metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridobis[(ferrocenyl­methyl­­idene)(furan-2-ylmeth­yl)amine-κN]palladium(II)

aChemistry Department, University of the Western Cape, Modderdam Road, Private bag X17, Bellville, 7535, South Africa, and bCarl A. Olson Memorial Laboratories, Department of Chemistry, Rutgers University, Newark, NJ 07102 USA
*Correspondence e-mail: rogerlal@andromeda.rutgers.edu

(Received 16 February 2012; accepted 1 March 2012; online 7 March 2012)

The title compound, [Fe2Pd(C5H5)2(C11H10NO)2Cl2], exhibits a square-planar geometry at the PdII atom, which is determined by inversion-related chlorine and ferrocenyl­imine mol­ecules across a center of symmetry. The ferrocenyl­imine moieties are trans to each other.

Related literature

For the synthesis of ferrocenyl­imine ligands and their transition metal-based complexes, see: Mu et al. (2007[Mu, B., Li, T., Xu, W., Zeng, G., Liu, P. & Wu, Y. (2007). Tetrahedron, 63, 11475-11488.]); Lu et al. (2007[Lu, J.-Y., Yu, A.-J., Wu, Y.-J., Zhu, Y., Du, C.-X. & Yang, H.-W. (2007). Polyhedron, 26, 2629-2637.]); Pou et al. (2007[Pou, D., Platero-Plats, A. E., Perez, S., Lopez, C., Solans, X., Font-Bardia, M., van Leeuwen, P. W. N. M., Strijdonck, G. P. F. & Freixa, Z. (2007). J. Organomet. Chem. 692, 5017-5025.]); Neuse et al. (1988[Neuse, E. W., Meirim, M. G. & Blom, N. F. (1988). Organometallics 7, 2562-2566.]). For related structures, see: Rajput et al. (2004[Rajput, J., Moss, J. R., Hutton, A. T., Hendricks, D. T., Arendse, C. E. & Imrie, C. (2004). J. Organomet. Chem. 689, 1553-1568.], 2006[Rajput, J., Hutton, A. T., Moss, J. R., Su, H. & Imrie, C. (2006). J. Organomet. Chem. 691, 4573-4588.]); Nelana et al. (2008[Nelana, S. M., Cloete, J., Lisensky, G. C., Nordlander, E., Guzei, I. A., Mapolie, S. F. & Darkwa, J. (2008). J. Mol. Catal. A Chem. 285, 72-78.]). For related applications, see: Stang et al. (1996[Stang, P. J., Olenyuk, B., Fan, J. & Arif, A. M. (1996). Organometallics 15, 904-908.]); Pou et al. (2007[Pou, D., Platero-Plats, A. E., Perez, S., Lopez, C., Solans, X., Font-Bardia, M., van Leeuwen, P. W. N. M., Strijdonck, G. P. F. & Freixa, Z. (2007). J. Organomet. Chem. 692, 5017-5025.]). For Pd—Cl bond lengths, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For the preparation of the precursor mol­ecule, see: Salo & Guan (2003[Salo, E. V. & Guan, Z. (2003). Organometallics 22, 5033-5046.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe2Pd(C5H5)2(C11H10NO)2Cl2]

  • Mr = 763.58

  • Monoclinic, P 21 /n

  • a = 12.2113 (7) Å

  • b = 7.3439 (5) Å

  • c = 16.365 (1) Å

  • β = 100.616 (4)°

  • V = 1442.44 (16) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 14.91 mm−1

  • T = 100 K

  • 0.44 × 0.07 × 0.04 mm

Data collection
  • Bruker SMART CCD APEXII area-detector diffractometer

  • Absorption correction: numerical (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]; Parkin et al., 1995[Parkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53-56.]) Tmin = 0.059, Tmax = 0.560

  • 12086 measured reflections

  • 2598 independent reflections

  • 1886 reflections with I > 2σ(I)

  • Rint = 0.088

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.109

  • S = 1.02

  • 2598 reflections

  • 187 parameters

  • H-atom parameters constrained

  • Δρmax = 0.85 e Å−3

  • Δρmin = −1.01 e Å−3

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Ferrocenyl derivatives containing good donor atoms have evoked research interest because their coordination to another metal produces multicentered molecules where the two metals are in close proximity but in different environments. This property may influence the mutual cooperation of the metals in a variety of application processes (Stang et al., 1996; Rajput et al., 2004; Rajput et al., 2006; Neuse et al., 1988; Pou et al., 2007). For instance, some ferrocenyl complexes have displayed promising cytotoxicity profiles (Neuse et al., 1988; Pou et al., 2007). Preference for these complexes is derived from their convenience of preparation, facile modification and handling (Mu et al., 2007; Lu et al., 2007). In an attempt to prepare new bulky bis(ferrocenylimine) palladiumII complexes which could induce apoptosis on tumor cells, the title compound was obtained.

The molecular structure contains one molecule of the PdII complex (Fig. 1) across a center of symmetry (one-half of the molecule is the asymmetric unit). All bond lengths and angles are normal and comparable with those reported for similar structures (Rajput et al., 2004; Nelana et al., 2008; Pou et al., 2007). The PdII ion has square planar coordination geometry around the metal center coordinated to two ferrocenylimine ligands via the imine nitrogen atoms and the chloride ions. The ferrocenylimine molecules are trans to each other across the center of symmetry. There is no trans influence observed for the chloride ligands: the Pd–Cl bond length is in agreement with known Pd–Cl bond distances for palladium complexes (Allen, 2002).

Related literature top

For the synthesis of ferrocenylimine ligands and their transition metal-based complexes, see: Mu et al. (2007); Lu et al. (2007); Pou et al. (2007); Neuse et al. (1988). For related structures, see: Rajput et al. (2004, 2006); Nelana et al. (2008). For related applications see: Stang et al. (1996); Pou et al. (2007). For Pd—Cl bond distances, see: Allen (2002). For the preparation of the precursor molecule, see: Salo & Guan (2003).

Experimental top

[PdCl2(cod)] was prepared following literature method (Salo & Guan, 2003). To a suspension of PdCl2(cod) [0.0394 g, 0.138 mmol] in a mixture of CH2Cl2/Et2O (20 ml) was added a solution of ferrocenyl-2-furylmethyl)imine (0.0801 g, 0.2732 mmol) in CH2Cl2 (5 ml). An orange precipitate was observed immediately. The reaction was stirred at room temperature for 12 hrs. The precipitate was filtered off, washed with dry hexane (2 x 5 ml) and dried under vacuum to yield an orange solid. Recrystallization of the product was done from a mixture of CH2Cl2:C6H14 which gave single crystals which were used for the X-ray diffraction studies. The yield of the product was 0.0738 g which translates to 70%.

Refinement top

All H atoms for (I) were found in electron density difference maps. The methylene, methine, furanyl & cyclopentadienyl Hs were placed in geometrically idealized positions and constrained to ride on their parent C atoms with C—H distances of 0.99, 1.00, 0.95, and 0.95 Å, respectively, and Uiso(H) = 1.2Ueq(C). The low fraction of data collected may affect the precision of the structure.

An additional empirical absorption correction was made using the program XABS2 (Parkin et al., 1995), which flattened the residual difference map features from 1.60 and -1.51 eÅ-3 to 0.85 and -0.10 eÅ-3 and lowered R1 to 4.30% from 5.50%.

Structure description top

Ferrocenyl derivatives containing good donor atoms have evoked research interest because their coordination to another metal produces multicentered molecules where the two metals are in close proximity but in different environments. This property may influence the mutual cooperation of the metals in a variety of application processes (Stang et al., 1996; Rajput et al., 2004; Rajput et al., 2006; Neuse et al., 1988; Pou et al., 2007). For instance, some ferrocenyl complexes have displayed promising cytotoxicity profiles (Neuse et al., 1988; Pou et al., 2007). Preference for these complexes is derived from their convenience of preparation, facile modification and handling (Mu et al., 2007; Lu et al., 2007). In an attempt to prepare new bulky bis(ferrocenylimine) palladiumII complexes which could induce apoptosis on tumor cells, the title compound was obtained.

The molecular structure contains one molecule of the PdII complex (Fig. 1) across a center of symmetry (one-half of the molecule is the asymmetric unit). All bond lengths and angles are normal and comparable with those reported for similar structures (Rajput et al., 2004; Nelana et al., 2008; Pou et al., 2007). The PdII ion has square planar coordination geometry around the metal center coordinated to two ferrocenylimine ligands via the imine nitrogen atoms and the chloride ions. The ferrocenylimine molecules are trans to each other across the center of symmetry. There is no trans influence observed for the chloride ligands: the Pd–Cl bond length is in agreement with known Pd–Cl bond distances for palladium complexes (Allen, 2002).

For the synthesis of ferrocenylimine ligands and their transition metal-based complexes, see: Mu et al. (2007); Lu et al. (2007); Pou et al. (2007); Neuse et al. (1988). For related structures, see: Rajput et al. (2004, 2006); Nelana et al. (2008). For related applications see: Stang et al. (1996); Pou et al. (2007). For Pd—Cl bond distances, see: Allen (2002). For the preparation of the precursor molecule, see: Salo & Guan (2003).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure with displacement ellipsoids drawn at the 30% probability level for non-H atoms.
Dichloridobis[(ferrocenylmethylidene)(furan-2-ylmethyl)amine-κN] palladium(II) top
Crystal data top
[Fe2Pd(C5H5)2(C11H10NO)2Cl2]F(000) = 768
Mr = 763.58Dx = 1.758 Mg m3
Monoclinic, P21/nCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ynCell parameters from 5083 reflections
a = 12.2113 (7) Åθ = 4.2–71.6°
b = 7.3439 (5) ŵ = 14.91 mm1
c = 16.365 (1) ÅT = 100 K
β = 100.616 (4)°Needle, red
V = 1442.44 (16) Å30.44 × 0.07 × 0.04 mm
Z = 2
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2598 independent reflections
Radiation source: fine-focus sealed tube1886 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.088
φ and ω scansθmax = 71.6°, θmin = 4.2°
Absorption correction: numerical
(SADABS; Sheldrick, 2008a; Parkin et al., 1995)
h = 1414
Tmin = 0.059, Tmax = 0.560k = 78
12086 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.053P)2]
where P = (Fo2 + 2Fc2)/3
2598 reflections(Δ/σ)max < 0.001
187 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 1.01 e Å3
Crystal data top
[Fe2Pd(C5H5)2(C11H10NO)2Cl2]V = 1442.44 (16) Å3
Mr = 763.58Z = 2
Monoclinic, P21/nCu Kα radiation
a = 12.2113 (7) ŵ = 14.91 mm1
b = 7.3439 (5) ÅT = 100 K
c = 16.365 (1) Å0.44 × 0.07 × 0.04 mm
β = 100.616 (4)°
Data collection top
Bruker SMART CCD APEXII area-detector
diffractometer
2598 independent reflections
Absorption correction: numerical
(SADABS; Sheldrick, 2008a; Parkin et al., 1995)
1886 reflections with I > 2σ(I)
Tmin = 0.059, Tmax = 0.560Rint = 0.088
12086 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.02Δρmax = 0.85 e Å3
2598 reflectionsΔρmin = 1.01 e Å3
187 parameters
Special details top

Experimental. 'Crystal mounted on a Cryoloop using Paratone-N.'

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.50000.00000.50000.01970 (17)
Fe10.16463 (7)0.24226 (12)0.38773 (5)0.0222 (2)
Cl10.50057 (10)0.24917 (19)0.41448 (8)0.0259 (3)
O10.6314 (3)0.0915 (7)0.2825 (3)0.0447 (12)
N10.4827 (3)0.1692 (6)0.4011 (3)0.0216 (10)
C10.3939 (4)0.2003 (7)0.3462 (3)0.0237 (12)
H10.40040.29000.30550.028*
C20.2862 (4)0.1145 (7)0.3395 (3)0.0212 (12)
C30.2431 (4)0.0047 (8)0.3950 (3)0.0221 (11)
H30.28660.06150.44640.026*
C40.1275 (4)0.0274 (8)0.3641 (3)0.0247 (13)
H40.07520.10190.39070.030*
C50.0977 (5)0.0775 (8)0.2905 (3)0.0243 (13)
H50.02110.08860.25650.029*
C60.1943 (4)0.1658 (8)0.2740 (3)0.0243 (12)
H60.19850.24830.22600.029*
C70.2220 (5)0.4917 (9)0.4320 (4)0.0366 (14)
H70.29290.55020.42330.044*
C80.2098 (5)0.3762 (8)0.4999 (3)0.0333 (15)
H80.27020.33910.54680.040*
C90.0967 (5)0.3196 (8)0.4873 (4)0.0327 (14)
H90.06290.23670.52430.039*
C100.0392 (5)0.4038 (8)0.4125 (4)0.0330 (15)
H100.04170.39020.38820.040*
C110.1169 (5)0.5103 (9)0.3793 (3)0.0347 (14)
H110.10080.58410.32710.042*
C120.5830 (4)0.2729 (8)0.3932 (3)0.0263 (13)
H12A0.61730.32220.44820.032*
H12B0.56170.37700.35510.032*
C130.6655 (4)0.1593 (8)0.3610 (3)0.0285 (13)
C140.7705 (5)0.1052 (10)0.3911 (4)0.0394 (16)
H140.81380.13520.44370.047*
C150.8039 (5)0.0051 (11)0.3289 (4)0.0503 (18)
H150.87410.06340.33220.060*
C160.7198 (6)0.0120 (10)0.2654 (5)0.0526 (19)
H160.71970.07810.21550.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0167 (3)0.0232 (3)0.0167 (3)0.0001 (2)0.00344 (19)0.0002 (2)
Fe10.0187 (4)0.0246 (5)0.0207 (5)0.0013 (4)0.0032 (3)0.0016 (4)
Cl10.0254 (7)0.0275 (8)0.0216 (7)0.0012 (6)0.0039 (5)0.0054 (6)
O10.022 (2)0.071 (3)0.038 (3)0.004 (2)0.0021 (19)0.019 (2)
N10.019 (2)0.022 (3)0.023 (3)0.0030 (19)0.0002 (19)0.0001 (19)
C10.026 (3)0.026 (3)0.019 (3)0.002 (2)0.003 (2)0.001 (2)
C20.021 (3)0.023 (3)0.018 (3)0.001 (2)0.001 (2)0.003 (2)
C30.019 (3)0.026 (3)0.019 (3)0.006 (3)0.002 (2)0.000 (3)
C40.019 (3)0.028 (4)0.025 (3)0.001 (2)0.002 (2)0.001 (2)
C50.022 (3)0.024 (3)0.023 (3)0.003 (2)0.006 (2)0.007 (2)
C60.022 (3)0.030 (3)0.018 (3)0.006 (2)0.004 (2)0.004 (2)
C70.039 (3)0.031 (4)0.039 (4)0.011 (3)0.006 (3)0.018 (3)
C80.032 (3)0.040 (4)0.022 (3)0.002 (3)0.010 (3)0.012 (3)
C90.035 (3)0.032 (4)0.035 (4)0.003 (3)0.015 (3)0.005 (3)
C100.023 (3)0.029 (4)0.043 (4)0.009 (3)0.004 (3)0.010 (3)
C110.049 (4)0.027 (3)0.026 (3)0.014 (3)0.002 (3)0.003 (3)
C120.027 (3)0.031 (4)0.019 (3)0.005 (2)0.001 (2)0.003 (2)
C130.019 (3)0.040 (4)0.026 (3)0.004 (3)0.002 (2)0.002 (3)
C140.023 (3)0.066 (5)0.027 (4)0.001 (3)0.003 (3)0.009 (3)
C150.027 (3)0.074 (5)0.052 (4)0.011 (4)0.012 (3)0.017 (4)
C160.035 (4)0.070 (5)0.054 (4)0.011 (4)0.011 (3)0.026 (4)
Geometric parameters (Å, º) top
Pd1—N12.021 (4)C4—C51.420 (7)
Pd1—N1i2.021 (4)C4—H41.0000
Pd1—Cl12.3045 (13)C5—C61.415 (8)
Pd1—Cl1i2.3045 (13)C5—H51.0000
Fe1—C22.034 (5)C6—H61.0000
Fe1—C102.036 (6)C7—C111.415 (8)
Fe1—C62.040 (5)C7—C81.427 (8)
Fe1—C92.041 (6)C7—H71.0000
Fe1—C32.044 (5)C8—C91.421 (8)
Fe1—C52.046 (5)C8—H81.0000
Fe1—C72.046 (6)C9—C101.434 (8)
Fe1—C112.050 (6)C9—H91.0000
Fe1—C42.053 (6)C10—C111.413 (9)
Fe1—C82.065 (5)C10—H101.0000
O1—C131.369 (6)C11—H111.0000
O1—C161.390 (7)C12—C131.478 (8)
N1—C11.295 (6)C12—H12A0.9900
N1—C121.468 (7)C12—H12B0.9900
C1—C21.445 (7)C13—C141.346 (8)
C1—H10.9500C14—C151.419 (9)
C2—C31.430 (7)C14—H140.9500
C2—C61.451 (7)C15—C161.320 (9)
C3—C41.420 (7)C15—H150.9500
C3—H31.0000C16—H160.9500
N1—Pd1—N1i180.0 (2)C2—C3—H3126.2
N1—Pd1—Cl190.75 (13)Fe1—C3—H3126.2
N1i—Pd1—Cl189.25 (13)C5—C4—C3108.7 (5)
N1—Pd1—Cl1i89.25 (13)C5—C4—Fe169.5 (3)
N1i—Pd1—Cl1i90.75 (13)C3—C4—Fe169.4 (3)
Cl1—Pd1—Cl1i180.0C5—C4—H4125.6
C2—Fe1—C10167.2 (2)C3—C4—H4125.6
C2—Fe1—C641.74 (19)Fe1—C4—H4125.6
C10—Fe1—C6127.5 (2)C6—C5—C4108.6 (4)
C2—Fe1—C9150.6 (2)C6—C5—Fe169.5 (3)
C10—Fe1—C941.2 (2)C4—C5—Fe170.0 (3)
C6—Fe1—C9166.4 (2)C6—C5—H5125.7
C2—Fe1—C341.0 (2)C4—C5—H5125.7
C10—Fe1—C3150.1 (2)Fe1—C5—H5125.7
C6—Fe1—C369.4 (2)C5—C6—C2107.3 (5)
C9—Fe1—C3117.1 (2)C5—C6—Fe170.0 (3)
C2—Fe1—C568.9 (2)C2—C6—Fe168.9 (3)
C10—Fe1—C5107.0 (2)C5—C6—H6126.3
C6—Fe1—C540.5 (2)C2—C6—H6126.3
C9—Fe1—C5128.5 (2)Fe1—C6—H6126.3
C3—Fe1—C568.7 (2)C11—C7—C8108.6 (5)
C2—Fe1—C7108.9 (2)C11—C7—Fe170.0 (3)
C10—Fe1—C768.2 (2)C8—C7—Fe170.4 (3)
C6—Fe1—C7117.6 (2)C11—C7—H7125.7
C9—Fe1—C768.4 (2)C8—C7—H7125.7
C3—Fe1—C7130.3 (2)Fe1—C7—H7125.7
C5—Fe1—C7150.1 (2)C9—C8—C7107.4 (5)
C2—Fe1—C11129.4 (2)C9—C8—Fe168.8 (3)
C10—Fe1—C1140.5 (3)C7—C8—Fe168.9 (3)
C6—Fe1—C11107.4 (2)C9—C8—H8126.3
C9—Fe1—C1168.6 (2)C7—C8—H8126.3
C3—Fe1—C11168.5 (2)Fe1—C8—H8126.3
C5—Fe1—C11116.6 (2)C8—C9—C10107.9 (5)
C7—Fe1—C1140.4 (2)C8—C9—Fe170.7 (3)
C2—Fe1—C468.5 (2)C10—C9—Fe169.2 (3)
C10—Fe1—C4116.8 (2)C8—C9—H9126.1
C6—Fe1—C468.5 (2)C10—C9—H9126.1
C9—Fe1—C4108.1 (2)Fe1—C9—H9126.1
C3—Fe1—C440.5 (2)C11—C10—C9108.0 (5)
C5—Fe1—C440.5 (2)C11—C10—Fe170.3 (4)
C7—Fe1—C4168.6 (2)C9—C10—Fe169.6 (3)
C11—Fe1—C4149.7 (2)C11—C10—H10126.0
C2—Fe1—C8118.0 (2)C9—C10—H10126.0
C10—Fe1—C868.5 (2)Fe1—C10—H10126.0
C6—Fe1—C8151.5 (2)C10—C11—C7108.1 (5)
C9—Fe1—C840.5 (2)C10—C11—Fe169.2 (4)
C3—Fe1—C8109.0 (2)C7—C11—Fe169.6 (3)
C5—Fe1—C8167.4 (2)C10—C11—H11126.0
C7—Fe1—C840.6 (2)C7—C11—H11126.0
C11—Fe1—C868.2 (2)Fe1—C11—H11126.0
C4—Fe1—C8129.8 (2)N1—C12—C13111.9 (5)
C13—O1—C16105.9 (5)N1—C12—H12A109.2
C1—N1—C12116.9 (5)C13—C12—H12A109.2
C1—N1—Pd1127.9 (4)N1—C12—H12B109.2
C12—N1—Pd1115.1 (3)C13—C12—H12B109.2
N1—C1—C2127.6 (5)H12A—C12—H12B107.9
N1—C1—H1116.2C14—C13—O1109.9 (5)
C2—C1—H1116.2C14—C13—C12134.6 (6)
C3—C2—C1130.9 (5)O1—C13—C12115.5 (4)
C3—C2—C6107.7 (5)C13—C14—C15106.6 (5)
C1—C2—C6120.8 (5)C13—C14—H14126.7
C3—C2—Fe169.9 (3)C15—C14—H14126.7
C1—C2—Fe1119.3 (4)C16—C15—C14107.5 (6)
C6—C2—Fe169.3 (3)C16—C15—H15126.2
C4—C3—C2107.7 (4)C14—C15—H15126.2
C4—C3—Fe170.0 (3)C15—C16—O1110.0 (6)
C2—C3—Fe169.1 (3)C15—C16—H16125.0
C4—C3—H3126.2O1—C16—H16125.0
Cl1—Pd1—N1—C175.8 (5)C5—Fe1—C6—C2118.7 (5)
Cl1i—Pd1—N1—C1104.2 (5)C7—Fe1—C6—C287.9 (4)
Cl1—Pd1—N1—C12106.5 (4)C11—Fe1—C6—C2130.4 (3)
Cl1i—Pd1—N1—C1273.5 (4)C4—Fe1—C6—C281.4 (3)
C12—N1—C1—C2178.8 (5)C8—Fe1—C6—C254.2 (6)
Pd1—N1—C1—C23.5 (8)C2—Fe1—C7—C11129.3 (4)
N1—C1—C2—C39.7 (10)C10—Fe1—C7—C1137.4 (4)
N1—C1—C2—C6179.8 (5)C6—Fe1—C7—C1184.6 (4)
N1—C1—C2—Fe197.6 (6)C9—Fe1—C7—C1181.9 (4)
C10—Fe1—C2—C3154.9 (9)C3—Fe1—C7—C11170.3 (3)
C6—Fe1—C2—C3118.9 (4)C5—Fe1—C7—C1148.9 (6)
C9—Fe1—C2—C351.3 (6)C4—Fe1—C7—C11155.9 (11)
C5—Fe1—C2—C381.3 (3)C8—Fe1—C7—C11119.3 (5)
C7—Fe1—C2—C3130.5 (3)C2—Fe1—C7—C8111.3 (4)
C11—Fe1—C2—C3171.0 (3)C10—Fe1—C7—C881.9 (4)
C4—Fe1—C2—C337.7 (3)C6—Fe1—C7—C8156.0 (3)
C8—Fe1—C2—C387.1 (3)C9—Fe1—C7—C837.4 (3)
C10—Fe1—C2—C178.6 (11)C3—Fe1—C7—C870.4 (4)
C6—Fe1—C2—C1114.6 (6)C5—Fe1—C7—C8168.3 (4)
C9—Fe1—C2—C175.2 (7)C11—Fe1—C7—C8119.3 (5)
C3—Fe1—C2—C1126.5 (5)C4—Fe1—C7—C836.5 (14)
C5—Fe1—C2—C1152.2 (5)C11—C7—C8—C91.6 (7)
C7—Fe1—C2—C14.0 (5)Fe1—C7—C8—C958.2 (4)
C11—Fe1—C2—C144.5 (5)C11—C7—C8—Fe159.8 (4)
C4—Fe1—C2—C1164.1 (5)C2—Fe1—C8—C9153.7 (3)
C8—Fe1—C2—C139.4 (5)C10—Fe1—C8—C938.4 (4)
C10—Fe1—C2—C636.0 (11)C6—Fe1—C8—C9168.5 (4)
C9—Fe1—C2—C6170.2 (4)C3—Fe1—C8—C9109.8 (4)
C3—Fe1—C2—C6118.9 (4)C5—Fe1—C8—C932.8 (12)
C5—Fe1—C2—C637.6 (3)C7—Fe1—C8—C9119.6 (5)
C7—Fe1—C2—C6110.6 (4)C11—Fe1—C8—C982.1 (4)
C11—Fe1—C2—C670.1 (4)C4—Fe1—C8—C969.3 (4)
C4—Fe1—C2—C681.3 (3)C2—Fe1—C8—C786.7 (4)
C8—Fe1—C2—C6154.0 (3)C10—Fe1—C8—C781.2 (4)
C1—C2—C3—C4171.5 (5)C6—Fe1—C8—C749.0 (6)
C6—C2—C3—C40.4 (6)C9—Fe1—C8—C7119.6 (5)
Fe1—C2—C3—C459.6 (4)C3—Fe1—C8—C7130.6 (3)
C1—C2—C3—Fe1111.8 (6)C5—Fe1—C8—C7152.4 (9)
C6—C2—C3—Fe159.3 (4)C11—Fe1—C8—C737.5 (4)
C2—Fe1—C3—C4119.0 (4)C4—Fe1—C8—C7171.2 (3)
C10—Fe1—C3—C450.1 (5)C7—C8—C9—C101.2 (6)
C6—Fe1—C3—C480.5 (3)Fe1—C8—C9—C1059.5 (4)
C9—Fe1—C3—C486.5 (4)C7—C8—C9—Fe158.3 (4)
C5—Fe1—C3—C437.0 (3)C2—Fe1—C9—C852.8 (6)
C7—Fe1—C3—C4170.2 (3)C10—Fe1—C9—C8118.7 (5)
C11—Fe1—C3—C4156.4 (10)C6—Fe1—C9—C8156.1 (9)
C8—Fe1—C3—C4129.8 (3)C3—Fe1—C9—C887.9 (4)
C10—Fe1—C3—C2169.1 (4)C5—Fe1—C9—C8171.3 (3)
C6—Fe1—C3—C238.5 (3)C7—Fe1—C9—C837.5 (4)
C9—Fe1—C3—C2154.5 (3)C11—Fe1—C9—C881.1 (4)
C5—Fe1—C3—C282.0 (3)C4—Fe1—C9—C8130.9 (3)
C7—Fe1—C3—C270.8 (4)C2—Fe1—C9—C10171.5 (4)
C11—Fe1—C3—C237.4 (11)C6—Fe1—C9—C1037.4 (12)
C4—Fe1—C3—C2119.0 (4)C3—Fe1—C9—C10153.4 (3)
C8—Fe1—C3—C2111.2 (3)C5—Fe1—C9—C1070.0 (4)
C2—C3—C4—C50.6 (6)C7—Fe1—C9—C1081.2 (4)
Fe1—C3—C4—C558.5 (4)C11—Fe1—C9—C1037.6 (4)
C2—C3—C4—Fe159.0 (4)C4—Fe1—C9—C10110.4 (4)
C2—Fe1—C4—C582.3 (3)C8—Fe1—C9—C10118.7 (5)
C10—Fe1—C4—C584.9 (4)C8—C9—C10—C110.4 (7)
C6—Fe1—C4—C537.3 (3)Fe1—C9—C10—C1160.0 (4)
C9—Fe1—C4—C5128.7 (3)C8—C9—C10—Fe160.4 (4)
C3—Fe1—C4—C5120.4 (5)C2—Fe1—C10—C1141.9 (11)
C7—Fe1—C4—C5161.3 (11)C6—Fe1—C10—C1171.4 (4)
C11—Fe1—C4—C550.5 (6)C9—Fe1—C10—C11118.9 (5)
C8—Fe1—C4—C5168.5 (3)C3—Fe1—C10—C11172.1 (4)
C2—Fe1—C4—C338.1 (3)C5—Fe1—C10—C11111.3 (4)
C10—Fe1—C4—C3154.6 (3)C7—Fe1—C10—C1137.4 (3)
C6—Fe1—C4—C383.1 (3)C4—Fe1—C10—C11153.9 (3)
C9—Fe1—C4—C3110.8 (3)C8—Fe1—C10—C1181.2 (4)
C5—Fe1—C4—C3120.4 (5)C2—Fe1—C10—C9160.8 (9)
C7—Fe1—C4—C340.8 (13)C6—Fe1—C10—C9169.6 (3)
C11—Fe1—C4—C3170.9 (4)C3—Fe1—C10—C953.2 (6)
C8—Fe1—C4—C371.1 (4)C5—Fe1—C10—C9129.8 (4)
C3—C4—C5—C60.5 (6)C7—Fe1—C10—C981.6 (4)
Fe1—C4—C5—C659.0 (4)C11—Fe1—C10—C9118.9 (5)
C3—C4—C5—Fe158.5 (4)C4—Fe1—C10—C987.2 (4)
C2—Fe1—C5—C638.7 (3)C8—Fe1—C10—C937.7 (4)
C10—Fe1—C5—C6128.5 (3)C9—C10—C11—C70.6 (7)
C9—Fe1—C5—C6168.8 (3)Fe1—C10—C11—C759.0 (4)
C3—Fe1—C5—C682.9 (3)C9—C10—C11—Fe159.6 (4)
C7—Fe1—C5—C652.8 (6)C8—C7—C11—C101.3 (7)
C11—Fe1—C5—C685.9 (4)Fe1—C7—C11—C1058.7 (4)
C4—Fe1—C5—C6119.9 (4)C8—C7—C11—Fe160.1 (4)
C8—Fe1—C5—C6164.5 (9)C2—Fe1—C11—C10169.0 (3)
C2—Fe1—C5—C481.2 (3)C6—Fe1—C11—C10128.0 (3)
C10—Fe1—C5—C4111.7 (4)C9—Fe1—C11—C1038.3 (3)
C6—Fe1—C5—C4119.9 (4)C3—Fe1—C11—C10159.9 (9)
C9—Fe1—C5—C471.3 (4)C5—Fe1—C11—C1085.2 (4)
C3—Fe1—C5—C437.0 (3)C7—Fe1—C11—C10119.6 (5)
C7—Fe1—C5—C4172.7 (4)C4—Fe1—C11—C1051.1 (6)
C11—Fe1—C5—C4154.2 (3)C8—Fe1—C11—C1082.0 (4)
C8—Fe1—C5—C444.6 (11)C2—Fe1—C11—C771.4 (4)
C4—C5—C6—C20.3 (6)C10—Fe1—C11—C7119.6 (5)
Fe1—C5—C6—C259.0 (4)C6—Fe1—C11—C7112.4 (4)
C4—C5—C6—Fe159.3 (4)C9—Fe1—C11—C781.4 (4)
C3—C2—C6—C50.1 (6)C3—Fe1—C11—C740.3 (12)
C1—C2—C6—C5172.2 (5)C5—Fe1—C11—C7155.2 (4)
Fe1—C2—C6—C559.7 (4)C4—Fe1—C11—C7170.8 (4)
C3—C2—C6—Fe159.6 (4)C8—Fe1—C11—C737.7 (4)
C1—C2—C6—Fe1112.6 (5)C1—N1—C12—C13105.6 (6)
C2—Fe1—C6—C5118.7 (5)Pd1—N1—C12—C1376.5 (5)
C10—Fe1—C6—C570.7 (4)C16—O1—C13—C141.4 (7)
C9—Fe1—C6—C540.4 (11)C16—O1—C13—C12179.1 (5)
C3—Fe1—C6—C580.9 (3)N1—C12—C13—C14117.7 (7)
C7—Fe1—C6—C5153.4 (3)N1—C12—C13—O162.9 (7)
C11—Fe1—C6—C5110.8 (3)O1—C13—C14—C151.0 (7)
C4—Fe1—C6—C537.3 (3)C12—C13—C14—C15179.6 (7)
C8—Fe1—C6—C5173.0 (4)C13—C14—C15—C160.2 (8)
C10—Fe1—C6—C2170.6 (3)C14—C15—C16—O10.7 (9)
C9—Fe1—C6—C2159.1 (9)C13—O1—C16—C151.3 (8)
C3—Fe1—C6—C237.9 (3)
Symmetry code: (i) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Fe2Pd(C5H5)2(C11H10NO)2Cl2]
Mr763.58
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)12.2113 (7), 7.3439 (5), 16.365 (1)
β (°) 100.616 (4)
V3)1442.44 (16)
Z2
Radiation typeCu Kα
µ (mm1)14.91
Crystal size (mm)0.44 × 0.07 × 0.04
Data collection
DiffractometerBruker SMART CCD APEXII area-detector
Absorption correctionNumerical
(SADABS; Sheldrick, 2008a; Parkin et al., 1995)
Tmin, Tmax0.059, 0.560
No. of measured, independent and
observed [I > 2σ(I)] reflections
12086, 2598, 1886
Rint0.088
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.109, 1.02
No. of reflections2598
No. of parameters187
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.85, 1.01

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008b).

 

Acknowledgements

The authors acknowledge support by NSF–CRIF grant No. 0443538, NRF Thuthuka and Mobility Travel Grant and UWC Senate Research.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2005). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2006). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLu, J.-Y., Yu, A.-J., Wu, Y.-J., Zhu, Y., Du, C.-X. & Yang, H.-W. (2007). Polyhedron, 26, 2629–2637.  Google Scholar
First citationMu, B., Li, T., Xu, W., Zeng, G., Liu, P. & Wu, Y. (2007). Tetrahedron, 63, 11475–11488.  Web of Science CSD CrossRef CAS Google Scholar
First citationNelana, S. M., Cloete, J., Lisensky, G. C., Nordlander, E., Guzei, I. A., Mapolie, S. F. & Darkwa, J. (2008). J. Mol. Catal. A Chem. 285, 72–78.  Web of Science CrossRef CAS Google Scholar
First citationNeuse, E. W., Meirim, M. G. & Blom, N. F. (1988). Organometallics 7, 2562–2566.  CrossRef CAS Web of Science Google Scholar
First citationParkin, S., Moezzi, B. & Hope, H. (1995). J. Appl. Cryst. 28, 53–56.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationPou, D., Platero-Plats, A. E., Perez, S., Lopez, C., Solans, X., Font-Bardia, M., van Leeuwen, P. W. N. M., Strijdonck, G. P. F. & Freixa, Z. (2007). J. Organomet. Chem. 692, 5017–5025.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajput, J., Hutton, A. T., Moss, J. R., Su, H. & Imrie, C. (2006). J. Organomet. Chem. 691, 4573–4588.  Web of Science CrossRef CAS Google Scholar
First citationRajput, J., Moss, J. R., Hutton, A. T., Hendricks, D. T., Arendse, C. E. & Imrie, C. (2004). J. Organomet. Chem. 689, 1553–1568.  Web of Science CSD CrossRef CAS Google Scholar
First citationSalo, E. V. & Guan, Z. (2003). Organometallics 22, 5033–5046.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStang, P. J., Olenyuk, B., Fan, J. & Arif, A. M. (1996). Organometallics 15, 904–908.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds