041 (2)0.0352 (18)0.0396 (19)0.0131 (16)0.0082 (16)0.0025 (16)
C120.069 (3)0.058 (3)0.068 (3)0.018 (2)0.025 (2)0.010 (2)
C130.066 (3)0.068 (3)0.052 (3)0.031 (2)0.001 (2)0.010 (2)
C140.083 (3)0.070 (3)0.049 (3)0.032 (3)0.010 (2)0.001 (2)
C150.063 (3)0.079 (3)0.057 (3)0.034 (2)0.015 (2)0.005 (2)
C160.063 (3)0.061 (3)0.053 (2)0.038 (2)0.015 (2)0.005 (2)
C170.098 (4)0.073 (3)0.074 (3)0.021 (3)0.048 (3)0.007 (3)
Geometric parameters (Å, º) top
F1—C61.361 (4)C5—C61.368 (5)
O1—C11.339 (5)C5—H50.9300
O1—H10.83 (3)C6—C71.407 (5)
O2—C11.210 (5)C7—C81.395 (5)
O3—C31.267 (4)C8—C111.401 (5)
O4—C81.377 (4)C9—H9A0.9700
O4—C91.448 (4)C9—H9B0.9700
N1—N21.434 (4)C10—H100.9300
N1—C91.439 (5)C12—H12A0.9600
N1—C121.484 (6)C12—H12B0.9600
N2—C101.341 (4)C12—H12C0.9600
N2—C111.387 (4)C13—C141.507 (6)
N3—C71.397 (4)C13—H13A0.9700
N3—C131.465 (5)C13—H13B0.9700
N3—C161.470 (5)C14—H14A0.9700
N4—C141.438 (6)C14—H14B0.9700
N4—C151.451 (5)C15—C161.506 (5)
N4—C171.464 (5)C15—H15A0.9700
C1—C21.491 (5)C15—H15B0.9700
C2—C101.368 (5)C16—H16A0.9700
C2—C31.425 (5)C16—H16B0.9700
C3—C41.470 (5)C17—H17A0.9600
C4—C51.387 (5)C17—H17B0.9600
C4—C111.399 (5)C17—H17C0.9600
C1—O1—H1106 (4)H9A—C9—H9B107.9
C8—O4—C9111.3 (3)N2—C10—C2121.0 (3)
N2—N1—C9106.7 (3)N2—C10—H10119.5
N2—N1—C12109.9 (3)C2—C10—H10119.5
C9—N1—C12113.8 (3)N2—C11—C4119.3 (3)
C10—N2—C11122.3 (3)N2—C11—C8120.0 (3)
C10—N2—N1118.4 (3)C4—C11—C8120.7 (3)
C11—N2—N1119.1 (3)N1—C12—H12A109.5
C7—N3—C13121.3 (3)N1—C12—H12B109.5
C7—N3—C16117.4 (3)H12A—C12—H12B109.5
C13—N3—C16110.8 (3)N1—C12—H12C109.5
C14—N4—C15110.1 (3)H12A—C12—H12C109.5
C14—N4—C17111.2 (4)H12B—C12—H12C109.5
C15—N4—C17111.6 (4)N3—C13—C14108.0 (4)
O2—C1—O1120.9 (4)N3—C13—H13A110.1
O2—C1—C2123.9 (4)C14—C13—H13A110.1
O1—C1—C2115.2 (4)N3—C13—H13B110.1
C10—C2—C3121.6 (3)C14—C13—H13B110.1
C10—C2—C1116.6 (3)H13A—C13—H13B108.4
C3—C2—C1121.7 (4)N4—C14—C13111.6 (4)
O3—C3—C2123.6 (3)N4—C14—H14A109.3
O3—C3—C4120.3 (3)C13—C14—H14A109.3
C2—C3—C4116.0 (3)N4—C14—H14B109.3
C5—C4—C11118.8 (3)C13—C14—H14B109.3
C5—C4—C3121.6 (4)H14A—C14—H14B108.0
C11—C4—C3119.6 (3)N4—C15—C16111.0 (4)
C6—C5—C4119.0 (4)N4—C15—H15A109.4
C6—C5—H5120.5C16—C15—H15A109.4
C4—C5—H5120.5N4—C15—H15B109.4
F1—C6—C5118.2 (3)C16—C15—H15B109.4
F1—C6—C7117.0 (3)H15A—C15—H15B108.0
C5—C6—C7124.8 (3)N3—C16—C15109.4 (4)
N3—C7—C8119.3 (3)N3—C16—H16A109.8
N3—C7—C6125.6 (3)C15—C16—H16A109.8
C8—C7—C6115.1 (3)N3—C16—H16B109.8
O4—C8—C7118.6 (3)C15—C16—H16B109.8
O4—C8—C11119.9 (3)H16A—C16—H16B108.2
C7—C8—C11121.5 (3)N4—C17—H17A109.5
N1—C9—O4112.4 (3)N4—C17—H17B109.5
N1—C9—H9A109.1H17A—C17—H17B109.5
O4—C9—H9A109.1N4—C17—H17C109.5
N1—C9—H9B109.1H17A—C17—H17C109.5
O4—C9—H9B109.1H17B—C17—H17C109.5
C9—N1—N2—C10147.4 (4)N3—C7—C8—C11177.4 (4)
C12—N1—N2—C1088.8 (4)C6—C7—C8—C111.6 (6)
C9—N1—N2—C1136.1 (5)N2—N1—C9—O462.1 (4)
C12—N1—N2—C1187.7 (4)C12—N1—C9—O459.3 (4)
O2—C1—C2—C103.8 (7)C8—O4—C9—N156.7 (4)
O1—C1—C2—C10176.1 (4)C11—N2—C10—C20.7 (6)
O2—C1—C2—C3179.1 (4)N1—N2—C10—C2177.0 (4)
O1—C1—C2—C31.0 (6)C3—C2—C10—N21.8 (6)
C10—C2—C3—O3178.9 (4)C1—C2—C10—N2178.9 (4)
C1—C2—C3—O34.2 (6)C10—N2—C11—C42.2 (6)
C10—C2—C3—C40.0 (6)N1—N2—C11—C4174.1 (3)
C1—C2—C3—C4177.0 (4)C10—N2—C11—C8178.1 (4)
O3—C3—C4—C53.6 (6)N1—N2—C11—C85.6 (5)
C2—C3—C4—C5177.5 (4)C5—C4—C11—N2176.4 (4)
O3—C3—C4—C11176.1 (4)C3—C4—C11—N23.9 (6)
C2—C3—C4—C112.8 (5)C5—C4—C11—C83.3 (6)
C11—C4—C5—C61.5 (6)C3—C4—C11—C8176.4 (4)
C3—C4—C5—C6178.2 (4)O4—C8—C11—N22.0 (6)
C4—C5—C6—F1178.3 (4)C7—C8—C11—N2176.2 (4)
C4—C5—C6—C70.2 (7)O4—C8—C11—C4178.3 (3)
C13—N3—C7—C8148.1 (4)C7—C8—C11—C43.4 (6)
C16—N3—C7—C870.4 (5)C7—N3—C13—C14157.3 (4)
C13—N3—C7—C630.9 (6)C16—N3—C13—C1458.9 (5)
C16—N3—C7—C6110.7 (5)C15—N4—C14—C1359.0 (5)
F1—C6—C7—N32.7 (6)C17—N4—C14—C13176.7 (3)
C5—C6—C7—N3179.2 (4)N3—C13—C14—N459.4 (5)
F1—C6—C7—C8178.3 (3)C14—N4—C15—C1657.3 (5)
C5—C6—C7—C80.2 (6)C17—N4—C15—C16178.7 (4)
C9—O4—C8—C7159.0 (4)C7—N3—C16—C15156.2 (3)
C9—O4—C8—C1122.7 (5)C13—N3—C16—C1558.4 (5)
N3—C7—C8—O40.8 (6)N4—C15—C16—N356.9 (5)
C6—C7—C8—O4179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.83 (3)1.77 (2)2.560 (4)159 (5)
C12—H12B···F1i0.962.623.422 (3)140 (4)
C15—H15B···F1ii0.972.543.446 (3)155 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC17H19FN4O4
Mr362.36
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.0145 (5), 8.9218 (6), 13.0874 (8)
α, β, γ (°)91.65 (3), 99.65 (3), 115.091 (10)
V3)830.26 (16)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.31 × 0.13 × 0.03
Data collection
DiffractometerRigaku RAXIS-RAPID/ZJUG
Absorption correctionMulti-scan
(Higashi, 1995)
Tmin, Tmax0.956, 0.997
No. of measured, independent and
observed [I > 2σ(I)] reflections
6601, 2925, 1428
Rint0.052
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.203, 1.00
No. of reflections2925
No. of parameters241
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.29, 0.34

Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O30.83 (3)1.77 (2)2.560 (4)159 (5)
C12—H12B···F1i0.962.623.422 (3)140 (4)
C15—H15B···F1ii0.972.543.446 (3)155 (5)
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z.
 

Acknowledgements

The project was supported by the Zhejiang Provincial Natural Science Foundation of China (J200801).

References

First citationCarlotti, D. N., Guaguere, E., Pin, D., Jasmin, P., Thomas, E. & Guiral, V. (1999). J. Small Anim. Pract. 40, 265–270.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDossin, O., Gruet, P. & Thomas, E. (1998). J. Small Anim. Pract. 39, 286–289.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationIshak, A. M., Dowers, K. L., Cavanaugh, M. T., Powell, C. C., Hawley, J. R., Radecki, S. V. & Lappin, M. R. (2008). J. Vet. Intern. Med. 22, 288–292.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLefebvre, H. P., Schneider, M., Dupouy, V., Laroute, V., Costes, G., Delesalle, L. & Toutain, P. L. (1998). J. Vet. Pharmacol. Ther. 21, 453–461.  CrossRef CAS PubMed Google Scholar
First citationParadis, M., Abbey, L., Baker, B., Coyne, M., Hannigan, M., Joffe, D., Pukay, B., Trettien, A., Waisglass, S. & Wellington, J. (2001). Vet. Dermatol. 12, 163–169.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpreng, M., Deleforge, J., Thomas, V., Boisrame, B. & Drugeon, H. (1995). J. Vet. Pharmacol. Ther. 18, 284–289.  CrossRef CAS PubMed Web of Science Google Scholar
First citationThomas, E., Caldow, G. L., Borell, D. & Davot, J. L. (2001). J. Vet. Pharmacol. Ther. 24, 353–358.  Web of Science CrossRef PubMed CAS Google Scholar
First citationVoermans, M., van Soest, J. M., van Duijkeren, E. & Ensink, J. M. (2006). J. Vet. Pharmacol. Ther. 29, 555–560.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o998-o999
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds