organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o978-o979

3-[Hy­dr­oxy(3-meth­­oxy­phen­yl)methyl­­idene]-2-(2-oxo-2-phenyl­eth­yl)-3,4-di­hydro-2H-1λ6,2-benzo­thia­zine-1,1,4-trione

aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, bChemistry Department, Govt. College University, Faisalabad, Pakistan, cChemistry Department, University of Sargodha, Sargodha 40100, Pakistan, and dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
*Correspondence e-mail: drhamidlatif@hotmail.com

(Received 23 February 2012; accepted 29 February 2012; online 7 March 2012)

In the title mol­ecule, C24H19NO6S, the heterocyclic thia­zine ring adopts a half-chair conformation with the S and N atoms displaced by 0.180 (5) and 0.497 (5) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The benzene rings of the benzothia­zine unit and the meth­oxy­phenyl group are almost coplanar, with the dihedral angle between the mean planes of these rings being 5.9 (2)°, while the benzene ring of the 2-oxo-2-phenyl­ethyl group is inclined at 79.68 (11) and 81.01 (10)°, respectively, to these rings. The mol­ecular structure is consolidated by intra­molecular O—H⋯O and C—H⋯N inter­actions, and the crystal packing is stabilized by weak C—H⋯O hydrogen bonds.

Related literature

For background information on the synthesis of related compounds, see: Siddiqui et al. (2007[Siddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767-773.]). For the biological activity of 1,2-benzothia­zine derivatives, see: Lombardino & Wiseman (1972[Lombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848-849.]); Gupta et al. (1993[Gupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589-592.], 2002[Gupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105-111.]); Zia-ur-Rehman et al. (2006[Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175-1178.]); Ahmad et al. (2010[Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698-704.]). For a related structure, see: Siddiqui et al. (2008[Siddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4-o6.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19NO6S

  • Mr = 449.46

  • Orthorhombic, P b c a

  • a = 17.9615 (5) Å

  • b = 11.2633 (3) Å

  • c = 19.5904 (6) Å

  • V = 3963.3 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 173 K

  • 0.14 × 0.10 × 0.08 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.971, Tmax = 0.984

  • 8340 measured reflections

  • 4543 independent reflections

  • 3198 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.133

  • S = 1.10

  • 4543 reflections

  • 291 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C21—H21⋯O1i 0.95 2.59 3.281 (4) 130
C11—H11⋯O1ii 0.95 2.53 3.371 (4) 148
C16—H16B⋯O6iii 0.98 2.64 3.246 (4) 120
C24—H24⋯O5iv 0.95 2.57 3.508 (4) 167
O4—H4O⋯O3 0.84 1.71 2.478 (3) 151
C15—H15⋯N1 0.95 2.38 2.972 (4) 120
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (iii) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}].

Data collection: COLLECT (Hooft, 1998[Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The derivatives of 1,2-benzothiazine exhibit a wide range of biological activities, e.g., anti inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta et al., 2002), anti cancer (Gupta et al., 1993) and anti bacterial (Zia-ur-Rehman et al., 2006), etc. In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2007; Ahmad et al., 2010), we herein report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.497 (6) and 0.180 (6) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The benzene rings C1–C6 and C10–C15 are almost co-planar with a dihedral angle between the mean planes of these rings being 5.9 (2)°; the benzene ring C19–C24 is oriented at 79.68 (11) and 81.01 (10)°, respectively, with respect to these benzene rings. While the molecular structure of the title compound is consolidated by intramolecular interactions: O4–H4O···O3 and C15–H15···N1, the crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 1).

Related literature top

For background information on the synthesis of related compounds, see: Siddiqui et al. (2007). For the biological activity of 1,2-benzothiazine derivatives, see: Lombardino & Wiseman (1972); Gupta et al. (1993, 2002); Zia-ur-Rehman et al. (2006); Ahmad et al. (2010). For a related structure, see: Siddiqui et al. (2008).

Experimental top

A mixture of (4-hydroxy-1,1-dioxido-2H-1,2-benzothiazin-3-yl)(3-methoxyphenyl) methanone (5.0 g, 0.015 mol), K2CO3 (2.07 g, 0.015 mol) and phenacyl bromide (2.99 g, 0.015 mol) in acetonitrile (30 ml) was refluxed for 3 h. The contents of the flask were poured on ice cold HCl (5%, 30 ml). The precipitates of the title compound formed were collected and washed with ethanol. The crystals suitable for X-ray crystallographic analysis were grown from a solution of methanol.

Refinement top

All H atoms were positioned geometrically and refined using a riding model, with O—H = 0.84 Å and C—H = 0.95, 0.98 and 0.99 Å, for aryl, methyl and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.5Ueq(O) or 1.2Ueq(C).

Structure description top

The derivatives of 1,2-benzothiazine exhibit a wide range of biological activities, e.g., anti inflammatory (Lombardino & Wiseman, 1972), analgesic (Gupta et al., 2002), anti cancer (Gupta et al., 1993) and anti bacterial (Zia-ur-Rehman et al., 2006), etc. In continuation of our research on the synthesis of biologically active benzothiazine derivatives (Siddiqui et al., 2007; Ahmad et al., 2010), we herein report the synthesis and crystal structure of the title compound.

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Siddiqui et al., 2008). The heterocyclic thiazine ring adopts a half chair conformation with atoms N1 and S1 displaced by 0.497 (6) and 0.180 (6) Å, respectively, on the opposite sides from the mean plane formed by the remaining ring atoms. The benzene rings C1–C6 and C10–C15 are almost co-planar with a dihedral angle between the mean planes of these rings being 5.9 (2)°; the benzene ring C19–C24 is oriented at 79.68 (11) and 81.01 (10)°, respectively, with respect to these benzene rings. While the molecular structure of the title compound is consolidated by intramolecular interactions: O4–H4O···O3 and C15–H15···N1, the crystal packing is stabilized by weak intermolecular C—H···O hydrogen bonds (Fig. 2 and Table 1).

For background information on the synthesis of related compounds, see: Siddiqui et al. (2007). For the biological activity of 1,2-benzothiazine derivatives, see: Lombardino & Wiseman (1972); Gupta et al. (1993, 2002); Zia-ur-Rehman et al. (2006); Ahmad et al. (2010). For a related structure, see: Siddiqui et al. (2008).

Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A view of the C—-H···O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen- bonding were omitted for clarity.
3-[Hydroxy(3-methoxyphenyl)methylidene]-2-(2-oxo-2-phenylethyl)- 3,4-dihydro-2H-1λ6,2-benzothiazine-1,1,4-trione top
Crystal data top
C24H19NO6SF(000) = 1872
Mr = 449.46Dx = 1.507 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5006 reflections
a = 17.9615 (5) Åθ = 1.0–27.5°
b = 11.2633 (3) ŵ = 0.21 mm1
c = 19.5904 (6) ÅT = 173 K
V = 3963.3 (2) Å3Prism, yellow
Z = 80.14 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
4543 independent reflections
Radiation source: fine-focus sealed tube3198 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ω and φ scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
h = 2323
Tmin = 0.971, Tmax = 0.984k = 1414
8340 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + 10.1913P]
where P = (Fo2 + 2Fc2)/3
4543 reflections(Δ/σ)max < 0.001
291 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
C24H19NO6SV = 3963.3 (2) Å3
Mr = 449.46Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 17.9615 (5) ŵ = 0.21 mm1
b = 11.2633 (3) ÅT = 173 K
c = 19.5904 (6) Å0.14 × 0.10 × 0.08 mm
Data collection top
Nonius KappaCCD
diffractometer
4543 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1997)
3198 reflections with I > 2σ(I)
Tmin = 0.971, Tmax = 0.984Rint = 0.059
8340 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0680 restraints
wR(F2) = 0.133H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + 10.1913P]
where P = (Fo2 + 2Fc2)/3
4543 reflectionsΔρmax = 0.36 e Å3
291 parametersΔρmin = 0.49 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.43448 (4)0.23066 (7)0.49448 (4)0.02772 (19)
O10.42975 (13)0.1891 (2)0.42537 (11)0.0321 (5)
O20.50593 (12)0.2608 (2)0.52165 (13)0.0380 (6)
O30.19812 (12)0.2130 (2)0.52567 (12)0.0334 (6)
O40.18789 (12)0.3846 (2)0.44712 (12)0.0311 (5)
H4O0.17540.33080.47450.047*
O50.20407 (13)0.7401 (2)0.31274 (12)0.0350 (6)
O60.35370 (14)0.3374 (2)0.64057 (12)0.0395 (6)
N10.38071 (14)0.3469 (2)0.50267 (13)0.0248 (6)
C10.39090 (18)0.1240 (3)0.54646 (16)0.0259 (7)
C20.4322 (2)0.0323 (3)0.57373 (17)0.0358 (8)
H20.48410.02680.56500.043*
C30.3971 (2)0.0515 (3)0.6140 (2)0.0421 (9)
H30.42480.11570.63250.051*
C40.3218 (2)0.0425 (3)0.62739 (18)0.0399 (9)
H40.29800.09980.65550.048*
C50.2809 (2)0.0502 (3)0.59989 (17)0.0325 (8)
H50.22920.05610.60960.039*
C60.31417 (18)0.1342 (3)0.55844 (16)0.0264 (7)
C70.26845 (17)0.2284 (3)0.52620 (16)0.0261 (7)
C80.30240 (16)0.3262 (3)0.49250 (16)0.0231 (6)
C90.26011 (18)0.3991 (3)0.44929 (16)0.0262 (7)
C100.28801 (17)0.4937 (3)0.40321 (16)0.0256 (7)
C110.23700 (17)0.5772 (3)0.37964 (15)0.0254 (7)
H110.18710.57560.39580.030*
C120.25855 (18)0.6626 (3)0.33282 (16)0.0271 (7)
C130.33096 (19)0.6660 (3)0.30894 (17)0.0331 (8)
H130.34590.72510.27720.040*
C140.3811 (2)0.5824 (3)0.33196 (19)0.0386 (9)
H140.43070.58390.31520.046*
C150.36098 (19)0.4962 (3)0.37892 (18)0.0343 (8)
H150.39640.43970.39440.041*
C160.2218 (2)0.8229 (3)0.25964 (18)0.0384 (9)
H16A0.17700.86790.24730.046*
H16B0.24000.77970.21950.046*
H16C0.26040.87760.27570.046*
C170.40483 (18)0.4447 (3)0.54746 (16)0.0280 (7)
H17A0.37940.51850.53300.034*
H17B0.45900.45680.54140.034*
C180.38901 (17)0.4240 (3)0.62268 (17)0.0269 (7)
C190.41875 (17)0.5095 (3)0.67386 (17)0.0258 (7)
C200.45909 (18)0.6100 (3)0.65584 (17)0.0286 (7)
H200.46410.63110.60910.034*
C210.49201 (19)0.6796 (3)0.70580 (18)0.0334 (8)
H210.52060.74710.69320.040*
C220.4834 (2)0.6511 (3)0.77347 (18)0.0359 (8)
H220.50680.69810.80750.043*
C230.4404 (2)0.5534 (3)0.79248 (18)0.0362 (8)
H230.43260.53590.83940.043*
C240.40910 (18)0.4825 (3)0.74264 (17)0.0299 (7)
H240.38080.41480.75540.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0271 (4)0.0275 (4)0.0285 (4)0.0017 (3)0.0005 (3)0.0012 (3)
O10.0348 (12)0.0336 (12)0.0277 (12)0.0028 (11)0.0035 (10)0.0028 (10)
O20.0287 (12)0.0381 (13)0.0473 (15)0.0006 (11)0.0057 (11)0.0028 (12)
O30.0288 (12)0.0310 (12)0.0403 (14)0.0025 (10)0.0033 (10)0.0038 (11)
O40.0265 (12)0.0304 (12)0.0364 (14)0.0029 (10)0.0013 (10)0.0082 (11)
O50.0405 (13)0.0301 (12)0.0344 (13)0.0050 (11)0.0015 (11)0.0086 (11)
O60.0571 (16)0.0347 (13)0.0266 (13)0.0163 (12)0.0024 (12)0.0024 (11)
N10.0243 (13)0.0251 (13)0.0251 (14)0.0001 (11)0.0001 (11)0.0012 (11)
C10.0338 (17)0.0226 (15)0.0215 (16)0.0026 (13)0.0043 (14)0.0000 (13)
C20.044 (2)0.0330 (18)0.0306 (19)0.0050 (17)0.0093 (16)0.0002 (15)
C30.055 (2)0.0300 (19)0.041 (2)0.0033 (18)0.0148 (19)0.0066 (17)
C40.060 (2)0.0301 (18)0.0298 (19)0.0086 (18)0.0089 (18)0.0080 (16)
C50.0401 (19)0.0301 (17)0.0272 (18)0.0087 (15)0.0016 (15)0.0010 (14)
C60.0362 (18)0.0205 (15)0.0225 (16)0.0017 (13)0.0057 (14)0.0018 (13)
C70.0269 (16)0.0242 (15)0.0271 (17)0.0025 (13)0.0007 (13)0.0045 (13)
C80.0244 (15)0.0232 (14)0.0217 (16)0.0002 (12)0.0008 (13)0.0006 (13)
C90.0290 (17)0.0252 (15)0.0245 (16)0.0010 (13)0.0012 (13)0.0056 (13)
C100.0298 (17)0.0243 (15)0.0226 (16)0.0006 (13)0.0020 (13)0.0016 (13)
C110.0271 (16)0.0255 (15)0.0234 (16)0.0030 (13)0.0001 (13)0.0045 (13)
C120.0315 (17)0.0230 (15)0.0268 (16)0.0015 (14)0.0067 (14)0.0028 (13)
C130.0372 (19)0.0336 (18)0.0284 (18)0.0043 (16)0.0039 (15)0.0054 (15)
C140.0329 (18)0.042 (2)0.041 (2)0.0014 (16)0.0088 (17)0.0093 (17)
C150.0319 (18)0.0355 (18)0.036 (2)0.0035 (15)0.0008 (15)0.0071 (16)
C160.055 (2)0.0279 (17)0.032 (2)0.0025 (17)0.0058 (17)0.0035 (15)
C170.0265 (16)0.0281 (16)0.0294 (18)0.0049 (14)0.0008 (14)0.0001 (14)
C180.0262 (16)0.0272 (16)0.0274 (17)0.0004 (13)0.0020 (14)0.0033 (14)
C190.0216 (15)0.0253 (15)0.0305 (18)0.0028 (13)0.0022 (13)0.0005 (13)
C200.0309 (17)0.0276 (16)0.0271 (17)0.0010 (14)0.0016 (14)0.0027 (14)
C210.0349 (18)0.0244 (16)0.041 (2)0.0004 (14)0.0003 (16)0.0031 (15)
C220.0378 (19)0.0350 (18)0.035 (2)0.0003 (16)0.0092 (16)0.0066 (16)
C230.040 (2)0.044 (2)0.0246 (17)0.0019 (17)0.0032 (15)0.0015 (15)
C240.0279 (16)0.0306 (16)0.0312 (18)0.0000 (14)0.0010 (14)0.0048 (15)
Geometric parameters (Å, º) top
S1—O21.430 (2)C10—C151.395 (4)
S1—O11.435 (2)C11—C121.385 (4)
S1—N11.635 (3)C11—H110.9500
S1—C11.759 (3)C12—C131.383 (5)
O3—C71.275 (4)C13—C141.379 (5)
O4—C91.308 (4)C13—H130.9500
O4—H4O0.8400C14—C151.385 (5)
O5—C121.369 (4)C14—H140.9500
O5—C161.432 (4)C15—H150.9500
O6—C181.215 (4)C16—H16A0.9800
N1—C81.440 (4)C16—H16B0.9800
N1—C171.473 (4)C16—H16C0.9800
C1—C21.380 (4)C17—C181.519 (4)
C1—C61.403 (4)C17—H17A0.9900
C2—C31.383 (5)C17—H17B0.9900
C2—H20.9500C18—C191.489 (4)
C3—C41.381 (5)C19—C201.389 (4)
C3—H30.9500C19—C241.392 (4)
C4—C51.385 (5)C20—C211.386 (5)
C4—H40.9500C20—H200.9500
C5—C61.383 (4)C21—C221.373 (5)
C5—H50.9500C21—H210.9500
C6—C71.483 (4)C22—C231.395 (5)
C7—C81.421 (4)C22—H220.9500
C8—C91.403 (4)C23—C241.381 (5)
C9—C101.483 (4)C23—H230.9500
C10—C111.392 (4)C24—H240.9500
O2—S1—O1118.80 (15)O5—C12—C11115.7 (3)
O2—S1—N1107.66 (14)C13—C12—C11120.4 (3)
O1—S1—N1108.60 (14)C14—C13—C12119.0 (3)
O2—S1—C1110.25 (15)C14—C13—H13120.5
O1—S1—C1107.29 (14)C12—C13—H13120.5
N1—S1—C1103.14 (14)C13—C14—C15121.7 (3)
C9—O4—H4O109.5C13—C14—H14119.2
C12—O5—C16117.7 (3)C15—C14—H14119.2
C8—N1—C17119.4 (2)C14—C15—C10119.1 (3)
C8—N1—S1115.7 (2)C14—C15—H15120.4
C17—N1—S1118.9 (2)C10—C15—H15120.4
C2—C1—C6121.7 (3)O5—C16—H16A109.5
C2—C1—S1119.7 (3)O5—C16—H16B109.5
C6—C1—S1118.6 (2)H16A—C16—H16B109.5
C1—C2—C3119.1 (3)O5—C16—H16C109.5
C1—C2—H2120.4H16A—C16—H16C109.5
C3—C2—H2120.4H16B—C16—H16C109.5
C4—C3—C2120.3 (3)N1—C17—C18114.1 (3)
C4—C3—H3119.8N1—C17—H17A108.7
C2—C3—H3119.8C18—C17—H17A108.7
C3—C4—C5120.1 (3)N1—C17—H17B108.7
C3—C4—H4120.0C18—C17—H17B108.7
C5—C4—H4120.0H17A—C17—H17B107.6
C6—C5—C4121.0 (3)O6—C18—C19120.8 (3)
C6—C5—H5119.5O6—C18—C17120.0 (3)
C4—C5—H5119.5C19—C18—C17119.2 (3)
C5—C6—C1117.8 (3)C20—C19—C24119.3 (3)
C5—C6—C7120.0 (3)C20—C19—C18122.9 (3)
C1—C6—C7122.1 (3)C24—C19—C18117.7 (3)
O3—C7—C8121.8 (3)C21—C20—C19120.2 (3)
O3—C7—C6117.0 (3)C21—C20—H20119.9
C8—C7—C6121.0 (3)C19—C20—H20119.9
C9—C8—C7120.1 (3)C22—C21—C20120.1 (3)
C9—C8—N1121.2 (3)C22—C21—H21120.0
C7—C8—N1118.7 (3)C20—C21—H21120.0
O4—C9—C8118.9 (3)C21—C22—C23120.3 (3)
O4—C9—C10113.9 (3)C21—C22—H22119.8
C8—C9—C10127.2 (3)C23—C22—H22119.8
C11—C10—C15119.4 (3)C24—C23—C22119.5 (3)
C11—C10—C9117.7 (3)C24—C23—H23120.2
C15—C10—C9122.7 (3)C22—C23—H23120.2
C12—C11—C10120.4 (3)C23—C24—C19120.5 (3)
C12—C11—H11119.8C23—C24—H24119.8
C10—C11—H11119.8C19—C24—H24119.8
O5—C12—C13123.9 (3)
O2—S1—N1—C8166.6 (2)N1—C8—C9—O4172.9 (3)
O1—S1—N1—C863.6 (2)C7—C8—C9—C10171.0 (3)
C1—S1—N1—C850.0 (3)N1—C8—C9—C107.8 (5)
O2—S1—N1—C1713.9 (3)O4—C9—C10—C1118.6 (4)
O1—S1—N1—C17143.8 (2)C8—C9—C10—C11162.1 (3)
C1—S1—N1—C17102.6 (2)O4—C9—C10—C15156.3 (3)
O2—S1—C1—C240.4 (3)C8—C9—C10—C1523.0 (5)
O1—S1—C1—C290.4 (3)C15—C10—C11—C120.4 (5)
N1—S1—C1—C2155.1 (3)C9—C10—C11—C12175.5 (3)
O2—S1—C1—C6140.3 (2)C16—O5—C12—C135.5 (5)
O1—S1—C1—C688.9 (3)C16—O5—C12—C11174.2 (3)
N1—S1—C1—C625.6 (3)C10—C11—C12—O5179.7 (3)
C6—C1—C2—C30.1 (5)C10—C11—C12—C130.0 (5)
S1—C1—C2—C3179.4 (3)O5—C12—C13—C14179.1 (3)
C1—C2—C3—C40.9 (5)C11—C12—C13—C140.6 (5)
C2—C3—C4—C50.7 (6)C12—C13—C14—C150.8 (6)
C3—C4—C5—C60.5 (5)C13—C14—C15—C100.4 (6)
C4—C5—C6—C11.4 (5)C11—C10—C15—C140.2 (5)
C4—C5—C6—C7176.3 (3)C9—C10—C15—C14175.1 (3)
C2—C1—C6—C51.2 (5)C8—N1—C17—C1869.8 (4)
S1—C1—C6—C5179.5 (2)S1—N1—C17—C1881.8 (3)
C2—C1—C6—C7176.4 (3)N1—C17—C18—O65.8 (4)
S1—C1—C6—C72.9 (4)N1—C17—C18—C19172.8 (3)
C5—C6—C7—O315.2 (4)O6—C18—C19—C20179.7 (3)
C1—C6—C7—O3162.4 (3)C17—C18—C19—C201.7 (5)
C5—C6—C7—C8169.9 (3)O6—C18—C19—C244.3 (5)
C1—C6—C7—C812.5 (5)C17—C18—C19—C24174.3 (3)
O3—C7—C8—C99.3 (5)C24—C19—C20—C212.7 (5)
C6—C7—C8—C9165.3 (3)C18—C19—C20—C21173.2 (3)
O3—C7—C8—N1171.9 (3)C19—C20—C21—C221.5 (5)
C6—C7—C8—N113.5 (4)C20—C21—C22—C231.3 (5)
C17—N1—C8—C976.6 (4)C21—C22—C23—C242.8 (5)
S1—N1—C8—C9130.9 (3)C22—C23—C24—C191.6 (5)
C17—N1—C8—C7104.6 (3)C20—C19—C24—C231.2 (5)
S1—N1—C8—C747.9 (3)C18—C19—C24—C23175.0 (3)
C7—C8—C9—O48.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.952.593.281 (4)130
C11—H11···O1ii0.952.533.371 (4)148
C16—H16B···O6iii0.982.643.246 (4)120
C24—H24···O5iv0.952.573.508 (4)167
O4—H4O···O30.841.712.478 (3)151
C15—H15···N10.952.382.972 (4)120
C17—H17B···O20.992.392.800 (4)104
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y+1, z+1/2.

Experimental details

Crystal data
Chemical formulaC24H19NO6S
Mr449.46
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)17.9615 (5), 11.2633 (3), 19.5904 (6)
V3)3963.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.14 × 0.10 × 0.08
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(SORTAV; Blessing, 1997)
Tmin, Tmax0.971, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
8340, 4543, 3198
Rint0.059
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.133, 1.10
No. of reflections4543
No. of parameters291
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + 10.1913P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.36, 0.49

Computer programs: COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997), SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C21—H21···O1i0.952.593.281 (4)129.9
C11—H11···O1ii0.952.533.371 (4)148.2
C16—H16B···O6iii0.982.643.246 (4)120.3
C24—H24···O5iv0.952.573.508 (4)167.3
O4—H4O···O30.841.712.478 (3)150.5
C15—H15···N10.952.382.972 (4)119.9
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y+1, z1/2; (iv) x+1/2, y+1, z+1/2.
 

Acknowledgements

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

References

First citationAhmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem. 45, 698–704.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGupta, S. K., Bansal, P., Bhardwaj, R. K., Jaiswal, J. & Velpandian, T. (2002). Skin Pharmacol. Appl. Skin Physiol. 15, 105–111.  Web of Science CrossRef PubMed CAS Google Scholar
First citationGupta, R. R., Dev, P. K., Sharma, M. L., Rajoria, C. M., Gupta, A. & Nyati, M. (1993). Anticancer Drugs, 4, 589–592.  CrossRef CAS PubMed Web of Science Google Scholar
First citationHooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationLombardino, J. G. & Wiseman, E. H. (1972). J. Med. Chem. 15, 848–849.  CrossRef CAS PubMed Web of Science Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Khan, I. U., Siddiqui, H. L. & Weaver, G. W. (2007). Synth. Commun. 37, 767–773.  Web of Science CrossRef CAS Google Scholar
First citationSiddiqui, W. A., Ahmad, S., Tariq, M. I., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst. C64, o4–o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull. 54, 1175–1178.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o978-o979
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds