organic compounds
Marbofloxacin
aCollege of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, People's Republic of China, and bCenter of Analysis and Measurement, Zhejiang University, Hangzhou, Zhejiang 310028, People's Republic of China
*Correspondence e-mail: huxiurong@yahoo.com.cn
In the title compound, [systematic name: 9-fluoro-2,3-dihydro-3-methyl-10-(4-methylpiperazin-1-yl)-7-oxo-7H-pyrido[1,2,3-ij][1,2,4]benzoxadiazine-6-carboxylic acid], C17H19FN4O4, the carbonyl and carboxyl groups are coplanar with the quinoline ring, making a dihedral angle of 2.39 (2)°. The piperazine ring adopts a chair conformation and the oxadiazinane ring displays an with the CH2 group at the flap displaced by 0.650 (2) Å from the plane through the other five atoms. The molecular structure exhibits an S(6) ring motif, owing to an intramolecular O—H⋯O hydrogen bond. In the crystal, weak C—H⋯F hydrogen bonds link molecules into layers parallel to the ab plane.
Related literature
Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial activity of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections resulting from both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 2006); cell PROCESS-AUTO; data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).
Supporting information
10.1107/S1600536812009312/nr2019sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009312/nr2019Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536812009312/nr2019Isup3.cml
The crude product is supplied by Zhejiang Excel Pharmaceutical Co.,Ltd. It was recrystallized from methanol solution, giving yellow crystal of marbofloxacin suitable for X-ray diffraction.
Atom H1 was placed from the difference fourier density and refined free with restraints to the OH bond of O1—H1=0.82 (1) Å. All other H atoms were placed in calculated positions with C—H = 0.93–0.97 Å and included in the
in riding model, with Uiso(H) = 1.2Ueq or 1.5Ueq(carrier atom).Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections due to both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008). But up till now, no single-crystal structure of marbofloxacin has been reported. In the prestent study, we report the
of marbofloxacin, recrystallized from methanol.In the
of marbofloxacin (Fig.1), the carbonyl and carboxyl group are coplanar with the quinoline ring system. The least-squares plane through atoms O1, C1, C2, C3 and O3 is rotated by 2.39 (2)° with respect to the least-scqures plane of quinolinemoiety. The quionline moiety is planar, with the maximum displacement from the least-squares plane being observed for atom C2 [0.020 Å].The piperazine ring adopts a chair conformation, with the distance of 0.663 (7) Å, -0.662 (7) Å for N4 and N3 to the plane of C13, C14, C15, C16, respectively. The oxadiazinane ring diaplays an envelop conformation. The methyl substituent on N1 is perpendicular to the quinoline moiety, with a C12—N1—N2—C10 torsion angle of -88.8 (4)°.
The carboxyl atom O1 and carbonyl atom O3 is connected by intramolecular hydrogen bond O1—H1···O3 and formed a six-membered ring. Weak intermolecular C15—H15B···F1i[Symmetric code:(i)1 + x,y,z] interaction link molecules into chains along a axis, which is stacked along b axis through another weak intermolecular interaction C12—H12B···F1ii[Symmetric code:(ii)1 + x,1 + y,z].
Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections resulting from both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008).
Data collection: PROCESS-AUTO (Rigaku, 2006); cell
PROCESS-AUTO (Rigaku, 2006); data reduction: CrystalStructure (Rigaku, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).C17H19FN4O4 | Z = 2 |
Mr = 362.36 | F(000) = 380 |
Triclinic, P1 | Dx = 1.449 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 8.0145 (5) Å | Cell parameters from 4017 reflections |
b = 8.9218 (6) Å | θ = 3.1–27.4° |
c = 13.0874 (8) Å | µ = 0.11 mm−1 |
α = 91.65 (3)° | T = 296 K |
β = 99.65 (3)° | Plates, yellow |
γ = 115.091 (10)° | 0.31 × 0.13 × 0.03 mm |
V = 830.26 (16) Å3 |
Rigaku RAXIS-RAPID/ZJUG diffractometer | 2925 independent reflections |
Radiation source: rolling anode | 1428 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.052 |
Detector resolution: 10.00 pixels mm-1 | θmax = 25.0°, θmin = 3.1° |
ω scans | h = −9→9 |
Absorption correction: multi-scan (Higashi, 1995) | k = −10→10 |
Tmin = 0.956, Tmax = 0.997 | l = −15→15 |
6601 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.203 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | w = 1/[σ2(Fo2) + (0.072P)2 + 0.8525P] where P = (Fo2 + 2Fc2)/3 |
2925 reflections | (Δ/σ)max < 0.001 |
241 parameters | Δρmax = 0.29 e Å−3 |
1 restraint | Δρmin = −0.34 e Å−3 |
C17H19FN4O4 | γ = 115.091 (10)° |
Mr = 362.36 | V = 830.26 (16) Å3 |
Triclinic, P1 | Z = 2 |
a = 8.0145 (5) Å | Mo Kα radiation |
b = 8.9218 (6) Å | µ = 0.11 mm−1 |
c = 13.0874 (8) Å | T = 296 K |
α = 91.65 (3)° | 0.31 × 0.13 × 0.03 mm |
β = 99.65 (3)° |
Rigaku RAXIS-RAPID/ZJUG diffractometer | 2925 independent reflections |
Absorption correction: multi-scan (Higashi, 1995) | 1428 reflections with I > 2σ(I) |
Tmin = 0.956, Tmax = 0.997 | Rint = 0.052 |
6601 measured reflections |
R[F2 > 2σ(F2)] = 0.055 | 1 restraint |
wR(F2) = 0.203 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.00 | Δρmax = 0.29 e Å−3 |
2925 reflections | Δρmin = −0.34 e Å−3 |
241 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
F1 | 0.2105 (3) | 0.1945 (3) | 0.64667 (19) | 0.0642 (7) | |
O1 | 0.2871 (5) | 0.7762 (4) | 1.0967 (2) | 0.0680 (9) | |
H1 | 0.230 (6) | 0.693 (4) | 1.053 (3) | 0.09 (2)* | |
O2 | 0.5831 (5) | 0.9686 (4) | 1.1352 (2) | 0.0732 (10) | |
O3 | 0.1921 (4) | 0.5352 (4) | 0.9550 (2) | 0.0594 (8) | |
O4 | 0.8358 (3) | 0.6152 (3) | 0.7475 (2) | 0.0539 (8) | |
N1 | 0.9081 (4) | 0.8423 (4) | 0.8761 (3) | 0.0499 (9) | |
N2 | 0.7233 (4) | 0.7572 (4) | 0.8983 (2) | 0.0455 (8) | |
N3 | 0.5854 (4) | 0.3404 (4) | 0.6136 (2) | 0.0494 (9) | |
N4 | 0.7031 (5) | 0.1924 (4) | 0.4634 (3) | 0.0551 (9) | |
C1 | 0.4644 (7) | 0.8439 (6) | 1.0818 (3) | 0.0576 (11) | |
C2 | 0.5010 (5) | 0.7549 (5) | 0.9964 (3) | 0.0451 (10) | |
C3 | 0.3568 (6) | 0.6070 (5) | 0.9367 (3) | 0.0467 (10) | |
C4 | 0.4097 (5) | 0.5369 (4) | 0.8514 (3) | 0.0414 (9) | |
C5 | 0.2802 (5) | 0.3970 (5) | 0.7853 (3) | 0.0475 (10) | |
H5 | 0.1554 | 0.3464 | 0.7926 | 0.057* | |
C6 | 0.3386 (5) | 0.3344 (5) | 0.7091 (3) | 0.0484 (10) | |
C7 | 0.5238 (5) | 0.4014 (4) | 0.6918 (3) | 0.0436 (9) | |
C8 | 0.6516 (5) | 0.5420 (5) | 0.7594 (3) | 0.0441 (9) | |
C9 | 0.9600 (5) | 0.7160 (5) | 0.8421 (3) | 0.0557 (11) | |
H9A | 0.9574 | 0.6446 | 0.8969 | 0.067* | |
H9B | 1.0876 | 0.7688 | 0.8302 | 0.067* | |
C10 | 0.6778 (5) | 0.8265 (5) | 0.9749 (3) | 0.0463 (10) | |
H10 | 0.7678 | 0.9247 | 1.0140 | 0.056* | |
C11 | 0.5951 (5) | 0.6118 (4) | 0.8364 (3) | 0.0400 (9) | |
C12 | 0.9089 (7) | 0.9603 (5) | 0.7983 (4) | 0.0665 (13) | |
H12A | 0.8252 | 0.8996 | 0.7343 | 0.100* | |
H12B | 1.0339 | 1.0196 | 0.7856 | 0.100* | |
H12C | 0.8681 | 1.0380 | 0.8246 | 0.100* | |
C13 | 0.4605 (6) | 0.2587 (6) | 0.5132 (3) | 0.0628 (12) | |
H13A | 0.3799 | 0.3129 | 0.4920 | 0.075* | |
H13B | 0.3817 | 0.1428 | 0.5190 | 0.075* | |
C14 | 0.5809 (7) | 0.2709 (6) | 0.4340 (3) | 0.0684 (13) | |
H14A | 0.5007 | 0.2181 | 0.3667 | 0.082* | |
H14B | 0.6560 | 0.3872 | 0.4272 | 0.082* | |
C15 | 0.8245 (6) | 0.2699 (6) | 0.5640 (3) | 0.0651 (13) | |
H15A | 0.9056 | 0.3855 | 0.5587 | 0.078* | |
H15B | 0.9034 | 0.2138 | 0.5841 | 0.078* | |
C16 | 0.7106 (6) | 0.2613 (5) | 0.6461 (3) | 0.0546 (11) | |
H16A | 0.6367 | 0.1459 | 0.6557 | 0.065* | |
H16B | 0.7939 | 0.3180 | 0.7120 | 0.065* | |
C17 | 0.8116 (7) | 0.1965 (6) | 0.3831 (4) | 0.0840 (17) | |
H17A | 0.7272 | 0.1399 | 0.3185 | 0.126* | |
H17B | 0.8906 | 0.1422 | 0.4042 | 0.126* | |
H17C | 0.8881 | 0.3101 | 0.3740 | 0.126* |
U11 | U22 | U33 | U12 | U13 | U23 | |
F1 | 0.0504 (14) | 0.0478 (13) | 0.0771 (17) | 0.0064 (11) | 0.0123 (12) | −0.0136 (12) |
O1 | 0.077 (2) | 0.081 (2) | 0.0573 (19) | 0.0394 (19) | 0.0278 (17) | 0.0012 (18) |
O2 | 0.084 (2) | 0.072 (2) | 0.0611 (19) | 0.0311 (18) | 0.0186 (17) | −0.0087 (17) |
O3 | 0.0514 (17) | 0.0659 (18) | 0.0658 (19) | 0.0245 (15) | 0.0267 (15) | 0.0086 (15) |
O4 | 0.0438 (15) | 0.0543 (16) | 0.0548 (17) | 0.0115 (13) | 0.0164 (13) | −0.0057 (13) |
N1 | 0.0444 (19) | 0.0450 (18) | 0.056 (2) | 0.0129 (15) | 0.0172 (16) | 0.0015 (16) |
N2 | 0.0415 (18) | 0.0460 (18) | 0.0441 (18) | 0.0137 (15) | 0.0112 (14) | 0.0023 (15) |
N3 | 0.053 (2) | 0.060 (2) | 0.0391 (17) | 0.0302 (17) | 0.0041 (15) | −0.0071 (15) |
N4 | 0.067 (2) | 0.0451 (19) | 0.052 (2) | 0.0196 (17) | 0.0221 (17) | −0.0016 (16) |
C1 | 0.066 (3) | 0.068 (3) | 0.051 (3) | 0.038 (2) | 0.020 (2) | 0.010 (2) |
C2 | 0.059 (3) | 0.048 (2) | 0.036 (2) | 0.029 (2) | 0.0121 (18) | 0.0061 (17) |
C3 | 0.051 (2) | 0.053 (2) | 0.044 (2) | 0.0278 (19) | 0.0146 (19) | 0.0114 (19) |
C4 | 0.049 (2) | 0.0373 (19) | 0.040 (2) | 0.0200 (17) | 0.0092 (17) | 0.0053 (16) |
C5 | 0.042 (2) | 0.045 (2) | 0.055 (2) | 0.0169 (18) | 0.0115 (18) | 0.0051 (19) |
C6 | 0.042 (2) | 0.038 (2) | 0.056 (2) | 0.0102 (17) | 0.0063 (18) | −0.0031 (18) |
C7 | 0.051 (2) | 0.0363 (19) | 0.046 (2) | 0.0205 (17) | 0.0110 (18) | 0.0056 (17) |
C8 | 0.042 (2) | 0.046 (2) | 0.044 (2) | 0.0186 (17) | 0.0121 (17) | 0.0003 (18) |
C9 | 0.042 (2) | 0.057 (2) | 0.059 (3) | 0.0149 (19) | 0.0090 (19) | −0.007 (2) |
C10 | 0.054 (2) | 0.048 (2) | 0.038 (2) | 0.0236 (19) | 0.0104 (18) | −0.0031 (17) |
C11 | 0.041 (2) | 0.0352 (18) | 0.0396 (19) | 0.0131 (16) | 0.0082 (16) | 0.0025 (16) |
C12 | 0.069 (3) | 0.058 (3) | 0.068 (3) | 0.018 (2) | 0.025 (2) | 0.010 (2) |
C13 | 0.066 (3) | 0.068 (3) | 0.052 (3) | 0.031 (2) | 0.001 (2) | −0.010 (2) |
C14 | 0.083 (3) | 0.070 (3) | 0.049 (3) | 0.032 (3) | 0.010 (2) | −0.001 (2) |
C15 | 0.063 (3) | 0.079 (3) | 0.057 (3) | 0.034 (2) | 0.015 (2) | −0.005 (2) |
C16 | 0.063 (3) | 0.061 (3) | 0.053 (2) | 0.038 (2) | 0.015 (2) | 0.005 (2) |
C17 | 0.098 (4) | 0.073 (3) | 0.074 (3) | 0.021 (3) | 0.048 (3) | −0.007 (3) |
F1—C6 | 1.361 (4) | C5—C6 | 1.368 (5) |
O1—C1 | 1.339 (5) | C5—H5 | 0.9300 |
O1—H1 | 0.83 (3) | C6—C7 | 1.407 (5) |
O2—C1 | 1.210 (5) | C7—C8 | 1.395 (5) |
O3—C3 | 1.267 (4) | C8—C11 | 1.401 (5) |
O4—C8 | 1.377 (4) | C9—H9A | 0.9700 |
O4—C9 | 1.448 (4) | C9—H9B | 0.9700 |
N1—N2 | 1.434 (4) | C10—H10 | 0.9300 |
N1—C9 | 1.439 (5) | C12—H12A | 0.9600 |
N1—C12 | 1.484 (6) | C12—H12B | 0.9600 |
N2—C10 | 1.341 (4) | C12—H12C | 0.9600 |
N2—C11 | 1.387 (4) | C13—C14 | 1.507 (6) |
N3—C7 | 1.397 (4) | C13—H13A | 0.9700 |
N3—C13 | 1.465 (5) | C13—H13B | 0.9700 |
N3—C16 | 1.470 (5) | C14—H14A | 0.9700 |
N4—C14 | 1.438 (6) | C14—H14B | 0.9700 |
N4—C15 | 1.451 (5) | C15—C16 | 1.506 (5) |
N4—C17 | 1.464 (5) | C15—H15A | 0.9700 |
C1—C2 | 1.491 (5) | C15—H15B | 0.9700 |
C2—C10 | 1.368 (5) | C16—H16A | 0.9700 |
C2—C3 | 1.425 (5) | C16—H16B | 0.9700 |
C3—C4 | 1.470 (5) | C17—H17A | 0.9600 |
C4—C5 | 1.387 (5) | C17—H17B | 0.9600 |
C4—C11 | 1.399 (5) | C17—H17C | 0.9600 |
C1—O1—H1 | 106 (4) | H9A—C9—H9B | 107.9 |
C8—O4—C9 | 111.3 (3) | N2—C10—C2 | 121.0 (3) |
N2—N1—C9 | 106.7 (3) | N2—C10—H10 | 119.5 |
N2—N1—C12 | 109.9 (3) | C2—C10—H10 | 119.5 |
C9—N1—C12 | 113.8 (3) | N2—C11—C4 | 119.3 (3) |
C10—N2—C11 | 122.3 (3) | N2—C11—C8 | 120.0 (3) |
C10—N2—N1 | 118.4 (3) | C4—C11—C8 | 120.7 (3) |
C11—N2—N1 | 119.1 (3) | N1—C12—H12A | 109.5 |
C7—N3—C13 | 121.3 (3) | N1—C12—H12B | 109.5 |
C7—N3—C16 | 117.4 (3) | H12A—C12—H12B | 109.5 |
C13—N3—C16 | 110.8 (3) | N1—C12—H12C | 109.5 |
C14—N4—C15 | 110.1 (3) | H12A—C12—H12C | 109.5 |
C14—N4—C17 | 111.2 (4) | H12B—C12—H12C | 109.5 |
C15—N4—C17 | 111.6 (4) | N3—C13—C14 | 108.0 (4) |
O2—C1—O1 | 120.9 (4) | N3—C13—H13A | 110.1 |
O2—C1—C2 | 123.9 (4) | C14—C13—H13A | 110.1 |
O1—C1—C2 | 115.2 (4) | N3—C13—H13B | 110.1 |
C10—C2—C3 | 121.6 (3) | C14—C13—H13B | 110.1 |
C10—C2—C1 | 116.6 (3) | H13A—C13—H13B | 108.4 |
C3—C2—C1 | 121.7 (4) | N4—C14—C13 | 111.6 (4) |
O3—C3—C2 | 123.6 (3) | N4—C14—H14A | 109.3 |
O3—C3—C4 | 120.3 (3) | C13—C14—H14A | 109.3 |
C2—C3—C4 | 116.0 (3) | N4—C14—H14B | 109.3 |
C5—C4—C11 | 118.8 (3) | C13—C14—H14B | 109.3 |
C5—C4—C3 | 121.6 (4) | H14A—C14—H14B | 108.0 |
C11—C4—C3 | 119.6 (3) | N4—C15—C16 | 111.0 (4) |
C6—C5—C4 | 119.0 (4) | N4—C15—H15A | 109.4 |
C6—C5—H5 | 120.5 | C16—C15—H15A | 109.4 |
C4—C5—H5 | 120.5 | N4—C15—H15B | 109.4 |
F1—C6—C5 | 118.2 (3) | C16—C15—H15B | 109.4 |
F1—C6—C7 | 117.0 (3) | H15A—C15—H15B | 108.0 |
C5—C6—C7 | 124.8 (3) | N3—C16—C15 | 109.4 (4) |
N3—C7—C8 | 119.3 (3) | N3—C16—H16A | 109.8 |
N3—C7—C6 | 125.6 (3) | C15—C16—H16A | 109.8 |
C8—C7—C6 | 115.1 (3) | N3—C16—H16B | 109.8 |
O4—C8—C7 | 118.6 (3) | C15—C16—H16B | 109.8 |
O4—C8—C11 | 119.9 (3) | H16A—C16—H16B | 108.2 |
C7—C8—C11 | 121.5 (3) | N4—C17—H17A | 109.5 |
N1—C9—O4 | 112.4 (3) | N4—C17—H17B | 109.5 |
N1—C9—H9A | 109.1 | H17A—C17—H17B | 109.5 |
O4—C9—H9A | 109.1 | N4—C17—H17C | 109.5 |
N1—C9—H9B | 109.1 | H17A—C17—H17C | 109.5 |
O4—C9—H9B | 109.1 | H17B—C17—H17C | 109.5 |
C9—N1—N2—C10 | 147.4 (4) | N3—C7—C8—C11 | 177.4 (4) |
C12—N1—N2—C10 | −88.8 (4) | C6—C7—C8—C11 | −1.6 (6) |
C9—N1—N2—C11 | −36.1 (5) | N2—N1—C9—O4 | 62.1 (4) |
C12—N1—N2—C11 | 87.7 (4) | C12—N1—C9—O4 | −59.3 (4) |
O2—C1—C2—C10 | −3.8 (7) | C8—O4—C9—N1 | −56.7 (4) |
O1—C1—C2—C10 | 176.1 (4) | C11—N2—C10—C2 | 0.7 (6) |
O2—C1—C2—C3 | 179.1 (4) | N1—N2—C10—C2 | 177.0 (4) |
O1—C1—C2—C3 | −1.0 (6) | C3—C2—C10—N2 | −1.8 (6) |
C10—C2—C3—O3 | 178.9 (4) | C1—C2—C10—N2 | −178.9 (4) |
C1—C2—C3—O3 | −4.2 (6) | C10—N2—C11—C4 | 2.2 (6) |
C10—C2—C3—C4 | 0.0 (6) | N1—N2—C11—C4 | −174.1 (3) |
C1—C2—C3—C4 | 177.0 (4) | C10—N2—C11—C8 | −178.1 (4) |
O3—C3—C4—C5 | 3.6 (6) | N1—N2—C11—C8 | 5.6 (5) |
C2—C3—C4—C5 | −177.5 (4) | C5—C4—C11—N2 | 176.4 (4) |
O3—C3—C4—C11 | −176.1 (4) | C3—C4—C11—N2 | −3.9 (6) |
C2—C3—C4—C11 | 2.8 (5) | C5—C4—C11—C8 | −3.3 (6) |
C11—C4—C5—C6 | 1.5 (6) | C3—C4—C11—C8 | 176.4 (4) |
C3—C4—C5—C6 | −178.2 (4) | O4—C8—C11—N2 | 2.0 (6) |
C4—C5—C6—F1 | 178.3 (4) | C7—C8—C11—N2 | −176.2 (4) |
C4—C5—C6—C7 | 0.2 (7) | O4—C8—C11—C4 | −178.3 (3) |
C13—N3—C7—C8 | −148.1 (4) | C7—C8—C11—C4 | 3.4 (6) |
C16—N3—C7—C8 | 70.4 (5) | C7—N3—C13—C14 | 157.3 (4) |
C13—N3—C7—C6 | 30.9 (6) | C16—N3—C13—C14 | −58.9 (5) |
C16—N3—C7—C6 | −110.7 (5) | C15—N4—C14—C13 | −59.0 (5) |
F1—C6—C7—N3 | 2.7 (6) | C17—N4—C14—C13 | 176.7 (3) |
C5—C6—C7—N3 | −179.2 (4) | N3—C13—C14—N4 | 59.4 (5) |
F1—C6—C7—C8 | −178.3 (3) | C14—N4—C15—C16 | 57.3 (5) |
C5—C6—C7—C8 | −0.2 (6) | C17—N4—C15—C16 | −178.7 (4) |
C9—O4—C8—C7 | −159.0 (4) | C7—N3—C16—C15 | −156.2 (3) |
C9—O4—C8—C11 | 22.7 (5) | C13—N3—C16—C15 | 58.4 (5) |
N3—C7—C8—O4 | −0.8 (6) | N4—C15—C16—N3 | −56.9 (5) |
C6—C7—C8—O4 | −179.9 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3 | 0.83 (3) | 1.77 (2) | 2.560 (4) | 159 (5) |
C12—H12B···F1i | 0.96 | 2.62 | 3.422 (3) | 140 (4) |
C15—H15B···F1ii | 0.97 | 2.54 | 3.446 (3) | 155 (5) |
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z. |
Experimental details
Crystal data | |
Chemical formula | C17H19FN4O4 |
Mr | 362.36 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.0145 (5), 8.9218 (6), 13.0874 (8) |
α, β, γ (°) | 91.65 (3), 99.65 (3), 115.091 (10) |
V (Å3) | 830.26 (16) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.31 × 0.13 × 0.03 |
Data collection | |
Diffractometer | Rigaku RAXIS-RAPID/ZJUG |
Absorption correction | Multi-scan (Higashi, 1995) |
Tmin, Tmax | 0.956, 0.997 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6601, 2925, 1428 |
Rint | 0.052 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.055, 0.203, 1.00 |
No. of reflections | 2925 |
No. of parameters | 241 |
No. of restraints | 1 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.34 |
Computer programs: PROCESS-AUTO (Rigaku, 2006), CrystalStructure (Rigaku, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O3 | 0.83 (3) | 1.77 (2) | 2.560 (4) | 159 (5) |
C12—H12B···F1i | 0.96 | 2.62 | 3.422 (3) | 140 (4) |
C15—H15B···F1ii | 0.97 | 2.54 | 3.446 (3) | 155 (5) |
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z. |
Acknowledgements
The project was supported by the Zhejiang Provincial Natural Science Foundation of China (J200801).
References
Carlotti, D. N., Guaguere, E., Pin, D., Jasmin, P., Thomas, E. & Guiral, V. (1999). J. Small Anim. Pract. 40, 265–270. Web of Science CrossRef PubMed CAS Google Scholar
Dossin, O., Gruet, P. & Thomas, E. (1998). J. Small Anim. Pract. 39, 286–289. Web of Science CrossRef CAS PubMed Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Ishak, A. M., Dowers, K. L., Cavanaugh, M. T., Powell, C. C., Hawley, J. R., Radecki, S. V. & Lappin, M. R. (2008). J. Vet. Intern. Med. 22, 288–292. Web of Science CrossRef PubMed CAS Google Scholar
Lefebvre, H. P., Schneider, M., Dupouy, V., Laroute, V., Costes, G., Delesalle, L. & Toutain, P. L. (1998). J. Vet. Pharmacol. Ther. 21, 453–461. CrossRef CAS PubMed Google Scholar
Paradis, M., Abbey, L., Baker, B., Coyne, M., Hannigan, M., Joffe, D., Pukay, B., Trettien, A., Waisglass, S. & Wellington, J. (2001). Vet. Dermatol. 12, 163–169. Web of Science CrossRef PubMed CAS Google Scholar
Rigaku (2006). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (2007). CrystalStructure. Rigaku, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spreng, M., Deleforge, J., Thomas, V., Boisrame, B. & Drugeon, H. (1995). J. Vet. Pharmacol. Ther. 18, 284–289. CrossRef CAS PubMed Web of Science Google Scholar
Thomas, E., Caldow, G. L., Borell, D. & Davot, J. L. (2001). J. Vet. Pharmacol. Ther. 24, 353–358. Web of Science CrossRef PubMed CAS Google Scholar
Voermans, M., van Soest, J. M., van Duijkeren, E. & Ensink, J. M. (2006). J. Vet. Pharmacol. Ther. 29, 555–560. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Marbofloxacin is a third-generation fluoroquinolone for veterinary use, the antimicrobial of which depends upon its inhibition of DNA-gyrase and topoisomerase IV (Paradis et al., 2001; Thomas et al., 2001; Voermans et al., 2006). With a broad spectrum bactericidal activity and good efficacy, marbofloxacin is indicated for dermatological, respiratory and urinary tract infections due to both Gram-positive and Gram-negative bacteria (Lefebvre et al., 1998) and Mycoplasma (Spreng et al., 1995; Dossin et al., 1998; Carlotti et al., 1999; Ishak et al., 2008). But up till now, no single-crystal structure of marbofloxacin has been reported. In the prestent study, we report the crystal structure of marbofloxacin, recrystallized from methanol.
In the crystal structure of marbofloxacin (Fig.1), the carbonyl and carboxyl group are coplanar with the quinoline ring system. The least-squares plane through atoms O1, C1, C2, C3 and O3 is rotated by 2.39 (2)° with respect to the least-scqures plane of quinolinemoiety. The quionline moiety is planar, with the maximum displacement from the least-squares plane being observed for atom C2 [0.020 Å].
The piperazine ring adopts a chair conformation, with the distance of 0.663 (7) Å, -0.662 (7) Å for N4 and N3 to the plane of C13, C14, C15, C16, respectively. The oxadiazinane ring diaplays an envelop conformation. The methyl substituent on N1 is perpendicular to the quinoline moiety, with a C12—N1—N2—C10 torsion angle of -88.8 (4)°.
The carboxyl atom O1 and carbonyl atom O3 is connected by intramolecular hydrogen bond O1—H1···O3 and formed a six-membered ring. Weak intermolecular C15—H15B···F1i[Symmetric code:(i)1 + x,y,z] interaction link molecules into chains along a axis, which is stacked along b axis through another weak intermolecular interaction C12—H12B···F1ii[Symmetric code:(ii)1 + x,1 + y,z].