organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6-Di­iodo-9H-carbazole

aDepartment of Chemistry, Yanbian University, Yanji Jilin 133002, People's Republic of China
*Correspondence e-mail: whyjs@ybu.edu.cn

(Received 6 March 2012; accepted 24 March 2012; online 31 March 2012)

In the title compound, C12H7I2N, the tricyclic aromatic ring system is essentially planar, with an r.m.s. deviation of 0.0272 Å. The two I atoms are marginally out of plane, with the C—I bonds angled at 3.9 (2) and 1.1 (2)° with respect to the planes of their respective benzene rings, above and below the plane of the carbazole ring system. No classical hydrogen bonds are observed in the crystal structure.

Related literature

For the synthesis of the title compound, see: Tucker (1926[Tucker, S. H. (1926). J. Chem. Soc. pp. 546-553.]); Lengvinaite et al. (2007[Lengvinaite, S., Grazulevicius, J. V., Jankauskas, V. & Grigalevicius, S. (2007). Synth. Met. 157, 529-533.]). For related compounds, see: Grigalevicius et al. (2007[Grigalevicius, S., Ma, L., Qian, G., Xie, Z., Forster, M. & Scherf, U. (2007). Macromol. Chem. Phys. 208, 349-355.]); Cui et al. (2009[Cui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o216.]); Tian et al. (2010[Tian, N., Lenkeit, D., Pelz, S., Fischer, L. H., Escudero, D., Schiewek, R., Klink, D., Schmitz, O. J., Gonzalez, L., Schaferling, M. & Holder, E. (2010). Eur. J. Inorg. Chem. pp. 4875-4885.]); Klejevskaja et al. (2007[Klejevskaja, B., Burbulis, E., Michaleviciute, A., Ostrauskaite, J., Grazuleviius, J. V. & Jankauskas, V. (2007). Synth. Met. 157, 968-973.]). For their applications, see: Zhang et al. (2009[Zhang, H., Wang, S., Li, Y., Zhang, B., Du, C., Wan, X. & Chen, Y. (2009). Tetrahedron, 65, 4455-4463.]); Zhong'an et al. (2010[Zhong'an, L., Zuoquan, J., Guofu, Q., Wenbo, W., Gui, Y., Yunqi, L., Jingui, Q. & Zhen, L. (2010). Macromol. Chem. Phys. 211, 1820-1825.]); Lu et al. (2006[Lu, J., Xia, P. F., Lo, P. K., Tao, Y. & Wong, M. S. (2006). Chem. Mater. 18, 6194-6203.]); Grigalev­icius et al. (2006[Grigalevicius, S., Ma, L., Grazulevicius, J. V. & Xie, Z. (2006). Synth. Met. 156, 46-50.], 2011[Grigalevicius, S., Zhang, B., Xie, Z., Forster, M. & Scherf, U. (2011). Org. Electron. 12, 2253-2257.]).

[Scheme 1]

Experimental

Crystal data
  • C12H7I2N

  • Mr = 418.99

  • Orthorhombic, P b c a

  • a = 11.8823 (14) Å

  • b = 7.8835 (9) Å

  • c = 24.835 (3) Å

  • V = 2326.4 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 5.37 mm−1

  • T = 293 K

  • 0.23 × 0.21 × 0.18 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.371, Tmax = 0.445

  • 12303 measured reflections

  • 2456 independent reflections

  • 1879 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.052

  • S = 1.05

  • 2456 reflections

  • 141 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbazole moieties are an important construction block for hole-transporting and electroluminescent materials. 3,6-diiodo-9H-carbazole has been used to design and synthesize carbazole derivatives. We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. All bond lengths and angles are within normal ranges. The tricyclic aromatic ring system is essentially planar with an r.m.s. deviation of 0.0272 Å. There are no classical hydrogen bonds observed in the crystal structure.

Related literature top

For the synthesis of the title compound, see: Tucker (1926); Lengvinaite et al. (2007). For related compounds, see: Grigalevicius et al. (2007); Cui et al. (2009); Tian et al. (2010); Klejevskaja et al. (2007). For additional related literature [on what subjects?], see: Zhang et al. (2009); Zhong'an et al. (2010); Lu et al. (2006); Grigalevicius et al. (2006, 2011).

Experimental top

The title compound was synthesized according to a literature method (Tucker, 1926). Colorless crystals were obtained from a solution in chloroform upon slow evaporation of the solvent.

Refinement top

The nitrogen-bound H atom was located in a difference Fourier map and refined freely (N—H = 0.75 (3) Å). Carbon-bound H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model, with Uiso(H) = 1.2 Ueq(C).

Structure description top

Carbazole moieties are an important construction block for hole-transporting and electroluminescent materials. 3,6-diiodo-9H-carbazole has been used to design and synthesize carbazole derivatives. We report herein the crystal structure of the title compound. The molecular structure is shown in Fig. 1. All bond lengths and angles are within normal ranges. The tricyclic aromatic ring system is essentially planar with an r.m.s. deviation of 0.0272 Å. There are no classical hydrogen bonds observed in the crystal structure.

For the synthesis of the title compound, see: Tucker (1926); Lengvinaite et al. (2007). For related compounds, see: Grigalevicius et al. (2007); Cui et al. (2009); Tian et al. (2010); Klejevskaja et al. (2007). For additional related literature [on what subjects?], see: Zhang et al. (2009); Zhong'an et al. (2010); Lu et al. (2006); Grigalevicius et al. (2006, 2011).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title coumpound. Displacement ellipsoids are drawn at 30% probability level..
3,6-Diiodo-9H-carbazole top
Crystal data top
C12H7I2NF(000) = 1536
Mr = 418.99Dx = 2.392 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 12303 reflections
a = 11.8823 (14) Åθ = 1.6–26.8°
b = 7.8835 (9) ŵ = 5.37 mm1
c = 24.835 (3) ÅT = 293 K
V = 2326.4 (5) Å3Block, colorless
Z = 80.23 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2456 independent reflections
Radiation source: fine-focus sealed tube1879 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
φ and ω scansθmax = 26.8°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 815
Tmin = 0.371, Tmax = 0.445k = 99
12303 measured reflectionsl = 3129
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.026H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0193P)2 + 0.8116P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2456 reflectionsΔρmax = 0.57 e Å3
141 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.00021 (4)
Crystal data top
C12H7I2NV = 2326.4 (5) Å3
Mr = 418.99Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 11.8823 (14) ŵ = 5.37 mm1
b = 7.8835 (9) ÅT = 293 K
c = 24.835 (3) Å0.23 × 0.21 × 0.18 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2456 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1879 reflections with I > 2σ(I)
Tmin = 0.371, Tmax = 0.445Rint = 0.032
12303 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.052H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.57 e Å3
2456 reflectionsΔρmin = 0.56 e Å3
141 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C110.7583 (3)0.4740 (4)0.77946 (15)0.0445 (9)
H110.82900.52400.78220.053*
C120.6978 (3)0.4308 (4)0.82476 (14)0.0406 (9)
H120.72770.45250.85870.049*
H1N0.807 (3)0.511 (4)0.6716 (13)0.032 (11)*
I20.35650 (2)0.22435 (4)0.536173 (10)0.06040 (11)
I10.50690 (2)0.28678 (4)0.891514 (9)0.04915 (10)
N10.7525 (3)0.4684 (4)0.67876 (13)0.0460 (8)
C50.4904 (3)0.2882 (4)0.63769 (13)0.0387 (8)
H50.42640.24670.65480.046*
C40.5818 (3)0.3460 (4)0.66751 (12)0.0333 (8)
C60.4967 (3)0.2939 (5)0.58238 (14)0.0432 (9)
C90.6766 (3)0.4125 (4)0.64077 (14)0.0402 (9)
C10.5918 (3)0.3545 (4)0.82033 (13)0.0373 (8)
C20.5437 (3)0.3208 (4)0.77121 (13)0.0357 (8)
H20.47300.27050.76900.043*
C30.6032 (3)0.3638 (4)0.72449 (12)0.0333 (8)
C80.6826 (3)0.4177 (5)0.58496 (14)0.0478 (10)
H80.74610.46030.56770.057*
C70.5931 (3)0.3587 (5)0.55598 (14)0.0492 (10)
H70.59540.36120.51860.059*
C100.7105 (3)0.4408 (4)0.72961 (14)0.0375 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C110.033 (2)0.047 (2)0.054 (2)0.0035 (18)0.0000 (19)0.0083 (18)
C120.040 (2)0.043 (2)0.0391 (19)0.0011 (17)0.0046 (17)0.0074 (16)
I20.0586 (2)0.0815 (2)0.04106 (16)0.00842 (15)0.01063 (13)0.00035 (13)
I10.04885 (17)0.06034 (18)0.03825 (14)0.00679 (13)0.00108 (12)0.00815 (11)
N10.0340 (19)0.055 (2)0.0490 (18)0.0110 (17)0.0093 (18)0.0011 (16)
C50.036 (2)0.040 (2)0.039 (2)0.0034 (17)0.0027 (17)0.0040 (16)
C40.034 (2)0.0312 (18)0.0345 (18)0.0029 (15)0.0017 (16)0.0029 (14)
C60.044 (2)0.048 (2)0.0375 (19)0.0003 (19)0.0025 (17)0.0026 (17)
C90.036 (2)0.043 (2)0.042 (2)0.0021 (17)0.0030 (17)0.0004 (16)
C10.038 (2)0.0355 (19)0.0385 (18)0.0031 (17)0.0052 (17)0.0040 (16)
C20.0298 (18)0.034 (2)0.0427 (19)0.0003 (15)0.0044 (16)0.0050 (15)
C30.0312 (19)0.0328 (19)0.0358 (18)0.0010 (15)0.0002 (15)0.0010 (14)
C80.041 (2)0.061 (3)0.041 (2)0.003 (2)0.0151 (18)0.0017 (18)
C70.055 (3)0.059 (3)0.0341 (19)0.005 (2)0.0050 (19)0.0020 (17)
C100.0331 (19)0.037 (2)0.043 (2)0.0003 (16)0.0043 (17)0.0027 (16)
Geometric parameters (Å, º) top
C11—C121.378 (5)C5—H50.9300
C11—C101.387 (5)C4—C91.409 (5)
C11—H110.9300C4—C31.445 (4)
C12—C11.400 (5)C6—C71.415 (5)
C12—H120.9300C9—C81.389 (5)
I2—C62.096 (4)C1—C21.373 (4)
I1—C12.104 (3)C2—C31.400 (4)
N1—C101.375 (4)C2—H20.9300
N1—C91.378 (5)C3—C101.418 (5)
N1—H1N0.75 (3)C8—C71.366 (5)
C5—C61.376 (5)C8—H80.9300
C5—C41.391 (5)C7—H70.9300
C12—C11—C10117.9 (3)C8—C9—C4121.5 (3)
C12—C11—H11121.0C2—C1—C12121.8 (3)
C10—C11—H11121.0C2—C1—I1119.8 (3)
C11—C12—C1120.8 (3)C12—C1—I1118.3 (3)
C11—C12—H12119.6C1—C2—C3118.6 (3)
C1—C12—H12119.6C1—C2—H2120.7
C10—N1—C9109.9 (3)C3—C2—H2120.7
C10—N1—H1N127 (3)C2—C3—C10118.9 (3)
C9—N1—H1N123 (3)C2—C3—C4134.4 (3)
C6—C5—C4118.5 (3)C10—C3—C4106.7 (3)
C6—C5—H5120.7C7—C8—C9118.4 (4)
C4—C5—H5120.7C7—C8—H8120.8
C5—C4—C9119.7 (3)C9—C8—H8120.8
C5—C4—C3133.7 (3)C8—C7—C6120.6 (3)
C9—C4—C3106.6 (3)C8—C7—H7119.7
C5—C6—C7121.2 (3)C6—C7—H7119.7
C5—C6—I2119.6 (3)N1—C10—C11129.9 (3)
C7—C6—I2118.9 (3)N1—C10—C3108.2 (3)
N1—C9—C8129.8 (3)C11—C10—C3121.9 (3)
N1—C9—C4108.7 (3)
C10—C11—C12—C10.5 (5)C5—C4—C3—C24.6 (7)
C6—C5—C4—C91.7 (5)C9—C4—C3—C2179.0 (4)
C6—C5—C4—C3177.7 (4)C5—C4—C3—C10176.4 (4)
C4—C5—C6—C70.8 (5)C9—C4—C3—C100.1 (4)
C4—C5—C6—I2175.7 (2)N1—C9—C8—C7177.6 (4)
C10—N1—C9—C8178.7 (4)C4—C9—C8—C71.0 (5)
C10—N1—C9—C40.0 (4)C9—C8—C7—C60.1 (6)
C5—C4—C9—N1177.0 (3)C5—C6—C7—C80.0 (6)
C3—C4—C9—N10.0 (4)I2—C6—C7—C8174.9 (3)
C5—C4—C9—C81.8 (5)C9—N1—C10—C11178.8 (4)
C3—C4—C9—C8178.8 (3)C9—N1—C10—C30.0 (4)
C11—C12—C1—C20.4 (5)C12—C11—C10—N1179.0 (4)
C11—C12—C1—I1178.5 (3)C12—C11—C10—C30.4 (5)
C12—C1—C2—C30.3 (5)C2—C3—C10—N1179.1 (3)
I1—C1—C2—C3178.6 (2)C4—C3—C10—N10.1 (4)
C1—C2—C3—C100.2 (5)C2—C3—C10—C110.3 (5)
C1—C2—C3—C4178.7 (4)C4—C3—C10—C11178.9 (3)

Experimental details

Crystal data
Chemical formulaC12H7I2N
Mr418.99
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)293
a, b, c (Å)11.8823 (14), 7.8835 (9), 24.835 (3)
V3)2326.4 (5)
Z8
Radiation typeMo Kα
µ (mm1)5.37
Crystal size (mm)0.23 × 0.21 × 0.18
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.371, 0.445
No. of measured, independent and
observed [I > 2σ(I)] reflections
12303, 2456, 1879
Rint0.032
(sin θ/λ)max1)0.634
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.052, 1.05
No. of reflections2456
No. of parameters141
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.57, 0.56

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was supported by the Science Foundation of Yanbian University

References

First citationBruker (2004). APEX2, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCui, J., Duan, M. & Cai, L. (2009). Acta Cryst. E65, o216.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGrigalevicius, S., Ma, L., Grazulevicius, J. V. & Xie, Z. (2006). Synth. Met. 156, 46–50.  Web of Science CrossRef CAS Google Scholar
First citationGrigalevicius, S., Ma, L., Qian, G., Xie, Z., Forster, M. & Scherf, U. (2007). Macromol. Chem. Phys. 208, 349–355.  Web of Science CrossRef CAS Google Scholar
First citationGrigalevicius, S., Zhang, B., Xie, Z., Forster, M. & Scherf, U. (2011). Org. Electron. 12, 2253–2257.  Web of Science CrossRef CAS Google Scholar
First citationKlejevskaja, B., Burbulis, E., Michaleviciute, A., Ostrauskaite, J., Grazuleviius, J. V. & Jankauskas, V. (2007). Synth. Met. 157, 968–973.  Web of Science CrossRef CAS Google Scholar
First citationLengvinaite, S., Grazulevicius, J. V., Jankauskas, V. & Grigalevicius, S. (2007). Synth. Met. 157, 529–533.  Web of Science CrossRef CAS Google Scholar
First citationLu, J., Xia, P. F., Lo, P. K., Tao, Y. & Wong, M. S. (2006). Chem. Mater. 18, 6194–6203.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTian, N., Lenkeit, D., Pelz, S., Fischer, L. H., Escudero, D., Schiewek, R., Klink, D., Schmitz, O. J., Gonzalez, L., Schaferling, M. & Holder, E. (2010). Eur. J. Inorg. Chem. pp. 4875–4885.  Web of Science CrossRef Google Scholar
First citationTucker, S. H. (1926). J. Chem. Soc. pp. 546–553.  CrossRef Google Scholar
First citationZhang, H., Wang, S., Li, Y., Zhang, B., Du, C., Wan, X. & Chen, Y. (2009). Tetrahedron, 65, 4455–4463.  Web of Science CrossRef CAS Google Scholar
First citationZhong'an, L., Zuoquan, J., Guofu, Q., Wenbo, W., Gui, Y., Yunqi, L., Jingui, Q. & Zhen, L. (2010). Macromol. Chem. Phys. 211, 1820–1825.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds