metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra-μ-benzoato-bis­­[(3,5-di­methyl­pyridine)­copper(II)]

aSchool of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300191, People's Republic of China
*Correspondence e-mail: fuchenliutj@yahoo.com

(Received 4 January 2012; accepted 26 February 2012; online 17 March 2012)

In the centrosymmetric binuclear title compound, [Cu2(C7H5O2)4(C7H9N)2], the CuII atom is coordinated by four O atoms from benzoate anions and one N atom from a dimethyl­pyridine ligand. A paddle-wheel-like dimer is formed by two CuII ions and four benzoate anions with two 3,5-dimethyl­pyridine ligands at the axial position of the CuII ions. The dihedral angle between the two unique benzene rings is 84.26 (16)°. The dihedral angles between the pyridine ring and the benzene rings are 61.67 (15) and 34.27 (14)°. There is ππ stacking of inversion-related pyridine rings, with a centroid–centroid distance of 3.833 (2) Å.

Related literature

For a general review of copper(II) carboxyl­ates, see: Doedens (1976[Doedens, R. J. (1976). Prog. Inorg. Chem. 21, 209-231.]). For the crystal structures of similar complexes, see: Speier & Fulop (1989[Speier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331-2333.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu2(C7H5O2)4(C7H9N)2]

  • Mr = 825.84

  • Triclinic, [P \overline 1]

  • a = 10.249 (2) Å

  • b = 10.619 (2) Å

  • c = 10.752 (2) Å

  • α = 64.14 (3)°

  • β = 67.34 (3)°

  • γ = 80.36 (3)°

  • V = 971.7 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.15 mm−1

  • T = 293 K

  • 0.20 × 0.18 × 0.18 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.461, Tmax = 1

  • 10126 measured reflections

  • 4417 independent reflections

  • 2943 reflections with I > 2σ(I)

  • Rint = 0.067

Refinement
  • R[F2 > 2σ(F2)] = 0.067

  • wR(F2) = 0.162

  • S = 1.06

  • 4417 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Selected bond lengths (Å)

Cu1—O2 1.953 (3)
Cu1—O1i 1.966 (3)
Cu1—O4i 1.968 (3)
Cu1—O3 1.969 (3)
Cu1—N1 2.182 (3)
Cu1—Cu1i 2.6721 (13)
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The binuclear paddle-wheel cage structure of copper(II) carboxylates is well established (Doedens, 1976; Speier & Fulop, 1989). Here we report the synthesis and crystal structure of a new copper complex with 3,5-dimethylpyridine and benzoic acid ligands. Each CuII is coordinated by one 3,5-dimethylpyridine ligand and two benzoate ligands. A pair of CuII ions are connected through four syn-syn bidentate chelating carboxylate bridges to generate a paddle wheel binuclear unit (Fig. 1). There is π-π stacking of inversion related pyridine rings related by symmetry operation: 1-x,-y,2-z; and the centroid-centroid distances is 3.833 (2)Å.

Related literature top

For a general review of copper(II) carboxylates, see: Doedens (1976). For the crystal structures of similar complexes, see: Speier & Fulop (1989).

Experimental top

A mixture of Cu(II) chloride (2 mmol), benzoic acid (1mmol) and 3,5-dimethylpyridine (0.5mmol), in 10 ml aqueous solution was sealed in a teflon-lined stainless-steel Parr bomb that was heated at 413 K for 48 h. Green crystals of the title complex were collected after the bomb was allowed to cool to room temperature. Yield 20% based on metal salt.

Refinement top

All hydrogen atoms were included in calculated positions and treated as riding on their parent C atoms with C—H = 0.93Å and Uiso(H) = 1.2Ueq(C), or 0.96Å and Uiso = 1.5Ueq(C) for the methyl H atoms.

Structure description top

The binuclear paddle-wheel cage structure of copper(II) carboxylates is well established (Doedens, 1976; Speier & Fulop, 1989). Here we report the synthesis and crystal structure of a new copper complex with 3,5-dimethylpyridine and benzoic acid ligands. Each CuII is coordinated by one 3,5-dimethylpyridine ligand and two benzoate ligands. A pair of CuII ions are connected through four syn-syn bidentate chelating carboxylate bridges to generate a paddle wheel binuclear unit (Fig. 1). There is π-π stacking of inversion related pyridine rings related by symmetry operation: 1-x,-y,2-z; and the centroid-centroid distances is 3.833 (2)Å.

For a general review of copper(II) carboxylates, see: Doedens (1976). For the crystal structures of similar complexes, see: Speier & Fulop (1989).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Ellipsoids are drawn at the 30% probability level. Only the asymmetric unit is labeled. Symmetry code: i = -x+1, -y+1, -z+1.
Tetra-µ-benzoato-bis[(3,5-dimethylpyridine)copper(II)] top
Crystal data top
[Cu2(C7H5O2)4(C7H9N)2]Z = 1
Mr = 825.84F(000) = 426
Triclinic, P1Dx = 1.411 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.249 (2) ÅCell parameters from 8517 reflections
b = 10.619 (2) Åθ = 3.0–27.9°
c = 10.752 (2) ŵ = 1.15 mm1
α = 64.14 (3)°T = 293 K
β = 67.34 (3)°Block, green
γ = 80.36 (3)°0.2 × 0.18 × 0.18 mm
V = 971.7 (5) Å3
Data collection top
Rigaku SCXmini
diffractometer
4417 independent reflections
Radiation source: fine-focus sealed tube2943 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.067
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1313
Tmin = 0.461, Tmax = 1k = 1313
10126 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0637P)2]
where P = (Fo2 + 2Fc2)/3
4417 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.46 e Å3
0 restraintsΔρmin = 0.40 e Å3
Crystal data top
[Cu2(C7H5O2)4(C7H9N)2]γ = 80.36 (3)°
Mr = 825.84V = 971.7 (5) Å3
Triclinic, P1Z = 1
a = 10.249 (2) ÅMo Kα radiation
b = 10.619 (2) ŵ = 1.15 mm1
c = 10.752 (2) ÅT = 293 K
α = 64.14 (3)°0.2 × 0.18 × 0.18 mm
β = 67.34 (3)°
Data collection top
Rigaku SCXmini
diffractometer
4417 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2943 reflections with I > 2σ(I)
Tmin = 0.461, Tmax = 1Rint = 0.067
10126 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.06Δρmax = 0.46 e Å3
4417 reflectionsΔρmin = 0.40 e Å3
244 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3897 (3)0.3033 (3)0.5902 (3)0.0637 (8)
Cu10.44953 (5)0.61486 (4)0.41389 (5)0.0490 (2)
O30.3341 (3)0.6269 (3)0.6031 (3)0.0608 (8)
O40.4237 (3)0.4387 (3)0.7466 (3)0.0618 (8)
O20.3048 (3)0.4950 (3)0.4447 (3)0.0609 (8)
N10.3873 (3)0.8205 (3)0.2789 (3)0.0495 (8)
C10.3029 (4)0.3663 (4)0.5251 (4)0.0490 (10)
C40.0875 (6)0.0579 (5)0.6323 (5)0.0804 (15)
H4A0.08840.03910.68130.096*
C80.3451 (4)0.5443 (4)0.7258 (4)0.0535 (10)
C20.1904 (4)0.2791 (4)0.5442 (4)0.0492 (9)
C30.1912 (5)0.1358 (5)0.6164 (5)0.0663 (12)
H3A0.26230.09170.65440.080*
C160.3891 (5)1.0667 (4)0.2119 (5)0.0617 (11)
C70.0844 (4)0.3430 (5)0.4877 (4)0.0551 (10)
H7A0.08340.43980.43790.066*
C90.2579 (5)0.5741 (4)0.8573 (4)0.0559 (11)
C100.1364 (5)0.6526 (5)0.8600 (5)0.0776 (14)
H10A0.10930.68980.77770.093*
C150.4131 (4)0.9293 (4)0.2955 (4)0.0563 (11)
H15A0.44980.91190.36830.068*
C170.3314 (5)1.0881 (5)0.1066 (5)0.0667 (13)
H17A0.31261.17870.04770.080*
C190.3335 (4)0.8451 (4)0.1775 (4)0.0533 (10)
H19A0.31570.76910.16500.064*
C130.2201 (7)0.5513 (6)1.0997 (5)0.0948 (18)
H13A0.24960.51881.18010.114*
C60.0199 (5)0.2633 (6)0.5051 (5)0.0703 (13)
H6A0.09170.30660.46800.084*
C180.3019 (4)0.9778 (5)0.0880 (4)0.0613 (12)
C110.0548 (6)0.6765 (6)0.9830 (6)0.0997 (19)
H11A0.02970.72560.98570.120*
C200.2345 (6)0.9980 (6)0.0211 (5)0.0943 (17)
H20A0.22061.09610.07310.141*
H20B0.14480.95090.03030.141*
H20C0.29490.96000.09010.141*
C140.2992 (5)0.5227 (5)0.9776 (5)0.0695 (13)
H14A0.38060.46850.97730.083*
C210.4241 (6)1.1845 (5)0.2354 (6)0.0987 (19)
H21A0.40021.27200.16800.148*
H21B0.52341.18300.21820.148*
H21C0.37111.17380.33500.148*
C50.0179 (5)0.1220 (6)0.5762 (5)0.0759 (14)
H5A0.08780.06830.58710.091*
C120.0977 (7)0.6282 (6)1.1015 (6)0.102 (2)
H12A0.04410.64721.18340.123*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.074 (2)0.0512 (16)0.069 (2)0.0033 (15)0.0414 (17)0.0118 (15)
Cu10.0615 (4)0.0408 (3)0.0417 (3)0.0041 (2)0.0241 (2)0.0106 (2)
O30.079 (2)0.0576 (17)0.0393 (15)0.0088 (15)0.0218 (14)0.0163 (14)
O40.078 (2)0.0530 (17)0.0469 (16)0.0144 (16)0.0243 (15)0.0171 (14)
O20.071 (2)0.0466 (17)0.0672 (19)0.0010 (14)0.0382 (16)0.0133 (14)
N10.059 (2)0.0409 (18)0.0423 (18)0.0047 (16)0.0183 (16)0.0123 (15)
C10.056 (3)0.048 (2)0.042 (2)0.006 (2)0.0188 (19)0.0188 (19)
C40.108 (4)0.052 (3)0.072 (3)0.022 (3)0.029 (3)0.012 (2)
C80.067 (3)0.049 (2)0.042 (2)0.006 (2)0.020 (2)0.015 (2)
C20.055 (3)0.057 (2)0.035 (2)0.001 (2)0.0134 (18)0.0199 (18)
C30.083 (3)0.054 (3)0.061 (3)0.007 (2)0.036 (2)0.012 (2)
C160.064 (3)0.043 (2)0.058 (3)0.003 (2)0.013 (2)0.011 (2)
C70.051 (3)0.062 (3)0.052 (2)0.005 (2)0.016 (2)0.026 (2)
C90.073 (3)0.046 (2)0.045 (2)0.002 (2)0.019 (2)0.0167 (19)
C100.100 (4)0.069 (3)0.059 (3)0.014 (3)0.030 (3)0.025 (3)
C150.065 (3)0.050 (2)0.048 (2)0.008 (2)0.021 (2)0.016 (2)
C170.066 (3)0.055 (3)0.048 (3)0.015 (2)0.015 (2)0.004 (2)
C190.056 (3)0.057 (3)0.042 (2)0.008 (2)0.0171 (19)0.019 (2)
C130.144 (6)0.082 (4)0.049 (3)0.004 (4)0.025 (3)0.025 (3)
C60.054 (3)0.093 (4)0.071 (3)0.006 (3)0.023 (2)0.041 (3)
C180.060 (3)0.067 (3)0.039 (2)0.010 (2)0.018 (2)0.010 (2)
C110.110 (5)0.092 (4)0.083 (4)0.031 (4)0.021 (4)0.046 (3)
C200.108 (4)0.109 (4)0.064 (3)0.025 (3)0.050 (3)0.025 (3)
C140.092 (4)0.063 (3)0.050 (3)0.005 (3)0.026 (2)0.021 (2)
C210.133 (5)0.051 (3)0.094 (4)0.003 (3)0.027 (4)0.024 (3)
C50.068 (3)0.089 (4)0.075 (3)0.011 (3)0.017 (3)0.041 (3)
C120.141 (6)0.087 (4)0.056 (3)0.016 (4)0.011 (3)0.034 (3)
Geometric parameters (Å, º) top
O1—C11.265 (4)C9—C141.371 (6)
O1—Cu1i1.966 (3)C9—C101.375 (6)
Cu1—O21.953 (3)C10—C111.372 (6)
Cu1—O1i1.966 (3)C10—H10A0.9300
Cu1—O4i1.968 (3)C15—H15A0.9300
Cu1—O31.969 (3)C17—C181.368 (6)
Cu1—N12.182 (3)C17—H17A0.9300
Cu1—Cu1i2.6721 (13)C19—C181.386 (5)
O3—C81.263 (4)C19—H19A0.9300
O4—C81.254 (4)C13—C121.376 (7)
O4—Cu1i1.968 (3)C13—C141.385 (6)
O2—C11.258 (4)C13—H13A0.9300
N1—C191.315 (5)C6—C51.356 (6)
N1—C151.325 (5)C6—H6A0.9300
C1—C21.496 (5)C18—C201.502 (6)
C4—C31.369 (6)C11—C121.366 (7)
C4—C51.375 (7)C11—H11A0.9300
C4—H4A0.9300C20—H20A0.9600
C8—C91.490 (5)C20—H20B0.9600
C2—C31.374 (5)C20—H20C0.9600
C2—C71.383 (5)C14—H14A0.9300
C3—H3A0.9300C21—H21A0.9600
C16—C151.380 (5)C21—H21B0.9600
C16—C171.390 (6)C21—H21C0.9600
C16—C211.501 (6)C5—H5A0.9300
C7—C61.380 (6)C12—H12A0.9300
C7—H7A0.9300
C1—O1—Cu1i127.3 (3)C11—C10—C9120.7 (5)
O2—Cu1—O1i167.39 (11)C11—C10—H10A119.7
O2—Cu1—O4i88.23 (13)C9—C10—H10A119.7
O1i—Cu1—O4i90.12 (13)N1—C15—C16124.3 (4)
O2—Cu1—O389.09 (13)N1—C15—H15A117.8
O1i—Cu1—O389.74 (13)C16—C15—H15A117.8
O4i—Cu1—O3167.12 (11)C18—C17—C16121.0 (4)
O2—Cu1—N1101.52 (12)C18—C17—H17A119.5
O1i—Cu1—N191.10 (12)C16—C17—H17A119.5
O4i—Cu1—N198.25 (12)N1—C19—C18123.8 (4)
O3—Cu1—N194.63 (12)N1—C19—H19A118.1
O2—Cu1—Cu1i87.13 (8)C18—C19—H19A118.1
O1i—Cu1—Cu1i80.26 (9)C12—C13—C14119.7 (5)
O4i—Cu1—Cu1i84.30 (8)C12—C13—H13A120.1
O3—Cu1—Cu1i82.99 (8)C14—C13—H13A120.1
N1—Cu1—Cu1i171.02 (9)C5—C6—C7120.1 (4)
C8—O3—Cu1124.2 (3)C5—C6—H6A120.0
C8—O4—Cu1i122.9 (2)C7—C6—H6A120.0
C1—O2—Cu1119.9 (3)C17—C18—C19117.0 (4)
C19—N1—C15117.8 (3)C17—C18—C20121.9 (4)
C19—N1—Cu1125.0 (3)C19—C18—C20121.0 (4)
C15—N1—Cu1117.1 (3)C12—C11—C10119.9 (5)
O2—C1—O1125.4 (4)C12—C11—H11A120.0
O2—C1—C2117.8 (3)C10—C11—H11A120.0
O1—C1—C2116.8 (3)C18—C20—H20A109.5
C3—C4—C5120.5 (5)C18—C20—H20B109.5
C3—C4—H4A119.8H20A—C20—H20B109.5
C5—C4—H4A119.8C18—C20—H20C109.5
O4—C8—O3125.5 (4)H20A—C20—H20C109.5
O4—C8—C9116.9 (3)H20B—C20—H20C109.5
O3—C8—C9117.6 (4)C9—C14—C13120.1 (5)
C3—C2—C7119.3 (4)C9—C14—H14A119.9
C3—C2—C1121.0 (4)C13—C14—H14A119.9
C7—C2—C1119.7 (4)C16—C21—H21A109.5
C4—C3—C2120.0 (4)C16—C21—H21B109.5
C4—C3—H3A120.0H21A—C21—H21B109.5
C2—C3—H3A120.0C16—C21—H21C109.5
C15—C16—C17116.1 (4)H21A—C21—H21C109.5
C15—C16—C21121.1 (4)H21B—C21—H21C109.5
C17—C16—C21122.9 (4)C6—C5—C4120.0 (5)
C6—C7—C2120.1 (4)C6—C5—H5A120.0
C6—C7—H7A119.9C4—C5—H5A120.0
C2—C7—H7A119.9C11—C12—C13120.1 (5)
C14—C9—C10119.3 (4)C11—C12—H12A120.0
C14—C9—C8119.6 (4)C13—C12—H12A120.0
C10—C9—C8121.1 (4)
O2—Cu1—O3—C891.1 (3)C5—C4—C3—C20.1 (7)
O1i—Cu1—O3—C876.3 (3)C7—C2—C3—C40.3 (6)
O4i—Cu1—O3—C813.1 (7)C1—C2—C3—C4179.8 (4)
N1—Cu1—O3—C8167.4 (3)C3—C2—C7—C60.6 (6)
Cu1i—Cu1—O3—C83.9 (3)C1—C2—C7—C6179.9 (3)
O1i—Cu1—O2—C12.3 (7)O4—C8—C9—C1423.0 (6)
O4i—Cu1—O2—C185.0 (3)O3—C8—C9—C14156.8 (4)
O3—Cu1—O2—C182.4 (3)O4—C8—C9—C10157.0 (4)
N1—Cu1—O2—C1176.9 (3)O3—C8—C9—C1023.1 (6)
Cu1i—Cu1—O2—C10.6 (3)C14—C9—C10—C111.8 (7)
O2—Cu1—N1—C1936.0 (3)C8—C9—C10—C11178.3 (4)
O1i—Cu1—N1—C19144.2 (3)C19—N1—C15—C161.0 (6)
O4i—Cu1—N1—C1953.9 (3)Cu1—N1—C15—C16175.5 (3)
O3—Cu1—N1—C19126.0 (3)C17—C16—C15—N11.4 (7)
Cu1i—Cu1—N1—C19159.9 (4)C21—C16—C15—N1178.7 (4)
O2—Cu1—N1—C15147.9 (3)C15—C16—C17—C180.4 (7)
O1i—Cu1—N1—C1532.0 (3)C21—C16—C17—C18179.6 (4)
O4i—Cu1—N1—C15122.3 (3)C15—N1—C19—C180.3 (6)
O3—Cu1—N1—C1557.8 (3)Cu1—N1—C19—C18176.5 (3)
Cu1i—Cu1—N1—C1516.3 (8)C2—C7—C6—C50.8 (6)
Cu1—O2—C1—O10.6 (6)C16—C17—C18—C190.7 (7)
Cu1—O2—C1—C2179.6 (2)C16—C17—C18—C20177.6 (4)
Cu1i—O1—C1—O20.1 (6)N1—C19—C18—C171.1 (7)
Cu1i—O1—C1—C2179.1 (2)N1—C19—C18—C20177.2 (4)
Cu1i—O4—C8—O31.6 (6)C9—C10—C11—C123.3 (8)
Cu1i—O4—C8—C9178.3 (3)C10—C9—C14—C130.8 (7)
Cu1—O3—C8—O44.5 (6)C8—C9—C14—C13179.1 (4)
Cu1—O3—C8—C9175.3 (3)C12—C13—C14—C91.8 (8)
O2—C1—C2—C3172.5 (4)C7—C6—C5—C40.6 (7)
O1—C1—C2—C36.5 (6)C3—C4—C5—C60.3 (8)
O2—C1—C2—C77.0 (5)C10—C11—C12—C132.3 (9)
O1—C1—C2—C7174.0 (3)C14—C13—C12—C110.3 (9)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C7H5O2)4(C7H9N)2]
Mr825.84
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)10.249 (2), 10.619 (2), 10.752 (2)
α, β, γ (°)64.14 (3), 67.34 (3), 80.36 (3)
V3)971.7 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.15
Crystal size (mm)0.2 × 0.18 × 0.18
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.461, 1
No. of measured, independent and
observed [I > 2σ(I)] reflections
10126, 4417, 2943
Rint0.067
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.067, 0.162, 1.06
No. of reflections4417
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.46, 0.40

Computer programs: PROCESS-AUTO (Rigaku, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Cu1—O21.953 (3)Cu1—O31.969 (3)
Cu1—O1i1.966 (3)Cu1—N12.182 (3)
Cu1—O4i1.968 (3)Cu1—Cu1i2.6721 (13)
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

The authors acknowledge financial support from the Tianjin Municipal Education Commission (grant No. 20060503).

References

First citationDoedens, R. J. (1976). Prog. Inorg. Chem. 21, 209–231.  CrossRef CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Americas Corporation, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpeier, G. & Fulop, V. (1989). J. Chem. Soc. Dalton Trans. pp. 2331–2333.  CSD CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds