organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

7-Chloro-4-[(7-chloro­quinolin-4-yl)sulfan­yl]quinoline dihydrate

aCentro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 March 2012; accepted 13 March 2012; online 21 March 2012)

In the title thio­ether dihydrate, C18H10Cl2N2S·2H2O, the S-bound quinolinyl residues are almost orthogonal, forming a dihedral angle of 72.36 (4)°. In the crystal, the four water mol­ecules are connected via an eight-membered {⋯OH}4 synthon with each of the four pendent water H atoms hydrogen bonded to a pyridine N atom to stabilize a three-dimensional architecture.

Related literature

For background to the significant biological activities exhibited by quinoline derivatives, see: Natarajan et al. (2008[Natarajan, J. K., Alumasa, J., Yearick, K., Ekoue-Kovi, K. A., Casabianca, L. B., de Dios, A. C., Wolf, C. & Roepe, P. D. (2008). J. Med. Chem. 51, 3466—3479.]). For an earlier synthesis, see: Surrey (1948[Surrey, A. R. (1948). J. Am. Chem. Soc. 70, 2190-2193.]).

[Scheme 1]

Experimental

Crystal data
  • C18H10Cl2N2S·2H2O

  • Mr = 393.27

  • Monoclinic, P 21 /n

  • a = 7.8228 (2) Å

  • b = 11.5596 (3) Å

  • c = 19.2421 (13) Å

  • β = 97.384 (7)°

  • V = 1725.60 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.51 mm−1

  • T = 120 K

  • 0.07 × 0.07 × 0.03 mm

Data collection
  • Rigaku Saturn724+ diffractometer

  • Absorption correction: multi-scan (CrystalClear-SM Expert; Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.930, Tmax = 1.000

  • 36518 measured reflections

  • 3943 independent reflections

  • 3512 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.076

  • S = 1.04

  • 3943 reflections

  • 238 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.46 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯N1 0.85 (1) 2.02 (1) 2.8530 (15) 171 (2)
O1W—H2W⋯O2Wi 0.84 (1) 1.94 (1) 2.7723 (14) 173 (2)
O2W—H3W⋯N2 0.85 (2) 2.01 (2) 2.8429 (14) 165 (1)
O2W—H4W⋯O1Wii 0.85 (1) 1.94 (2) 2.7683 (14) 166 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear-SM Expert (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Expert; data reduction: CrystalClear-SM Expert; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Interest in the title compound, bis(7-chloroquinolin-4-yl)sulfide, crystallized as a dihydrate, rests with the biological activity of related quinoline derivatives, in particular against chloroquine-resistant malaria (Natarajan et al., 2008).

In (I), Fig. 1, the dihedral angle between the two quinolinyl residues [r.m.s. deviation for the 10 atoms of the N1- and N2-systems = 0.018 and 0.011 Å, respectively] of 72.36 (4)° indicates an almost orthogonal relationship.

The water molecules play a pivotal role in stabilizing the crystal structure, forming hydrogen bonds to each other and to the quinolinyl-N atoms, Table 1. The water···water interactions each to eight-membered {···OH}4 synthons with each pendent water-H atom hydrogen bonded to a quinolinyl-N atom to stabilize a three-dimensional architecture, Fig. 2.

Related literature top

For background to the significant biological activities exhibited by quinoline derivatives, see: Natarajan et al. (2008). For an earlier synthesis, see: Surrey (1948).

Experimental top

A modification of a published procedure was adopted (Natarajan et al., 2008). A solution of 4,7-dichloroquinoline (0.5 g) in EtOH (20 ml) was heated to 323 K. Thiourea (0.20 g.) was added and the mixture was stirred for 5 min. and then cooled to room temperature. The white solid was filtered off and was extracted into 0.2 M NaOH solution. The precipitate, bis(7-chloroquinolin-4-yl)sulfide, was collected and recrystallized from EtOH as the dihydrate; M.pt. 436–439 K; lit. M.pt: 439–440 K (Surrey, 1948).

Refinement top

The C-bound H atoms were geometrically placed (C—H = 0.95 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The O—H atoms were located in a difference Fourier map, and were refined with a distance restraint of O—H = 0.84±0.01 Å and with H···H = 1.39±0.03 Å; their Uiso values were constrained to 1.5Ueq(O).

Structure description top

Interest in the title compound, bis(7-chloroquinolin-4-yl)sulfide, crystallized as a dihydrate, rests with the biological activity of related quinoline derivatives, in particular against chloroquine-resistant malaria (Natarajan et al., 2008).

In (I), Fig. 1, the dihedral angle between the two quinolinyl residues [r.m.s. deviation for the 10 atoms of the N1- and N2-systems = 0.018 and 0.011 Å, respectively] of 72.36 (4)° indicates an almost orthogonal relationship.

The water molecules play a pivotal role in stabilizing the crystal structure, forming hydrogen bonds to each other and to the quinolinyl-N atoms, Table 1. The water···water interactions each to eight-membered {···OH}4 synthons with each pendent water-H atom hydrogen bonded to a quinolinyl-N atom to stabilize a three-dimensional architecture, Fig. 2.

For background to the significant biological activities exhibited by quinoline derivatives, see: Natarajan et al. (2008). For an earlier synthesis, see: Surrey (1948).

Computing details top

Data collection: CrystalClear-SM Expert (Rigaku, 2011); cell refinement: CrystalClear-SM Expert (Rigaku, 2011); data reduction: CrystalClear-SM Expert (Rigaku, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view in projection down the a of the unit-cell contents of (I). The O—H···O and O—H···N hydrogen bonds are shown as orange and blue dashed lines, respectively.
7-Chloro-4-[(7-chloroquinolin-4-yl)sulfanyl]quinoline dihydrate top
Crystal data top
C18H10Cl2N2S·2H2OF(000) = 808
Mr = 393.27Dx = 1.514 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 30445 reflections
a = 7.8228 (2) Åθ = 3.2–27.5°
b = 11.5596 (3) ŵ = 0.51 mm1
c = 19.2421 (13) ÅT = 120 K
β = 97.384 (7)°Chip, colourless
V = 1725.60 (13) Å30.07 × 0.07 × 0.03 mm
Z = 4
Data collection top
Rigaku Saturn724+
diffractometer
3943 independent reflections
Radiation source: Rotating Anode3512 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.029
Detector resolution: 28.5714 pixels mm-1θmax = 27.5°, θmin = 3.2°
profile data from ω–scansh = 1010
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
k = 1515
Tmin = 0.930, Tmax = 1.000l = 2424
36518 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0467P)2 + 0.5608P]
where P = (Fo2 + 2Fc2)/3
3943 reflections(Δ/σ)max = 0.002
238 parametersΔρmax = 0.46 e Å3
6 restraintsΔρmin = 0.19 e Å3
Crystal data top
C18H10Cl2N2S·2H2OV = 1725.60 (13) Å3
Mr = 393.27Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8228 (2) ŵ = 0.51 mm1
b = 11.5596 (3) ÅT = 120 K
c = 19.2421 (13) Å0.07 × 0.07 × 0.03 mm
β = 97.384 (7)°
Data collection top
Rigaku Saturn724+
diffractometer
3943 independent reflections
Absorption correction: multi-scan
(CrystalClear-SM Expert; Rigaku, 2011)
3512 reflections with I > 2σ(I)
Tmin = 0.930, Tmax = 1.000Rint = 0.029
36518 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0276 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.46 e Å3
3943 reflectionsΔρmin = 0.19 e Å3
238 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.85633 (5)1.32103 (3)0.808816 (19)0.03066 (10)
Cl20.32119 (4)0.87710 (3)1.034518 (16)0.02406 (9)
S10.06139 (4)1.02020 (3)0.737790 (16)0.01827 (9)
N10.52489 (13)1.07717 (9)0.61826 (5)0.0175 (2)
N20.23604 (14)0.80256 (9)0.93354 (5)0.0177 (2)
C10.39198 (17)1.01334 (11)0.59386 (7)0.0189 (2)
H10.39060.98050.54850.023*
C20.25041 (16)0.99018 (11)0.63076 (7)0.0185 (2)
H20.15840.94220.61080.022*
C30.24849 (15)1.03816 (11)0.69563 (6)0.0162 (2)
C40.38920 (15)1.10900 (10)0.72461 (6)0.0153 (2)
C50.40017 (16)1.16405 (11)0.79070 (6)0.0182 (2)
H50.30771.15630.81790.022*
C60.54164 (17)1.22826 (11)0.81616 (7)0.0202 (3)
H60.54841.26400.86090.024*
C70.67699 (16)1.24043 (11)0.77498 (7)0.0200 (3)
C80.67128 (16)1.19187 (11)0.71010 (7)0.0185 (2)
H80.76341.20310.68310.022*
C90.52619 (16)1.12451 (10)0.68348 (6)0.0156 (2)
C100.13671 (15)0.93878 (10)0.81318 (6)0.0157 (2)
C110.29263 (16)0.88236 (11)0.82280 (6)0.0175 (2)
H110.37000.88800.78870.021*
C120.33593 (16)0.81603 (11)0.88393 (7)0.0180 (2)
H120.44480.77840.88980.022*
C130.07979 (15)0.85759 (10)0.92474 (6)0.0158 (2)
C140.02935 (16)0.84226 (11)0.97723 (6)0.0181 (2)
H140.00630.79511.01690.022*
C150.18652 (16)0.89577 (11)0.97044 (6)0.0186 (2)
C160.24385 (16)0.96705 (11)0.91269 (7)0.0197 (3)
H160.35301.00410.90950.024*
C170.14015 (16)0.98214 (11)0.86128 (7)0.0187 (2)
H170.17851.02970.82210.022*
C180.02362 (15)0.92796 (10)0.86552 (6)0.0158 (2)
O1W0.84280 (13)1.08318 (9)0.56043 (6)0.0273 (2)
H1W0.7463 (16)1.0890 (16)0.5755 (10)0.041*
H2W0.862 (2)1.0129 (9)0.5534 (10)0.041*
O2W0.41907 (12)0.64316 (8)1.02803 (5)0.02027 (19)
H3W0.3515 (19)0.6916 (13)1.0055 (8)0.030*
H4W0.5009 (17)0.6346 (15)1.0038 (8)0.030*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.02726 (18)0.02886 (19)0.0343 (2)0.01172 (13)0.00194 (14)0.00641 (14)
Cl20.02222 (16)0.03008 (18)0.02149 (16)0.00523 (12)0.00896 (12)0.00083 (12)
S10.01414 (15)0.02233 (16)0.01838 (16)0.00074 (11)0.00224 (11)0.00574 (11)
N10.0181 (5)0.0184 (5)0.0162 (5)0.0031 (4)0.0028 (4)0.0020 (4)
N20.0176 (5)0.0164 (5)0.0184 (5)0.0002 (4)0.0002 (4)0.0014 (4)
C10.0206 (6)0.0213 (6)0.0146 (5)0.0025 (5)0.0017 (4)0.0001 (5)
C20.0175 (6)0.0192 (6)0.0179 (6)0.0017 (5)0.0014 (5)0.0005 (5)
C30.0156 (5)0.0166 (6)0.0166 (6)0.0013 (4)0.0024 (4)0.0042 (4)
C40.0164 (5)0.0134 (5)0.0159 (5)0.0015 (4)0.0017 (4)0.0028 (4)
C50.0215 (6)0.0171 (6)0.0163 (6)0.0009 (5)0.0034 (5)0.0012 (5)
C60.0262 (6)0.0163 (6)0.0176 (6)0.0006 (5)0.0008 (5)0.0004 (5)
C70.0189 (6)0.0151 (6)0.0244 (6)0.0022 (5)0.0028 (5)0.0009 (5)
C80.0172 (6)0.0165 (6)0.0219 (6)0.0005 (5)0.0026 (5)0.0038 (5)
C90.0171 (5)0.0141 (5)0.0154 (5)0.0025 (4)0.0014 (4)0.0029 (4)
C100.0168 (5)0.0136 (5)0.0163 (5)0.0020 (4)0.0002 (4)0.0003 (4)
C110.0162 (6)0.0187 (6)0.0180 (6)0.0006 (5)0.0033 (4)0.0000 (5)
C120.0157 (6)0.0169 (6)0.0209 (6)0.0009 (4)0.0007 (4)0.0002 (5)
C130.0165 (6)0.0139 (5)0.0166 (6)0.0027 (4)0.0007 (4)0.0018 (4)
C140.0210 (6)0.0163 (6)0.0165 (6)0.0040 (5)0.0011 (5)0.0001 (4)
C150.0195 (6)0.0196 (6)0.0177 (6)0.0060 (5)0.0056 (5)0.0033 (5)
C160.0165 (6)0.0198 (6)0.0228 (6)0.0000 (5)0.0027 (5)0.0020 (5)
C170.0177 (6)0.0180 (6)0.0201 (6)0.0003 (5)0.0019 (5)0.0017 (5)
C180.0159 (5)0.0146 (6)0.0166 (6)0.0021 (4)0.0012 (4)0.0016 (4)
O1W0.0249 (5)0.0254 (5)0.0344 (6)0.0013 (4)0.0139 (4)0.0043 (4)
O2W0.0209 (5)0.0223 (5)0.0178 (4)0.0023 (4)0.0029 (3)0.0030 (4)
Geometric parameters (Å, º) top
Cl1—C71.7394 (13)C8—C91.4169 (17)
Cl2—C151.7351 (12)C8—H80.9500
S1—C101.7657 (12)C10—C111.3745 (17)
S1—C31.7745 (13)C10—C181.4289 (17)
N1—C11.3116 (17)C11—C121.4084 (17)
N1—C91.3680 (16)C11—H110.9500
N2—C121.3183 (16)C12—H120.9500
N2—C131.3690 (16)C13—C141.4150 (17)
C1—C21.4158 (18)C13—C181.4228 (17)
C1—H10.9500C14—C151.3675 (18)
C2—C31.3677 (18)C14—H140.9500
C2—H20.9500C15—C161.4097 (18)
C3—C41.4267 (17)C16—C171.3687 (18)
C4—C51.4148 (17)C16—H160.9500
C4—C91.4229 (17)C17—C181.4189 (17)
C5—C61.3697 (18)C17—H170.9500
C5—H50.9500O1W—H1W0.846 (9)
C6—C71.4087 (19)O1W—H2W0.841 (9)
C6—H60.9500O2W—H3W0.850 (9)
C7—C81.3643 (19)O2W—H4W0.844 (9)
C10—S1—C3103.31 (6)C11—C10—C18118.85 (11)
C1—N1—C9117.74 (11)C11—C10—S1124.08 (10)
C12—N2—C13117.29 (10)C18—C10—S1117.02 (9)
N1—C1—C2124.20 (12)C10—C11—C12119.00 (11)
N1—C1—H1117.9C10—C11—H11120.5
C2—C1—H1117.9C12—C11—H11120.5
C3—C2—C1118.82 (12)N2—C12—C11124.59 (11)
C3—C2—H2120.6N2—C12—H12117.7
C1—C2—H2120.6C11—C12—H12117.7
C2—C3—C4119.41 (11)N2—C13—C14117.68 (11)
C2—C3—S1118.44 (10)N2—C13—C18122.93 (11)
C4—C3—S1121.92 (9)C14—C13—C18119.39 (11)
C5—C4—C9118.70 (11)C15—C14—C13119.52 (11)
C5—C4—C3124.34 (11)C15—C14—H14120.2
C9—C4—C3116.96 (11)C13—C14—H14120.2
C6—C5—C4121.20 (12)C14—C15—C16122.06 (11)
C6—C5—H5119.4C14—C15—Cl2119.77 (10)
C4—C5—H5119.4C16—C15—Cl2118.18 (10)
C5—C6—C7118.95 (12)C17—C16—C15119.09 (12)
C5—C6—H6120.5C17—C16—H16120.5
C7—C6—H6120.5C15—C16—H16120.5
C8—C7—C6122.35 (12)C16—C17—C18121.12 (12)
C8—C7—Cl1119.53 (10)C16—C17—H17119.4
C6—C7—Cl1118.12 (10)C18—C17—H17119.4
C7—C8—C9119.17 (11)C17—C18—C13118.82 (11)
C7—C8—H8120.4C17—C18—C10123.85 (11)
C9—C8—H8120.4C13—C18—C10117.33 (11)
N1—C9—C8117.56 (11)H1W—O1W—H2W108.5 (17)
N1—C9—C4122.86 (11)H3W—O2W—H4W105.2 (15)
C8—C9—C4119.59 (11)
C9—N1—C1—C20.18 (19)C3—S1—C10—C1114.13 (12)
N1—C1—C2—C31.1 (2)C3—S1—C10—C18168.56 (9)
C1—C2—C3—C40.61 (18)C18—C10—C11—C120.14 (18)
C1—C2—C3—S1174.00 (9)S1—C10—C11—C12177.40 (9)
C10—S1—C3—C2116.54 (10)C13—N2—C12—C110.28 (18)
C10—S1—C3—C468.99 (11)C10—C11—C12—N20.63 (19)
C2—C3—C4—C5179.25 (12)C12—N2—C13—C14179.10 (11)
S1—C3—C4—C54.83 (17)C12—N2—C13—C180.54 (17)
C2—C3—C4—C90.62 (17)N2—C13—C14—C15179.97 (11)
S1—C3—C4—C9175.03 (9)C18—C13—C14—C150.37 (18)
C9—C4—C5—C62.04 (18)C13—C14—C15—C160.46 (19)
C3—C4—C5—C6178.10 (12)C13—C14—C15—Cl2179.87 (9)
C4—C5—C6—C70.84 (19)C14—C15—C16—C170.85 (19)
C5—C6—C7—C80.96 (19)Cl2—C15—C16—C17179.47 (10)
C5—C6—C7—Cl1179.30 (10)C15—C16—C17—C180.39 (19)
C6—C7—C8—C91.46 (19)C16—C17—C18—C130.41 (18)
Cl1—C7—C8—C9178.80 (9)C16—C17—C18—C10179.01 (12)
C1—N1—C9—C8179.02 (11)N2—C13—C18—C17179.57 (11)
C1—N1—C9—C41.18 (17)C14—C13—C18—C170.80 (17)
C7—C8—C9—N1180.00 (11)N2—C13—C18—C100.97 (17)
C7—C8—C9—C40.20 (18)C14—C13—C18—C10178.66 (11)
C5—C4—C9—N1178.29 (11)C11—C10—C18—C17179.98 (12)
C3—C4—C9—N11.58 (17)S1—C10—C18—C172.57 (16)
C5—C4—C9—C81.50 (17)C11—C10—C18—C130.59 (17)
C3—C4—C9—C8178.63 (11)S1—C10—C18—C13176.86 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10.85 (1)2.02 (1)2.8530 (15)171 (2)
O1W—H2W···O2Wi0.84 (1)1.94 (1)2.7723 (14)173 (2)
O2W—H3W···N20.85 (2)2.01 (2)2.8429 (14)165 (1)
O2W—H4W···O1Wii0.85 (1)1.94 (2)2.7683 (14)166 (2)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+3/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC18H10Cl2N2S·2H2O
Mr393.27
Crystal system, space groupMonoclinic, P21/n
Temperature (K)120
a, b, c (Å)7.8228 (2), 11.5596 (3), 19.2421 (13)
β (°) 97.384 (7)
V3)1725.60 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.51
Crystal size (mm)0.07 × 0.07 × 0.03
Data collection
DiffractometerRigaku Saturn724+
Absorption correctionMulti-scan
(CrystalClear-SM Expert; Rigaku, 2011)
Tmin, Tmax0.930, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
36518, 3943, 3512
Rint0.029
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.04
No. of reflections3943
No. of parameters238
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.46, 0.19

Computer programs: CrystalClear-SM Expert (Rigaku, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W···N10.845 (14)2.015 (14)2.8530 (15)170.7 (17)
O1W—H2W···O2Wi0.840 (11)1.936 (12)2.7723 (14)173.4 (17)
O2W—H3W···N20.850 (15)2.014 (15)2.8429 (14)164.8 (14)
O2W—H4W···O1Wii0.845 (14)1.940 (15)2.7683 (14)166.3 (16)
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+3/2, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

Acknowledgements

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil). Support from the Ministry of Higher Education, Malaysia, High-Impact Research scheme (UM.C/HIR/MOHE/SC/12) is gratefully acknowledged.

References

First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationNatarajan, J. K., Alumasa, J., Yearick, K., Ekoue-Kovi, K. A., Casabianca, L. B., de Dios, A. C., Wolf, C. & Roepe, P. D. (2008). J. Med. Chem. 51, 3466—3479.  Web of Science CrossRef Google Scholar
First citationRigaku (2011). CrystalClear-SM Expert. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSurrey, A. R. (1948). J. Am. Chem. Soc. 70, 2190–2193.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds