organic compounds
3,6-Diiodo-9H-carbazole
aDepartment of Chemistry, Yanbian University, Yanji Jilin 133002, People's Republic of China
*Correspondence e-mail: whyjs@ybu.edu.cn
In the title compound, C12H7I2N, the tricyclic aromatic ring system is essentially planar, with an r.m.s. deviation of 0.0272 Å. The two I atoms are marginally out of plane, with the C—I bonds angled at 3.9 (2) and 1.1 (2)° with respect to the planes of their respective benzene rings, above and below the plane of the carbazole ring system. No classical hydrogen bonds are observed in the crystal structure.
Related literature
For the synthesis of the title compound, see: Tucker (1926); Lengvinaite et al. (2007). For related compounds, see: Grigalevicius et al. (2007); Cui et al. (2009); Tian et al. (2010); Klejevskaja et al. (2007). For their applications, see: Zhang et al. (2009); Zhong'an et al. (2010); Lu et al. (2006); Grigalevicius et al. (2006, 2011).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2004); cell SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S1600536812012901/pk2397sup1.cif
contains datablocks global, I. DOI:Supporting information file. DOI: 10.1107/S1600536812012901/pk2397Isup2.cdx
Structure factors: contains datablock I. DOI: 10.1107/S1600536812012901/pk2397Isup3.hkl
Supporting information file. DOI: 10.1107/S1600536812012901/pk2397Isup4.cml
The title compound was synthesized according to a literature method (Tucker, 1926). Colorless crystals were obtained from a solution in chloroform upon slow evaporation of the solvent.
The nitrogen-bound H atom was located in a difference Fourier map and refined freely (N—H = 0.75 (3) Å). Carbon-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).
Carbazole moieties are an important construction block for hole-transporting and electroluminescent materials. 3,6-diiodo-9H-carbazole has been used to design and synthesize carbazole derivatives. We report herein the
of the title compound. The molecular structure is shown in Fig. 1. All bond lengths and angles are within normal ranges. The tricyclic aromatic ring system is essentially planar with an r.m.s. deviation of 0.0272 Å. There are no classical hydrogen bonds observed in the crystal structure.For the synthesis of the title compound, see: Tucker (1926); Lengvinaite et al. (2007). For related compounds, see: Grigalevicius et al. (2007); Cui et al. (2009); Tian et al. (2010); Klejevskaja et al. (2007). For additional related literature [on what subjects?], see: Zhang et al. (2009); Zhong'an et al. (2010); Lu et al. (2006); Grigalevicius et al. (2006, 2011).
Data collection: APEX2 (Bruker, 2004); cell
SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).Fig. 1. The molecular structure of the title coumpound. Displacement ellipsoids are drawn at 30% probability level.. |
C12H7I2N | F(000) = 1536 |
Mr = 418.99 | Dx = 2.392 Mg m−3 |
Orthorhombic, Pbca | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ac 2ab | Cell parameters from 12303 reflections |
a = 11.8823 (14) Å | θ = 1.6–26.8° |
b = 7.8835 (9) Å | µ = 5.37 mm−1 |
c = 24.835 (3) Å | T = 293 K |
V = 2326.4 (5) Å3 | Block, colorless |
Z = 8 | 0.23 × 0.21 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 2456 independent reflections |
Radiation source: fine-focus sealed tube | 1879 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
φ and ω scans | θmax = 26.8°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | h = −8→15 |
Tmin = 0.371, Tmax = 0.445 | k = −9→9 |
12303 measured reflections | l = −31→29 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.052 | w = 1/[σ2(Fo2) + (0.0193P)2 + 0.8116P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max = 0.002 |
2456 reflections | Δρmax = 0.57 e Å−3 |
141 parameters | Δρmin = −0.56 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00021 (4) |
C12H7I2N | V = 2326.4 (5) Å3 |
Mr = 418.99 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 11.8823 (14) Å | µ = 5.37 mm−1 |
b = 7.8835 (9) Å | T = 293 K |
c = 24.835 (3) Å | 0.23 × 0.21 × 0.18 mm |
Bruker APEXII CCD area-detector diffractometer | 2456 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2004) | 1879 reflections with I > 2σ(I) |
Tmin = 0.371, Tmax = 0.445 | Rint = 0.032 |
12303 measured reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.052 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.57 e Å−3 |
2456 reflections | Δρmin = −0.56 e Å−3 |
141 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C11 | 0.7583 (3) | 0.4740 (4) | 0.77946 (15) | 0.0445 (9) | |
H11 | 0.8290 | 0.5240 | 0.7822 | 0.053* | |
C12 | 0.6978 (3) | 0.4308 (4) | 0.82476 (14) | 0.0406 (9) | |
H12 | 0.7277 | 0.4525 | 0.8587 | 0.049* | |
H1N | 0.807 (3) | 0.511 (4) | 0.6716 (13) | 0.032 (11)* | |
I2 | 0.35650 (2) | 0.22435 (4) | 0.536173 (10) | 0.06040 (11) | |
I1 | 0.50690 (2) | 0.28678 (4) | 0.891514 (9) | 0.04915 (10) | |
N1 | 0.7525 (3) | 0.4684 (4) | 0.67876 (13) | 0.0460 (8) | |
C5 | 0.4904 (3) | 0.2882 (4) | 0.63769 (13) | 0.0387 (8) | |
H5 | 0.4264 | 0.2467 | 0.6548 | 0.046* | |
C4 | 0.5818 (3) | 0.3460 (4) | 0.66751 (12) | 0.0333 (8) | |
C6 | 0.4967 (3) | 0.2939 (5) | 0.58238 (14) | 0.0432 (9) | |
C9 | 0.6766 (3) | 0.4125 (4) | 0.64077 (14) | 0.0402 (9) | |
C1 | 0.5918 (3) | 0.3545 (4) | 0.82033 (13) | 0.0373 (8) | |
C2 | 0.5437 (3) | 0.3208 (4) | 0.77121 (13) | 0.0357 (8) | |
H2 | 0.4730 | 0.2705 | 0.7690 | 0.043* | |
C3 | 0.6032 (3) | 0.3638 (4) | 0.72449 (12) | 0.0333 (8) | |
C8 | 0.6826 (3) | 0.4177 (5) | 0.58496 (14) | 0.0478 (10) | |
H8 | 0.7461 | 0.4603 | 0.5677 | 0.057* | |
C7 | 0.5931 (3) | 0.3587 (5) | 0.55598 (14) | 0.0492 (10) | |
H7 | 0.5954 | 0.3612 | 0.5186 | 0.059* | |
C10 | 0.7105 (3) | 0.4408 (4) | 0.72961 (14) | 0.0375 (8) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C11 | 0.033 (2) | 0.047 (2) | 0.054 (2) | −0.0035 (18) | 0.0000 (19) | −0.0083 (18) |
C12 | 0.040 (2) | 0.043 (2) | 0.0391 (19) | 0.0011 (17) | −0.0046 (17) | −0.0074 (16) |
I2 | 0.0586 (2) | 0.0815 (2) | 0.04106 (16) | −0.00842 (15) | −0.01063 (13) | 0.00035 (13) |
I1 | 0.04885 (17) | 0.06034 (18) | 0.03825 (14) | −0.00679 (13) | 0.00108 (12) | 0.00815 (11) |
N1 | 0.0340 (19) | 0.055 (2) | 0.0490 (18) | −0.0110 (17) | 0.0093 (18) | 0.0011 (16) |
C5 | 0.036 (2) | 0.040 (2) | 0.039 (2) | 0.0034 (17) | 0.0027 (17) | 0.0040 (16) |
C4 | 0.034 (2) | 0.0312 (18) | 0.0345 (18) | 0.0029 (15) | 0.0017 (16) | 0.0029 (14) |
C6 | 0.044 (2) | 0.048 (2) | 0.0375 (19) | −0.0003 (19) | −0.0025 (17) | −0.0026 (17) |
C9 | 0.036 (2) | 0.043 (2) | 0.042 (2) | 0.0021 (17) | 0.0030 (17) | 0.0004 (16) |
C1 | 0.038 (2) | 0.0355 (19) | 0.0385 (18) | 0.0031 (17) | 0.0052 (17) | 0.0040 (16) |
C2 | 0.0298 (18) | 0.034 (2) | 0.0427 (19) | −0.0003 (15) | −0.0044 (16) | 0.0050 (15) |
C3 | 0.0312 (19) | 0.0328 (19) | 0.0358 (18) | 0.0010 (15) | 0.0002 (15) | 0.0010 (14) |
C8 | 0.041 (2) | 0.061 (3) | 0.041 (2) | 0.003 (2) | 0.0151 (18) | 0.0017 (18) |
C7 | 0.055 (3) | 0.059 (3) | 0.0341 (19) | 0.005 (2) | 0.0050 (19) | −0.0020 (17) |
C10 | 0.0331 (19) | 0.037 (2) | 0.043 (2) | 0.0003 (16) | 0.0043 (17) | −0.0027 (16) |
C11—C12 | 1.378 (5) | C5—H5 | 0.9300 |
C11—C10 | 1.387 (5) | C4—C9 | 1.409 (5) |
C11—H11 | 0.9300 | C4—C3 | 1.445 (4) |
C12—C1 | 1.400 (5) | C6—C7 | 1.415 (5) |
C12—H12 | 0.9300 | C9—C8 | 1.389 (5) |
I2—C6 | 2.096 (4) | C1—C2 | 1.373 (4) |
I1—C1 | 2.104 (3) | C2—C3 | 1.400 (4) |
N1—C10 | 1.375 (4) | C2—H2 | 0.9300 |
N1—C9 | 1.378 (5) | C3—C10 | 1.418 (5) |
N1—H1N | 0.75 (3) | C8—C7 | 1.366 (5) |
C5—C6 | 1.376 (5) | C8—H8 | 0.9300 |
C5—C4 | 1.391 (5) | C7—H7 | 0.9300 |
C12—C11—C10 | 117.9 (3) | C8—C9—C4 | 121.5 (3) |
C12—C11—H11 | 121.0 | C2—C1—C12 | 121.8 (3) |
C10—C11—H11 | 121.0 | C2—C1—I1 | 119.8 (3) |
C11—C12—C1 | 120.8 (3) | C12—C1—I1 | 118.3 (3) |
C11—C12—H12 | 119.6 | C1—C2—C3 | 118.6 (3) |
C1—C12—H12 | 119.6 | C1—C2—H2 | 120.7 |
C10—N1—C9 | 109.9 (3) | C3—C2—H2 | 120.7 |
C10—N1—H1N | 127 (3) | C2—C3—C10 | 118.9 (3) |
C9—N1—H1N | 123 (3) | C2—C3—C4 | 134.4 (3) |
C6—C5—C4 | 118.5 (3) | C10—C3—C4 | 106.7 (3) |
C6—C5—H5 | 120.7 | C7—C8—C9 | 118.4 (4) |
C4—C5—H5 | 120.7 | C7—C8—H8 | 120.8 |
C5—C4—C9 | 119.7 (3) | C9—C8—H8 | 120.8 |
C5—C4—C3 | 133.7 (3) | C8—C7—C6 | 120.6 (3) |
C9—C4—C3 | 106.6 (3) | C8—C7—H7 | 119.7 |
C5—C6—C7 | 121.2 (3) | C6—C7—H7 | 119.7 |
C5—C6—I2 | 119.6 (3) | N1—C10—C11 | 129.9 (3) |
C7—C6—I2 | 118.9 (3) | N1—C10—C3 | 108.2 (3) |
N1—C9—C8 | 129.8 (3) | C11—C10—C3 | 121.9 (3) |
N1—C9—C4 | 108.7 (3) | ||
C10—C11—C12—C1 | 0.5 (5) | C5—C4—C3—C2 | 4.6 (7) |
C6—C5—C4—C9 | 1.7 (5) | C9—C4—C3—C2 | −179.0 (4) |
C6—C5—C4—C3 | 177.7 (4) | C5—C4—C3—C10 | −176.4 (4) |
C4—C5—C6—C7 | −0.8 (5) | C9—C4—C3—C10 | 0.1 (4) |
C4—C5—C6—I2 | −175.7 (2) | N1—C9—C8—C7 | −177.6 (4) |
C10—N1—C9—C8 | 178.7 (4) | C4—C9—C8—C7 | 1.0 (5) |
C10—N1—C9—C4 | 0.0 (4) | C9—C8—C7—C6 | −0.1 (6) |
C5—C4—C9—N1 | 177.0 (3) | C5—C6—C7—C8 | 0.0 (6) |
C3—C4—C9—N1 | 0.0 (4) | I2—C6—C7—C8 | 174.9 (3) |
C5—C4—C9—C8 | −1.8 (5) | C9—N1—C10—C11 | 178.8 (4) |
C3—C4—C9—C8 | −178.8 (3) | C9—N1—C10—C3 | 0.0 (4) |
C11—C12—C1—C2 | −0.4 (5) | C12—C11—C10—N1 | −179.0 (4) |
C11—C12—C1—I1 | 178.5 (3) | C12—C11—C10—C3 | −0.4 (5) |
C12—C1—C2—C3 | 0.3 (5) | C2—C3—C10—N1 | 179.1 (3) |
I1—C1—C2—C3 | −178.6 (2) | C4—C3—C10—N1 | −0.1 (4) |
C1—C2—C3—C10 | −0.2 (5) | C2—C3—C10—C11 | 0.3 (5) |
C1—C2—C3—C4 | 178.7 (4) | C4—C3—C10—C11 | −178.9 (3) |
Experimental details
Crystal data | |
Chemical formula | C12H7I2N |
Mr | 418.99 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 293 |
a, b, c (Å) | 11.8823 (14), 7.8835 (9), 24.835 (3) |
V (Å3) | 2326.4 (5) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 5.37 |
Crystal size (mm) | 0.23 × 0.21 × 0.18 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector |
Absorption correction | Multi-scan (SADABS; Bruker, 2004) |
Tmin, Tmax | 0.371, 0.445 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 12303, 2456, 1879 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.634 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.052, 1.05 |
No. of reflections | 2456 |
No. of parameters | 141 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.57, −0.56 |
Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Acknowledgements
This work was supported by the Science Foundation of Yanbian University
References
Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Cui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o216. Web of Science CSD CrossRef IUCr Journals Google Scholar
Grigalevicius, S., Ma, L., Grazulevicius, J. V. & Xie, Z. (2006). Synth. Met. 156, 46–50. Web of Science CrossRef CAS Google Scholar
Grigalevicius, S., Ma, L., Qian, G., Xie, Z., Forster, M. & Scherf, U. (2007). Macromol. Chem. Phys. 208, 349–355. Web of Science CrossRef CAS Google Scholar
Grigalevicius, S., Zhang, B., Xie, Z., Forster, M. & Scherf, U. (2011). Org. Electron. 12, 2253–2257. Web of Science CrossRef CAS Google Scholar
Klejevskaja, B., Burbulis, E., Michaleviciute, A., Ostrauskaite, J., Grazuleviius, J. V. & Jankauskas, V. (2007). Synth. Met. 157, 968–973. Web of Science CrossRef CAS Google Scholar
Lengvinaite, S., Grazulevicius, J. V., Jankauskas, V. & Grigalevicius, S. (2007). Synth. Met. 157, 529–533. Web of Science CrossRef CAS Google Scholar
Lu, J., Xia, P. F., Lo, P. K., Tao, Y. & Wong, M. S. (2006). Chem. Mater. 18, 6194–6203. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tian, N., Lenkeit, D., Pelz, S., Fischer, L. H., Escudero, D., Schiewek, R., Klink, D., Schmitz, O. J., Gonzalez, L., Schaferling, M. & Holder, E. (2010). Eur. J. Inorg. Chem. pp. 4875–4885. Web of Science CrossRef Google Scholar
Tucker, S. H. (1926). J. Chem. Soc. pp. 546–553. CrossRef Google Scholar
Zhang, H., Wang, S., Li, Y., Zhang, B., Du, C., Wan, X. & Chen, Y. (2009). Tetrahedron, 65, 4455–4463. Web of Science CrossRef CAS Google Scholar
Zhong'an, L., Zuoquan, J., Guofu, Q., Wenbo, W., Gui, Y., Yunqi, L., Jingui, Q. & Zhen, L. (2010). Macromol. Chem. Phys. 211, 1820–1825. Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Carbazole moieties are an important construction block for hole-transporting and electroluminescent materials. 3,6-diiodo-9H-carbazole has been used to design and synthesize carbazole derivatives. We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. All bond lengths and angles are within normal ranges. The tricyclic aromatic ring system is essentially planar with an r.m.s. deviation of 0.0272 Å. There are no classical hydrogen bonds observed in the crystal structure.