metal-organic compounds
Tetra-μ-benzoato-bis[(3,5-dimethylpyridine)copper(II)]
aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com
In the centrosymmetric binuclear title compound, [Cu2(C7H5O2)4(C7H9N)2], the CuII atom is coordinated by four O atoms from benzoate anions and one N atom from a dimethylpyridine ligand. A paddle-wheel-like dimer is formed by two CuII ions and four benzoate anions with two 3,5-dimethylpyridine ligands at the axial position of the CuII ions. The dihedral angle between the two unique benzene rings is 84.26 (16)°. The dihedral angles between the pyridine ring and the benzene rings are 61.67 (15) and 34.27 (14)°. There is π–π stacking of inversion-related pyridine rings, with a centroid–centroid distance of 3.833 (2) Å.
Related literature
For a general review of copper(II) carboxylates, see: Doedens (1976). For the crystal structures of similar complexes, see: Speier & Fulop (1989).
Experimental
Crystal data
|
Refinement
|
Data collection: PROCESS-AUTO (Rigaku, 1998); cell PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812008604/pk2382sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812008604/pk2382Isup2.hkl
A mixture of Cu(II) chloride (2 mmol), benzoic acid (1mmol) and 3,5-dimethylpyridine (0.5mmol), in 10 ml aqueous solution was sealed in a teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Green crystals of the title complex were collected after the bomb was allowed to cool to room temperature. Yield 20% based on metal salt.
All hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C), or 0.96Å and Uiso = 1.5Ueq(C) for the methyl H atoms.
The binuclear paddle-wheel cage structure of copper(II) carboxylates is well established (Doedens, 1976; Speier & Fulop, 1989). Here we report the synthesis and π-π stacking of inversion related pyridine rings related by 1-x,-y,2-z; and the centroid-centroid distances is 3.833 (2)Å.
of a new copper complex with 3,5-dimethylpyridine and benzoic acid ligands. Each CuII is coordinated by one 3,5-dimethylpyridine ligand and two benzoate ligands. A pair of CuII ions are connected through four syn-syn bidentate chelating carboxylate bridges to generate a paddle wheel binuclear unit (Fig. 1). There isFor a general review of copper(II) carboxylates, see: Doedens (1976). For the crystal structures of similar complexes, see: Speier & Fulop (1989).
Data collection: PROCESS-AUTO (Rigaku, 1998); cell
PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title compound. Ellipsoids are drawn at the 30% probability level. Only the asymmetric unit is labeled. Symmetry code: i = -x+1, -y+1, -z+1. |
[Cu2(C7H5O2)4(C7H9N)2] | Z = 1 |
Mr = 825.84 | F(000) = 426 |
Triclinic, P1 | Dx = 1.411 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 10.249 (2) Å | Cell parameters from 8517 reflections |
b = 10.619 (2) Å | θ = 3.0–27.9° |
c = 10.752 (2) Å | µ = 1.15 mm−1 |
α = 64.14 (3)° | T = 293 K |
β = 67.34 (3)° | Block, green |
γ = 80.36 (3)° | 0.2 × 0.18 × 0.18 mm |
V = 971.7 (5) Å3 |
Rigaku SCXmini diffractometer | 4417 independent reflections |
Radiation source: fine-focus sealed tube | 2943 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.067 |
ω scans | θmax = 27.5°, θmin = 3.0° |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | h = −13→13 |
Tmin = 0.461, Tmax = 1 | k = −13→13 |
10126 measured reflections | l = −13→13 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.067 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.06 | w = 1/[σ2(Fo2) + (0.0637P)2] where P = (Fo2 + 2Fc2)/3 |
4417 reflections | (Δ/σ)max < 0.001 |
244 parameters | Δρmax = 0.46 e Å−3 |
0 restraints | Δρmin = −0.40 e Å−3 |
[Cu2(C7H5O2)4(C7H9N)2] | γ = 80.36 (3)° |
Mr = 825.84 | V = 971.7 (5) Å3 |
Triclinic, P1 | Z = 1 |
a = 10.249 (2) Å | Mo Kα radiation |
b = 10.619 (2) Å | µ = 1.15 mm−1 |
c = 10.752 (2) Å | T = 293 K |
α = 64.14 (3)° | 0.2 × 0.18 × 0.18 mm |
β = 67.34 (3)° |
Rigaku SCXmini diffractometer | 4417 independent reflections |
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) | 2943 reflections with I > 2σ(I) |
Tmin = 0.461, Tmax = 1 | Rint = 0.067 |
10126 measured reflections |
R[F2 > 2σ(F2)] = 0.067 | 0 restraints |
wR(F2) = 0.162 | H-atom parameters constrained |
S = 1.06 | Δρmax = 0.46 e Å−3 |
4417 reflections | Δρmin = −0.40 e Å−3 |
244 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.3897 (3) | 0.3033 (3) | 0.5902 (3) | 0.0637 (8) | |
Cu1 | 0.44953 (5) | 0.61486 (4) | 0.41389 (5) | 0.0490 (2) | |
O3 | 0.3341 (3) | 0.6269 (3) | 0.6031 (3) | 0.0608 (8) | |
O4 | 0.4237 (3) | 0.4387 (3) | 0.7466 (3) | 0.0618 (8) | |
O2 | 0.3048 (3) | 0.4950 (3) | 0.4447 (3) | 0.0609 (8) | |
N1 | 0.3873 (3) | 0.8205 (3) | 0.2789 (3) | 0.0495 (8) | |
C1 | 0.3029 (4) | 0.3663 (4) | 0.5251 (4) | 0.0490 (10) | |
C4 | 0.0875 (6) | 0.0579 (5) | 0.6323 (5) | 0.0804 (15) | |
H4A | 0.0884 | −0.0391 | 0.6813 | 0.096* | |
C8 | 0.3451 (4) | 0.5443 (4) | 0.7258 (4) | 0.0535 (10) | |
C2 | 0.1904 (4) | 0.2791 (4) | 0.5442 (4) | 0.0492 (9) | |
C3 | 0.1912 (5) | 0.1358 (5) | 0.6164 (5) | 0.0663 (12) | |
H3A | 0.2623 | 0.0917 | 0.6544 | 0.080* | |
C16 | 0.3891 (5) | 1.0667 (4) | 0.2119 (5) | 0.0617 (11) | |
C7 | 0.0844 (4) | 0.3430 (5) | 0.4877 (4) | 0.0551 (10) | |
H7A | 0.0834 | 0.4398 | 0.4379 | 0.066* | |
C9 | 0.2579 (5) | 0.5741 (4) | 0.8573 (4) | 0.0559 (11) | |
C10 | 0.1364 (5) | 0.6526 (5) | 0.8600 (5) | 0.0776 (14) | |
H10A | 0.1093 | 0.6898 | 0.7777 | 0.093* | |
C15 | 0.4131 (4) | 0.9293 (4) | 0.2955 (4) | 0.0563 (11) | |
H15A | 0.4498 | 0.9119 | 0.3683 | 0.068* | |
C17 | 0.3314 (5) | 1.0881 (5) | 0.1066 (5) | 0.0667 (13) | |
H17A | 0.3126 | 1.1787 | 0.0477 | 0.080* | |
C19 | 0.3335 (4) | 0.8451 (4) | 0.1775 (4) | 0.0533 (10) | |
H19A | 0.3157 | 0.7691 | 0.1650 | 0.064* | |
C13 | 0.2201 (7) | 0.5513 (6) | 1.0997 (5) | 0.0948 (18) | |
H13A | 0.2496 | 0.5188 | 1.1801 | 0.114* | |
C6 | −0.0199 (5) | 0.2633 (6) | 0.5051 (5) | 0.0703 (13) | |
H6A | −0.0917 | 0.3066 | 0.4680 | 0.084* | |
C18 | 0.3019 (4) | 0.9778 (5) | 0.0880 (4) | 0.0613 (12) | |
C11 | 0.0548 (6) | 0.6765 (6) | 0.9830 (6) | 0.0997 (19) | |
H11A | −0.0297 | 0.7256 | 0.9857 | 0.120* | |
C20 | 0.2345 (6) | 0.9980 (6) | −0.0211 (5) | 0.0943 (17) | |
H20A | 0.2206 | 1.0961 | −0.0731 | 0.141* | |
H20B | 0.1448 | 0.9509 | 0.0303 | 0.141* | |
H20C | 0.2949 | 0.9600 | −0.0901 | 0.141* | |
C14 | 0.2992 (5) | 0.5227 (5) | 0.9776 (5) | 0.0695 (13) | |
H14A | 0.3806 | 0.4685 | 0.9773 | 0.083* | |
C21 | 0.4241 (6) | 1.1845 (5) | 0.2354 (6) | 0.0987 (19) | |
H21A | 0.4002 | 1.2720 | 0.1680 | 0.148* | |
H21B | 0.5234 | 1.1830 | 0.2182 | 0.148* | |
H21C | 0.3711 | 1.1738 | 0.3350 | 0.148* | |
C5 | −0.0179 (5) | 0.1220 (6) | 0.5762 (5) | 0.0759 (14) | |
H5A | −0.0878 | 0.0683 | 0.5871 | 0.091* | |
C12 | 0.0977 (7) | 0.6282 (6) | 1.1015 (6) | 0.102 (2) | |
H12A | 0.0441 | 0.6472 | 1.1834 | 0.123* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.074 (2) | 0.0512 (16) | 0.069 (2) | −0.0033 (15) | −0.0414 (17) | −0.0118 (15) |
Cu1 | 0.0615 (4) | 0.0408 (3) | 0.0417 (3) | 0.0041 (2) | −0.0241 (2) | −0.0106 (2) |
O3 | 0.079 (2) | 0.0576 (17) | 0.0393 (15) | 0.0088 (15) | −0.0218 (14) | −0.0163 (14) |
O4 | 0.078 (2) | 0.0530 (17) | 0.0469 (16) | 0.0144 (16) | −0.0243 (15) | −0.0171 (14) |
O2 | 0.071 (2) | 0.0466 (17) | 0.0672 (19) | 0.0010 (14) | −0.0382 (16) | −0.0133 (14) |
N1 | 0.059 (2) | 0.0409 (18) | 0.0423 (18) | 0.0047 (16) | −0.0183 (16) | −0.0123 (15) |
C1 | 0.056 (3) | 0.048 (2) | 0.042 (2) | 0.006 (2) | −0.0188 (19) | −0.0188 (19) |
C4 | 0.108 (4) | 0.052 (3) | 0.072 (3) | −0.022 (3) | −0.029 (3) | −0.012 (2) |
C8 | 0.067 (3) | 0.049 (2) | 0.042 (2) | −0.006 (2) | −0.020 (2) | −0.015 (2) |
C2 | 0.055 (3) | 0.057 (2) | 0.035 (2) | 0.001 (2) | −0.0134 (18) | −0.0199 (18) |
C3 | 0.083 (3) | 0.054 (3) | 0.061 (3) | −0.007 (2) | −0.036 (2) | −0.012 (2) |
C16 | 0.064 (3) | 0.043 (2) | 0.058 (3) | 0.003 (2) | −0.013 (2) | −0.011 (2) |
C7 | 0.051 (3) | 0.062 (3) | 0.052 (2) | 0.005 (2) | −0.016 (2) | −0.026 (2) |
C9 | 0.073 (3) | 0.046 (2) | 0.045 (2) | −0.002 (2) | −0.019 (2) | −0.0167 (19) |
C10 | 0.100 (4) | 0.069 (3) | 0.059 (3) | 0.014 (3) | −0.030 (3) | −0.025 (3) |
C15 | 0.065 (3) | 0.050 (2) | 0.048 (2) | 0.008 (2) | −0.021 (2) | −0.016 (2) |
C17 | 0.066 (3) | 0.055 (3) | 0.048 (3) | 0.015 (2) | −0.015 (2) | −0.004 (2) |
C19 | 0.056 (3) | 0.057 (3) | 0.042 (2) | 0.008 (2) | −0.0171 (19) | −0.019 (2) |
C13 | 0.144 (6) | 0.082 (4) | 0.049 (3) | −0.004 (4) | −0.025 (3) | −0.025 (3) |
C6 | 0.054 (3) | 0.093 (4) | 0.071 (3) | 0.006 (3) | −0.023 (2) | −0.041 (3) |
C18 | 0.060 (3) | 0.067 (3) | 0.039 (2) | 0.010 (2) | −0.018 (2) | −0.010 (2) |
C11 | 0.110 (5) | 0.092 (4) | 0.083 (4) | 0.031 (4) | −0.021 (4) | −0.046 (3) |
C20 | 0.108 (4) | 0.109 (4) | 0.064 (3) | 0.025 (3) | −0.050 (3) | −0.025 (3) |
C14 | 0.092 (4) | 0.063 (3) | 0.050 (3) | 0.005 (3) | −0.026 (2) | −0.021 (2) |
C21 | 0.133 (5) | 0.051 (3) | 0.094 (4) | −0.003 (3) | −0.027 (4) | −0.024 (3) |
C5 | 0.068 (3) | 0.089 (4) | 0.075 (3) | −0.011 (3) | −0.017 (3) | −0.041 (3) |
C12 | 0.141 (6) | 0.087 (4) | 0.056 (3) | 0.016 (4) | −0.011 (3) | −0.034 (3) |
O1—C1 | 1.265 (4) | C9—C14 | 1.371 (6) |
O1—Cu1i | 1.966 (3) | C9—C10 | 1.375 (6) |
Cu1—O2 | 1.953 (3) | C10—C11 | 1.372 (6) |
Cu1—O1i | 1.966 (3) | C10—H10A | 0.9300 |
Cu1—O4i | 1.968 (3) | C15—H15A | 0.9300 |
Cu1—O3 | 1.969 (3) | C17—C18 | 1.368 (6) |
Cu1—N1 | 2.182 (3) | C17—H17A | 0.9300 |
Cu1—Cu1i | 2.6721 (13) | C19—C18 | 1.386 (5) |
O3—C8 | 1.263 (4) | C19—H19A | 0.9300 |
O4—C8 | 1.254 (4) | C13—C12 | 1.376 (7) |
O4—Cu1i | 1.968 (3) | C13—C14 | 1.385 (6) |
O2—C1 | 1.258 (4) | C13—H13A | 0.9300 |
N1—C19 | 1.315 (5) | C6—C5 | 1.356 (6) |
N1—C15 | 1.325 (5) | C6—H6A | 0.9300 |
C1—C2 | 1.496 (5) | C18—C20 | 1.502 (6) |
C4—C3 | 1.369 (6) | C11—C12 | 1.366 (7) |
C4—C5 | 1.375 (7) | C11—H11A | 0.9300 |
C4—H4A | 0.9300 | C20—H20A | 0.9600 |
C8—C9 | 1.490 (5) | C20—H20B | 0.9600 |
C2—C3 | 1.374 (5) | C20—H20C | 0.9600 |
C2—C7 | 1.383 (5) | C14—H14A | 0.9300 |
C3—H3A | 0.9300 | C21—H21A | 0.9600 |
C16—C15 | 1.380 (5) | C21—H21B | 0.9600 |
C16—C17 | 1.390 (6) | C21—H21C | 0.9600 |
C16—C21 | 1.501 (6) | C5—H5A | 0.9300 |
C7—C6 | 1.380 (6) | C12—H12A | 0.9300 |
C7—H7A | 0.9300 | ||
C1—O1—Cu1i | 127.3 (3) | C11—C10—C9 | 120.7 (5) |
O2—Cu1—O1i | 167.39 (11) | C11—C10—H10A | 119.7 |
O2—Cu1—O4i | 88.23 (13) | C9—C10—H10A | 119.7 |
O1i—Cu1—O4i | 90.12 (13) | N1—C15—C16 | 124.3 (4) |
O2—Cu1—O3 | 89.09 (13) | N1—C15—H15A | 117.8 |
O1i—Cu1—O3 | 89.74 (13) | C16—C15—H15A | 117.8 |
O4i—Cu1—O3 | 167.12 (11) | C18—C17—C16 | 121.0 (4) |
O2—Cu1—N1 | 101.52 (12) | C18—C17—H17A | 119.5 |
O1i—Cu1—N1 | 91.10 (12) | C16—C17—H17A | 119.5 |
O4i—Cu1—N1 | 98.25 (12) | N1—C19—C18 | 123.8 (4) |
O3—Cu1—N1 | 94.63 (12) | N1—C19—H19A | 118.1 |
O2—Cu1—Cu1i | 87.13 (8) | C18—C19—H19A | 118.1 |
O1i—Cu1—Cu1i | 80.26 (9) | C12—C13—C14 | 119.7 (5) |
O4i—Cu1—Cu1i | 84.30 (8) | C12—C13—H13A | 120.1 |
O3—Cu1—Cu1i | 82.99 (8) | C14—C13—H13A | 120.1 |
N1—Cu1—Cu1i | 171.02 (9) | C5—C6—C7 | 120.1 (4) |
C8—O3—Cu1 | 124.2 (3) | C5—C6—H6A | 120.0 |
C8—O4—Cu1i | 122.9 (2) | C7—C6—H6A | 120.0 |
C1—O2—Cu1 | 119.9 (3) | C17—C18—C19 | 117.0 (4) |
C19—N1—C15 | 117.8 (3) | C17—C18—C20 | 121.9 (4) |
C19—N1—Cu1 | 125.0 (3) | C19—C18—C20 | 121.0 (4) |
C15—N1—Cu1 | 117.1 (3) | C12—C11—C10 | 119.9 (5) |
O2—C1—O1 | 125.4 (4) | C12—C11—H11A | 120.0 |
O2—C1—C2 | 117.8 (3) | C10—C11—H11A | 120.0 |
O1—C1—C2 | 116.8 (3) | C18—C20—H20A | 109.5 |
C3—C4—C5 | 120.5 (5) | C18—C20—H20B | 109.5 |
C3—C4—H4A | 119.8 | H20A—C20—H20B | 109.5 |
C5—C4—H4A | 119.8 | C18—C20—H20C | 109.5 |
O4—C8—O3 | 125.5 (4) | H20A—C20—H20C | 109.5 |
O4—C8—C9 | 116.9 (3) | H20B—C20—H20C | 109.5 |
O3—C8—C9 | 117.6 (4) | C9—C14—C13 | 120.1 (5) |
C3—C2—C7 | 119.3 (4) | C9—C14—H14A | 119.9 |
C3—C2—C1 | 121.0 (4) | C13—C14—H14A | 119.9 |
C7—C2—C1 | 119.7 (4) | C16—C21—H21A | 109.5 |
C4—C3—C2 | 120.0 (4) | C16—C21—H21B | 109.5 |
C4—C3—H3A | 120.0 | H21A—C21—H21B | 109.5 |
C2—C3—H3A | 120.0 | C16—C21—H21C | 109.5 |
C15—C16—C17 | 116.1 (4) | H21A—C21—H21C | 109.5 |
C15—C16—C21 | 121.1 (4) | H21B—C21—H21C | 109.5 |
C17—C16—C21 | 122.9 (4) | C6—C5—C4 | 120.0 (5) |
C6—C7—C2 | 120.1 (4) | C6—C5—H5A | 120.0 |
C6—C7—H7A | 119.9 | C4—C5—H5A | 120.0 |
C2—C7—H7A | 119.9 | C11—C12—C13 | 120.1 (5) |
C14—C9—C10 | 119.3 (4) | C11—C12—H12A | 120.0 |
C14—C9—C8 | 119.6 (4) | C13—C12—H12A | 120.0 |
C10—C9—C8 | 121.1 (4) | ||
O2—Cu1—O3—C8 | 91.1 (3) | C5—C4—C3—C2 | 0.1 (7) |
O1i—Cu1—O3—C8 | −76.3 (3) | C7—C2—C3—C4 | −0.3 (6) |
O4i—Cu1—O3—C8 | 13.1 (7) | C1—C2—C3—C4 | −179.8 (4) |
N1—Cu1—O3—C8 | −167.4 (3) | C3—C2—C7—C6 | 0.6 (6) |
Cu1i—Cu1—O3—C8 | 3.9 (3) | C1—C2—C7—C6 | −179.9 (3) |
O1i—Cu1—O2—C1 | 2.3 (7) | O4—C8—C9—C14 | 23.0 (6) |
O4i—Cu1—O2—C1 | 85.0 (3) | O3—C8—C9—C14 | −156.8 (4) |
O3—Cu1—O2—C1 | −82.4 (3) | O4—C8—C9—C10 | −157.0 (4) |
N1—Cu1—O2—C1 | −176.9 (3) | O3—C8—C9—C10 | 23.1 (6) |
Cu1i—Cu1—O2—C1 | 0.6 (3) | C14—C9—C10—C11 | −1.8 (7) |
O2—Cu1—N1—C19 | −36.0 (3) | C8—C9—C10—C11 | 178.3 (4) |
O1i—Cu1—N1—C19 | 144.2 (3) | C19—N1—C15—C16 | −1.0 (6) |
O4i—Cu1—N1—C19 | 53.9 (3) | Cu1—N1—C15—C16 | 175.5 (3) |
O3—Cu1—N1—C19 | −126.0 (3) | C17—C16—C15—N1 | 1.4 (7) |
Cu1i—Cu1—N1—C19 | 159.9 (4) | C21—C16—C15—N1 | −178.7 (4) |
O2—Cu1—N1—C15 | 147.9 (3) | C15—C16—C17—C18 | −0.4 (7) |
O1i—Cu1—N1—C15 | −32.0 (3) | C21—C16—C17—C18 | 179.6 (4) |
O4i—Cu1—N1—C15 | −122.3 (3) | C15—N1—C19—C18 | −0.3 (6) |
O3—Cu1—N1—C15 | 57.8 (3) | Cu1—N1—C19—C18 | −176.5 (3) |
Cu1i—Cu1—N1—C15 | −16.3 (8) | C2—C7—C6—C5 | −0.8 (6) |
Cu1—O2—C1—O1 | −0.6 (6) | C16—C17—C18—C19 | −0.7 (7) |
Cu1—O2—C1—C2 | −179.6 (2) | C16—C17—C18—C20 | 177.6 (4) |
Cu1i—O1—C1—O2 | 0.1 (6) | N1—C19—C18—C17 | 1.1 (7) |
Cu1i—O1—C1—C2 | 179.1 (2) | N1—C19—C18—C20 | −177.2 (4) |
Cu1i—O4—C8—O3 | 1.6 (6) | C9—C10—C11—C12 | 3.3 (8) |
Cu1i—O4—C8—C9 | −178.3 (3) | C10—C9—C14—C13 | −0.8 (7) |
Cu1—O3—C8—O4 | −4.5 (6) | C8—C9—C14—C13 | 179.1 (4) |
Cu1—O3—C8—C9 | 175.3 (3) | C12—C13—C14—C9 | 1.8 (8) |
O2—C1—C2—C3 | 172.5 (4) | C7—C6—C5—C4 | 0.6 (7) |
O1—C1—C2—C3 | −6.5 (6) | C3—C4—C5—C6 | −0.3 (8) |
O2—C1—C2—C7 | −7.0 (5) | C10—C11—C12—C13 | −2.3 (9) |
O1—C1—C2—C7 | 174.0 (3) | C14—C13—C12—C11 | −0.3 (9) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cu2(C7H5O2)4(C7H9N)2] |
Mr | 825.84 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 10.249 (2), 10.619 (2), 10.752 (2) |
α, β, γ (°) | 64.14 (3), 67.34 (3), 80.36 (3) |
V (Å3) | 971.7 (5) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.15 |
Crystal size (mm) | 0.2 × 0.18 × 0.18 |
Data collection | |
Diffractometer | Rigaku SCXmini |
Absorption correction | Multi-scan (ABSCOR; Higashi, 1995) |
Tmin, Tmax | 0.461, 1 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10126, 4417, 2943 |
Rint | 0.067 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.067, 0.162, 1.06 |
No. of reflections | 4417 |
No. of parameters | 244 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.46, −0.40 |
Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O2 | 1.953 (3) | Cu1—O3 | 1.969 (3) |
Cu1—O1i | 1.966 (3) | Cu1—N1 | 2.182 (3) |
Cu1—O4i | 1.968 (3) | Cu1—Cu1i | 2.6721 (13) |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Acknowledgements
The authors acknowledge financial support from the Tianjin Municipal Education Commission (grant No. 20060503).
References
Doedens, R. J. (1976). Prog. Inorg. Chem. 21, 209–231. CrossRef CAS Google Scholar
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan. Google Scholar
Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333. CSD CrossRef Web of Science Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The binuclear paddle-wheel cage structure of copper(II) carboxylates is well established (Doedens, 1976; Speier & Fulop, 1989). Here we report the synthesis and crystal structure of a new copper complex with 3,5-dimethylpyridine and benzoic acid ligands. Each CuII is coordinated by one 3,5-dimethylpyridine ligand and two benzoate ligands. A pair of CuII ions are connected through four syn-syn bidentate chelating carboxylate bridges to generate a paddle wheel binuclear unit (Fig. 1). There is π-π stacking of inversion related pyridine rings related by symmetry operation: 1-x,-y,2-z; and the centroid-centroid distances is 3.833 (2)Å.