organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1099-o1100

N,N′-Di­ethyl-N,N′-di­phenyl­pyridine-2,6-dicarboxamide

aInstitute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo sq. 2, 166 10 Prague 6, Czech Republic, bFaculty of Environmental Sciences, Czech University of Life Sciences, Prague, Kamýcká 129, 165 21 Prague 6, Czech Republic, and cKhlopin Radium Institute, Research and Production Association, 2nd Murinskiy Prospect b. 28, 194021 St Petersburg, Russian Federation
*Correspondence e-mail: klepetab@centrum.cz

(Received 8 February 2012; accepted 29 February 2012; online 17 March 2012)

The asymmetric unit of the title compound, C23H23N3O2, contains two mol­ecules in both of which, one amide N atom is in a syn position with respect to the pyridine N atom, while the other amide N atom is in an anti position (the syn--anti conformation). There are minor conformational differences between the two mol­ecules, as reflected in the Npyridine—C—C—Namide torsion angles of −44.9 (3) and 136.0 (2)° for one mol­ecule and 43.5 (3) and −131.1 (2)° for the other mol­ecule. However, the two mol­ecules show significant differences in the orientation of an ethyl group, with corresponding C—C—N—C torsion angles of 86.6 (3)° for one mol­ecule and 79.6 (3)° for the other mol­ecule. In the crystal, mol­ecules are linked by weak C—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular network.

Related literature

For the extractive properties of some pyridine-dicarboxamides, see: Alyapyshev et al. (2004[Alyapyshev, M. Y., Babain, V. A. & Smirnov, I. V. (2004). Radiochemistry, 46, 270-271.]); Du Preez et al. (1987[Du Preez, J. G. H., van Brecht, J. A. M. & Warden, I. (1987). Inorg. Chim. Acta, 131, 295-266.]). For synthetic details, see: Shimada et al. (2004[Shimada, A., Yaita, T., Narita, H., Tachimori, S. & Okuno, K. (2004). Solvent Extr. Ion Exch. 22, 147-161.]); Nikitskaya et al. (1958[Nikitskaya, E. S., Usovskaya, V. S. & Rubtzov, M. V. (1958). Zh. Obshch. Khim. 28, 161-166.]). For related structures, see: Malone et al. (1997[Malone, J. F., Murray, C. M. & Dolan, G. M. (1997). Chem. Mater. 9, 2983-2989.]); Fujiwara et al. (2008[Fujiwara, A., Nakano, Y., Yaita, T. & Okuno, K. (2008). J. Alloys Compd, 456, 429-435.]).

[Scheme 1]

Experimental

Crystal data
  • C23H23N3O2

  • Mr = 373.45

  • Triclinic, [P \overline 1]

  • a = 12.1879 (17) Å

  • b = 12.2371 (15) Å

  • c = 13.6798 (17) Å

  • α = 83.971 (10)°

  • β = 86.919 (11)°

  • γ = 87.744 (10)°

  • V = 2024.9 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.63 mm−1

  • T = 170 K

  • 0.37 × 0.19 × 0.15 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]) Tmin = 0.496, Tmax = 1.000

  • 51216 measured reflections

  • 8553 independent reflections

  • 4586 reflections with I > 2σ(I)

  • Rint = 0.111

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.062

  • S = 1.14

  • 4586 reflections

  • 505 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C34—H341⋯O1i 0.94 2.42 3.319 (4) 159
C42—H421⋯O2ii 0.94 2.43 3.271 (4) 150
C7—H71⋯O2ii 0.99 2.40 3.208 (4) 138
C43—H431⋯O3iii 0.95 2.66 3.443 (4) 140
C30—H301⋯O4iv 0.99 2.36 3.237 (4) 147
C23—H231⋯O4v 0.94 2.60 3.125 (3) 116
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x+1, y, z; (iv) -x, -y+2, -z+1; (v) -x, -y+1, -z+2.

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003[Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.]); molecular graphics: Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: CRYSTALS, PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

Pyridine-dicarboxamides have been studied recently for significant extractive properties (Alyapyshev et al., 2004). The factors which lead to stabilization of low symmetry five-coordinate complexes, when using neutral donor ligands, have been reported (Du Preez et al., 1987).

The title compound crystallizes with two independent molecules (1 and 2) (Figs. 1 & 2) in an asymmetric unit. The molecules consist of a pyridine ring between two amide groups in the ortho positions of this ring and ethyl and phenyl groups on the amide nitrogen. Both molecules in the asymmetric unit adopt a syn-anti conformation, in contrast to the syn-syn conformation found in N,N'-diphenylpyridine-2,6-dicarboxamide (Malone et al., 1997), but analogous to that observed in N,N'-dimethyl-N,N'-diphenylpyridine-2,6-dicarboxamide (Fujiwara et al., 2008).

There are minor conformational differences in the two molecules as reflected in the torsion angles NpyridineCC—Namide being -44.9 (3) and 136.0 (2)° for molecule 1 and 43.5 (3) and -131.1 (2)° for molecule 2 and the torsion angles NpyridineCC—Oamide being 134.1 (3) and -46.8 (3)° for molecule 1 and -132.6 (3) and 51.2 (3)° for molecule 2. However, the two molecules show significant differences in the orientation of an ethyl group (the corresponding torsion angles are C17—C16—N3—C15 86.6 (3)° for molecule 1 and C40—C39—N6—C38 79.6 (3)° for molecule 2).

The molecules are connected via weak intermolecular C—H···O interactions between the amide oxygen atoms and ethyl and phenyl groups, forming a three-dimensional network (Fig. 3).

Related literature top

For the extractive properties of some pyridine-dicarboxamides, see: Alyapyshev et al. (2004); Du Preez et al. (1987). For synthetic details, see: Shimada et al. (2004); Nikitskaya et al. (1958). For related structures, see: Malone et al. (1997); Fujiwara et al. (2008).

Experimental top

The title compound was synthesized as described in Shimada et al., (2004), and Nikitskaya et al., (1958). Colourless crystals were prepared by slow evaporation from acetonitrile.

Refinement top

The hydrogen atoms were located in in the Δρ map, but were repositioned geometrically. They were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (Cmethyl—H = 0.96, Cmethylene—H = 0.97, Caryl—H = 0.93 Å) and fixed at those positions in the final cycles of refinements. The Uiso(H) were allowed in the range 1.2–1.5 times Ueq of the parent atom.

Structure description top

Pyridine-dicarboxamides have been studied recently for significant extractive properties (Alyapyshev et al., 2004). The factors which lead to stabilization of low symmetry five-coordinate complexes, when using neutral donor ligands, have been reported (Du Preez et al., 1987).

The title compound crystallizes with two independent molecules (1 and 2) (Figs. 1 & 2) in an asymmetric unit. The molecules consist of a pyridine ring between two amide groups in the ortho positions of this ring and ethyl and phenyl groups on the amide nitrogen. Both molecules in the asymmetric unit adopt a syn-anti conformation, in contrast to the syn-syn conformation found in N,N'-diphenylpyridine-2,6-dicarboxamide (Malone et al., 1997), but analogous to that observed in N,N'-dimethyl-N,N'-diphenylpyridine-2,6-dicarboxamide (Fujiwara et al., 2008).

There are minor conformational differences in the two molecules as reflected in the torsion angles NpyridineCC—Namide being -44.9 (3) and 136.0 (2)° for molecule 1 and 43.5 (3) and -131.1 (2)° for molecule 2 and the torsion angles NpyridineCC—Oamide being 134.1 (3) and -46.8 (3)° for molecule 1 and -132.6 (3) and 51.2 (3)° for molecule 2. However, the two molecules show significant differences in the orientation of an ethyl group (the corresponding torsion angles are C17—C16—N3—C15 86.6 (3)° for molecule 1 and C40—C39—N6—C38 79.6 (3)° for molecule 2).

The molecules are connected via weak intermolecular C—H···O interactions between the amide oxygen atoms and ethyl and phenyl groups, forming a three-dimensional network (Fig. 3).

For the extractive properties of some pyridine-dicarboxamides, see: Alyapyshev et al. (2004); Du Preez et al. (1987). For synthetic details, see: Shimada et al. (2004); Nikitskaya et al. (1958). For related structures, see: Malone et al. (1997); Fujiwara et al. (2008).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecule 1 of the title compound viewed perpendicular to the pyridine ring plane. Displacement ellipsoids are drawn at the 50% probability level, H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. Molecule 2 of the title compound viewed perpendicular to the pyridine ring plane. Displacement ellipsoids are drawn at the 50% probability level, H atoms are shown as spheres of arbitrary radius.
[Figure 3] Fig. 3. Projection along the a axis with highlighted hydrogen bonds between the molecules (H atoms not involved in hydrogen bonds were omitted for clarity).
N,N'-Diethyl-N,N'-diphenylpyridine-2,6-dicarboxamide top
Crystal data top
C23H23N3O2Z = 4
Mr = 373.45F(000) = 792
Triclinic, P1Dx = 1.225 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54184 Å
a = 12.1879 (17) ÅCell parameters from 6449 reflections
b = 12.2371 (15) Åθ = 4.6–85.1°
c = 13.6798 (17) ŵ = 0.63 mm1
α = 83.971 (10)°T = 170 K
β = 86.919 (11)°Prism, colourless
γ = 87.744 (10)°0.37 × 0.19 × 0.15 mm
V = 2024.9 (5) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer
4586 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.111
φ & ω scansθmax = 85.7°, θmin = 4.6°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1514
Tmin = 0.496, Tmax = 1.000k = 1515
51216 measured reflectionsl = 1717
8553 independent reflections
Refinement top
Refinement on FPrimary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.062 Method, part 1, Chebychev polynomial, [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)]
where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 15.1 3.75 12.4 3.85
S = 1.14(Δ/σ)max = 0.003
4586 reflectionsΔρmax = 0.24 e Å3
505 parametersΔρmin = 0.25 e Å3
0 restraints
Crystal data top
C23H23N3O2γ = 87.744 (10)°
Mr = 373.45V = 2024.9 (5) Å3
Triclinic, P1Z = 4
a = 12.1879 (17) ÅCu Kα radiation
b = 12.2371 (15) ŵ = 0.63 mm1
c = 13.6798 (17) ÅT = 170 K
α = 83.971 (10)°0.37 × 0.19 × 0.15 mm
β = 86.919 (11)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer
8553 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
4586 reflections with I > 2σ(I)
Tmin = 0.496, Tmax = 1.000Rint = 0.111
51216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.062H-atom parameters constrained
S = 1.14Δρmax = 0.24 e Å3
4586 reflectionsΔρmin = 0.25 e Å3
505 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.4330 (2)0.2215 (2)0.95742 (19)0.0386
C20.4133 (2)0.1145 (2)0.9394 (2)0.0470
C30.3268 (2)0.0603 (2)0.9907 (2)0.0466
C40.2643 (2)0.1148 (2)1.0583 (2)0.0419
C50.2913 (2)0.21987 (19)1.07487 (18)0.0360
C60.5312 (2)0.2762 (2)0.9039 (2)0.0419
C70.6225 (2)0.4370 (2)0.8246 (2)0.0498
C80.6299 (3)0.4396 (3)0.7145 (2)0.0742
C90.4200 (2)0.4453 (2)0.86369 (18)0.0389
C100.4104 (2)0.5463 (2)0.9016 (2)0.0498
C110.3109 (3)0.6049 (2)0.8987 (2)0.0580
C120.2219 (3)0.5641 (3)0.8578 (2)0.0575
C130.2333 (2)0.4658 (2)0.8175 (2)0.0526
C140.3322 (2)0.4063 (2)0.81921 (19)0.0425
C150.2394 (2)0.2773 (2)1.15845 (19)0.0375
C160.0788 (2)0.3366 (3)1.2565 (2)0.0514
C170.0639 (3)0.4588 (3)1.2328 (3)0.0633
C180.0545 (2)0.2535 (2)1.10042 (19)0.0418
C190.0553 (2)0.3071 (2)1.0066 (2)0.0507
C200.0191 (3)0.2776 (3)0.9415 (2)0.0609
C210.0940 (3)0.1977 (3)0.9701 (2)0.0662
C220.0940 (3)0.1460 (3)1.0641 (3)0.0677
C230.0199 (2)0.1736 (3)1.1292 (2)0.0544
O10.61698 (16)0.22033 (17)0.89549 (17)0.0626
O20.29906 (15)0.31442 (15)1.21633 (13)0.0468
N30.12827 (17)0.28338 (18)1.17164 (15)0.0424
N10.37461 (16)0.27412 (16)1.02507 (15)0.0357
N20.52272 (17)0.38349 (17)0.86884 (16)0.0418
C240.0880 (2)0.7024 (2)0.49936 (19)0.0397
C250.1251 (2)0.5935 (2)0.4997 (2)0.0451
C260.2181 (2)0.5602 (2)0.5492 (2)0.0496
C270.2706 (2)0.6350 (2)0.5969 (2)0.0444
C280.2275 (2)0.7416 (2)0.59462 (18)0.0380
C290.0175 (2)0.7392 (2)0.4509 (2)0.0436
C300.1313 (2)0.8812 (2)0.3630 (2)0.0513
C310.1468 (3)0.8498 (3)0.2607 (3)0.0708
C320.0714 (2)0.9001 (2)0.36448 (19)0.0387
C330.1532 (2)0.8537 (2)0.30747 (19)0.0442
C340.2459 (2)0.9125 (3)0.2747 (2)0.0564
C350.2549 (3)1.0171 (3)0.2993 (2)0.0597
C360.1719 (3)1.0653 (2)0.3539 (2)0.0550
C370.0792 (2)1.0082 (2)0.3859 (2)0.0463
C380.2727 (2)0.8246 (2)0.65339 (18)0.0401
C390.4275 (2)0.9181 (2)0.7089 (2)0.0497
C400.4483 (3)0.8608 (3)0.8096 (2)0.0637
C410.4545 (2)0.8057 (2)0.5676 (2)0.0425
C420.5530 (2)0.7520 (2)0.5924 (2)0.0500
C430.6267 (3)0.7185 (3)0.5201 (2)0.0598
C440.6015 (3)0.7378 (3)0.4228 (2)0.0631
C450.5031 (3)0.7917 (3)0.3978 (2)0.0583
C460.4301 (2)0.8273 (2)0.4697 (2)0.0489
O30.09683 (16)0.67804 (17)0.46445 (18)0.0632
O40.21148 (15)0.87033 (16)0.71207 (14)0.0519
N40.13673 (16)0.77617 (16)0.54716 (16)0.0382
N50.02370 (16)0.83951 (17)0.39990 (16)0.0415
N60.38214 (17)0.84479 (18)0.64277 (16)0.0423
H2310.02100.13861.19360.0654*
H2210.14620.09161.08450.0811*
H2110.14450.17900.92600.0788*
H2010.01730.31190.87680.0734*
H1910.10600.36300.98690.0616*
H1610.12590.32181.31290.0612*
H1620.00680.30571.27410.0615*
H1730.02440.49131.28780.0944*
H1720.13440.49301.22070.0951*
H1710.02130.47361.17450.0948*
H1410.34080.33840.79090.0512*
H1310.17340.43730.78700.0622*
H1210.15430.60340.85580.0680*
H1110.30230.67230.92630.0698*
H1010.47090.57460.93100.0594*
H710.61890.51370.84120.0594*
H720.68630.39580.85270.0604*
H830.69340.47960.68650.1108*
H820.56370.47690.68860.1109*
H810.63390.36580.69520.1106*
H210.45760.08010.89220.0559*
H310.30930.01230.98050.0562*
H410.20540.07991.09500.0511*
H4210.56890.73810.65880.0599*
H4310.69590.68490.53620.0718*
H4410.65130.71400.37320.0760*
H4510.48560.80420.33100.0698*
H4610.36460.86540.45250.0592*
H3910.37800.98180.71260.0601*
H3920.49530.94720.67710.0601*
H4030.48740.91060.84750.0956*
H4020.37750.84180.84410.0962*
H4010.49280.79310.80250.0955*
H2510.08750.54340.46740.0537*
H2610.24560.48640.55010.0607*
H2710.33320.61370.63010.0538*
H3310.14650.78250.29210.0536*
H3410.30090.87930.23510.0679*
H3510.31761.05700.27710.0718*
H3610.17791.13720.36890.0659*
H3710.02161.04200.42320.0553*
H3010.13520.96250.36120.0615*
H3020.18980.85240.40870.0618*
H3110.21840.87680.23920.1055*
H3130.09010.88290.21560.1060*
H3120.14100.76920.26070.1061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0370 (13)0.0365 (13)0.0422 (14)0.0022 (11)0.0021 (11)0.0034 (11)
C20.0490 (16)0.0411 (15)0.0518 (16)0.0016 (12)0.0018 (13)0.0109 (12)
C30.0500 (16)0.0362 (14)0.0552 (17)0.0078 (12)0.0048 (14)0.0080 (12)
C40.0372 (14)0.0418 (14)0.0463 (15)0.0073 (11)0.0030 (12)0.0002 (12)
C50.0339 (13)0.0349 (13)0.0384 (13)0.0022 (10)0.0046 (11)0.0014 (11)
C60.0373 (14)0.0418 (15)0.0480 (15)0.0032 (12)0.0014 (12)0.0120 (12)
C70.0425 (15)0.0523 (16)0.0553 (17)0.0139 (13)0.0059 (13)0.0093 (13)
C80.071 (2)0.090 (3)0.062 (2)0.031 (2)0.0159 (18)0.0085 (18)
C90.0411 (14)0.0384 (14)0.0365 (13)0.0055 (11)0.0037 (11)0.0027 (11)
C100.0523 (17)0.0406 (15)0.0574 (17)0.0071 (13)0.0044 (14)0.0057 (13)
C110.068 (2)0.0381 (15)0.067 (2)0.0043 (14)0.0023 (16)0.0062 (14)
C120.0490 (17)0.0528 (18)0.067 (2)0.0027 (14)0.0016 (15)0.0064 (15)
C130.0479 (17)0.0573 (18)0.0521 (17)0.0078 (14)0.0087 (14)0.0013 (14)
C140.0462 (15)0.0427 (14)0.0388 (14)0.0084 (12)0.0022 (12)0.0036 (11)
C150.0372 (14)0.0351 (13)0.0397 (14)0.0040 (11)0.0031 (12)0.0002 (11)
C160.0459 (16)0.0668 (19)0.0413 (15)0.0031 (14)0.0078 (13)0.0092 (14)
C170.0520 (18)0.066 (2)0.075 (2)0.0078 (16)0.0089 (16)0.0252 (17)
C180.0321 (13)0.0548 (16)0.0390 (14)0.0035 (12)0.0009 (11)0.0063 (12)
C190.0468 (16)0.0563 (17)0.0468 (16)0.0020 (13)0.0008 (13)0.0041 (13)
C200.0582 (19)0.079 (2)0.0453 (17)0.0049 (17)0.0091 (15)0.0032 (15)
C210.0454 (17)0.099 (3)0.058 (2)0.0085 (18)0.0122 (15)0.0158 (19)
C220.0478 (18)0.095 (3)0.062 (2)0.0235 (18)0.0053 (16)0.0051 (18)
C230.0424 (15)0.075 (2)0.0447 (16)0.0145 (15)0.0021 (13)0.0042 (14)
O10.0434 (11)0.0531 (12)0.0899 (16)0.0060 (10)0.0121 (11)0.0106 (11)
O20.0454 (11)0.0521 (11)0.0443 (10)0.0057 (9)0.0053 (9)0.0085 (9)
N30.0366 (12)0.0524 (13)0.0379 (12)0.0026 (10)0.0004 (9)0.0042 (10)
N10.0316 (11)0.0365 (11)0.0387 (11)0.0043 (9)0.0029 (9)0.0009 (9)
N20.0364 (12)0.0399 (12)0.0492 (13)0.0060 (9)0.0038 (10)0.0059 (10)
C240.0377 (14)0.0335 (13)0.0462 (15)0.0051 (11)0.0063 (12)0.0016 (11)
C250.0454 (15)0.0366 (14)0.0525 (16)0.0032 (12)0.0006 (13)0.0021 (12)
C260.0493 (17)0.0334 (14)0.0635 (18)0.0034 (12)0.0046 (14)0.0016 (13)
C270.0401 (14)0.0397 (14)0.0512 (16)0.0030 (12)0.0020 (12)0.0038 (12)
C280.0304 (13)0.0411 (14)0.0400 (14)0.0019 (11)0.0050 (11)0.0027 (11)
C290.0354 (14)0.0361 (14)0.0598 (17)0.0027 (11)0.0029 (13)0.0066 (12)
C300.0409 (15)0.0528 (17)0.0599 (18)0.0059 (13)0.0098 (14)0.0035 (14)
C310.057 (2)0.090 (3)0.068 (2)0.0091 (18)0.0196 (17)0.0150 (19)
C320.0352 (14)0.0394 (14)0.0409 (14)0.0020 (11)0.0024 (11)0.0016 (11)
C330.0418 (15)0.0526 (16)0.0379 (14)0.0072 (12)0.0043 (12)0.0059 (12)
C340.0431 (16)0.077 (2)0.0449 (16)0.0075 (15)0.0045 (13)0.0064 (15)
C350.0513 (18)0.070 (2)0.0541 (18)0.0158 (16)0.0105 (15)0.0211 (16)
C360.068 (2)0.0455 (16)0.0504 (17)0.0169 (15)0.0076 (15)0.0072 (13)
C370.0547 (17)0.0388 (14)0.0441 (15)0.0022 (12)0.0050 (13)0.0009 (12)
C380.0399 (15)0.0416 (14)0.0378 (14)0.0021 (12)0.0011 (12)0.0016 (11)
C390.0452 (16)0.0491 (16)0.0571 (17)0.0001 (13)0.0043 (13)0.0162 (13)
C400.076 (2)0.0602 (19)0.0578 (19)0.0018 (17)0.0152 (17)0.0145 (15)
C410.0374 (14)0.0478 (15)0.0421 (15)0.0052 (12)0.0010 (12)0.0033 (12)
C420.0441 (15)0.0633 (18)0.0442 (15)0.0039 (14)0.0061 (13)0.0134 (13)
C430.0410 (16)0.077 (2)0.066 (2)0.0029 (15)0.0003 (14)0.0306 (17)
C440.0497 (18)0.083 (2)0.059 (2)0.0124 (17)0.0142 (15)0.0242 (17)
C450.061 (2)0.076 (2)0.0401 (16)0.0208 (17)0.0019 (15)0.0080 (15)
C460.0440 (15)0.0582 (17)0.0440 (16)0.0073 (13)0.0012 (13)0.0012 (13)
O30.0422 (11)0.0507 (12)0.0963 (17)0.0131 (10)0.0086 (11)0.0009 (11)
O40.0453 (11)0.0564 (12)0.0540 (11)0.0051 (9)0.0069 (9)0.0139 (9)
N40.0321 (11)0.0354 (11)0.0456 (12)0.0013 (9)0.0040 (9)0.0003 (9)
N50.0318 (11)0.0397 (12)0.0528 (13)0.0015 (9)0.0021 (10)0.0044 (10)
N60.0360 (12)0.0512 (13)0.0410 (12)0.0003 (10)0.0020 (10)0.0108 (10)
Geometric parameters (Å, º) top
C1—C21.390 (4)C24—C251.390 (4)
C1—C61.510 (4)C24—C291.509 (4)
C1—N11.340 (3)C24—N41.343 (3)
C2—C31.387 (4)C25—C261.377 (4)
C2—H210.942C25—H2510.939
C3—C41.376 (4)C26—C271.375 (4)
C3—H310.948C26—H2610.950
C4—C51.385 (4)C27—C281.385 (4)
C4—H410.944C27—H2710.923
C5—C151.502 (4)C28—C381.498 (4)
C5—N11.349 (3)C28—N41.344 (3)
C6—O11.233 (3)C29—O31.240 (3)
C6—N21.352 (3)C29—N51.349 (3)
C7—C81.502 (4)C30—C311.513 (4)
C7—N21.475 (3)C30—N51.482 (3)
C7—H710.987C30—H3010.992
C7—H720.983C30—H3020.975
C8—H830.971C31—H3110.971
C8—H820.975C31—H3130.972
C8—H810.966C31—H3120.985
C9—C101.389 (4)C32—C331.375 (4)
C9—C141.384 (4)C32—C371.392 (4)
C9—N21.438 (3)C32—N51.436 (3)
C10—C111.384 (4)C33—C341.392 (4)
C10—H1010.952C33—H3310.924
C11—C121.380 (5)C34—C351.368 (5)
C11—H1110.943C34—H3410.944
C12—C131.374 (4)C35—C361.376 (5)
C12—H1210.938C35—H3510.942
C13—C141.384 (4)C36—C371.379 (4)
C13—H1310.955C36—H3610.930
C14—H1410.952C37—H3710.953
C15—O21.235 (3)C38—O41.229 (3)
C15—N31.357 (3)C38—N61.364 (3)
C16—C171.502 (4)C39—C401.507 (4)
C16—N31.480 (3)C39—N61.481 (3)
C16—H1610.983C39—H3910.970
C16—H1620.978C39—H3920.975
C17—H1730.981C40—H4030.992
C17—H1720.970C40—H4020.985
C17—H1710.972C40—H4010.982
C18—C191.379 (4)C41—C421.387 (4)
C18—C231.373 (4)C41—C461.383 (4)
C18—N31.444 (3)C41—N61.428 (3)
C19—C201.388 (4)C42—C431.383 (4)
C19—H1910.949C42—H4210.936
C20—C211.376 (5)C43—C441.376 (5)
C20—H2010.939C43—H4310.950
C21—C221.372 (5)C44—C451.388 (5)
C21—H2110.935C44—H4410.947
C22—C231.377 (4)C45—C461.384 (4)
C22—H2210.949C45—H4510.944
C23—H2310.937C46—H4610.938
C2—C1—C6117.6 (2)C25—C24—C29119.5 (2)
C2—C1—N1123.1 (2)C25—C24—N4123.2 (2)
C6—C1—N1119.1 (2)C29—C24—N4117.1 (2)
C1—C2—C3119.0 (3)C24—C25—C26118.5 (3)
C1—C2—H21120.2C24—C25—H251120.9
C3—C2—H21120.8C26—C25—H251120.6
C2—C3—C4118.3 (2)C25—C26—C27119.3 (3)
C2—C3—H31122.4C25—C26—H261120.3
C4—C3—H31119.3C27—C26—H261120.5
C3—C4—C5119.4 (2)C26—C27—C28118.8 (3)
C3—C4—H41120.5C26—C27—H271120.0
C5—C4—H41120.1C28—C27—H271121.2
C4—C5—C15122.5 (2)C27—C28—C38122.1 (2)
C4—C5—N1123.0 (2)C27—C28—N4123.1 (2)
C15—C5—N1114.1 (2)C38—C28—N4114.5 (2)
C1—C6—O1117.9 (2)C24—C29—O3118.3 (2)
C1—C6—N2119.4 (2)C24—C29—N5118.8 (2)
O1—C6—N2122.7 (2)O3—C29—N5122.8 (2)
C8—C7—N2112.2 (2)C31—C30—N5111.6 (2)
C8—C7—H71107.9C31—C30—H301108.9
N2—C7—H71107.6N5—C30—H301109.0
C8—C7—H72110.0C31—C30—H302110.6
N2—C7—H72107.5N5—C30—H302109.1
H71—C7—H72111.6H301—C30—H302107.6
C7—C8—H83110.9C30—C31—H311109.5
C7—C8—H82108.6C30—C31—H313109.2
H83—C8—H82108.5H311—C31—H313109.0
C7—C8—H81110.5C30—C31—H312110.0
H83—C8—H81109.9H311—C31—H312109.8
H82—C8—H81108.4H313—C31—H312109.2
C10—C9—C14120.0 (3)C33—C32—C37119.8 (3)
C10—C9—N2119.4 (2)C33—C32—N5120.7 (2)
C14—C9—N2120.6 (2)C37—C32—N5119.5 (2)
C9—C10—C11119.5 (3)C32—C33—C34120.3 (3)
C9—C10—H101120.5C32—C33—H331119.2
C11—C10—H101120.0C34—C33—H331120.4
C10—C11—C12120.6 (3)C33—C34—C35119.5 (3)
C10—C11—H111120.4C33—C34—H341119.0
C12—C11—H111119.0C35—C34—H341121.5
C11—C12—C13119.5 (3)C34—C35—C36120.5 (3)
C11—C12—H121120.9C34—C35—H351119.6
C13—C12—H121119.6C36—C35—H351119.9
C12—C13—C14120.8 (3)C35—C36—C37120.4 (3)
C12—C13—H131120.8C35—C36—H361120.0
C14—C13—H131118.4C37—C36—H361119.7
C13—C14—C9119.5 (3)C32—C37—C36119.4 (3)
C13—C14—H141121.2C32—C37—H371120.3
C9—C14—H141119.3C36—C37—H371120.2
C5—C15—O2119.2 (2)C28—C38—O4119.6 (2)
C5—C15—N3119.6 (2)C28—C38—N6118.8 (2)
O2—C15—N3121.1 (2)O4—C38—N6121.5 (2)
C17—C16—N3111.8 (2)C40—C39—N6112.8 (2)
C17—C16—H161109.0C40—C39—H391111.7
N3—C16—H161109.7N6—C39—H391108.6
C17—C16—H162108.6C40—C39—H392110.7
N3—C16—H162108.4N6—C39—H392107.7
H161—C16—H162109.2H391—C39—H392105.0
C16—C17—H173110.4C39—C40—H403109.2
C16—C17—H172110.8C39—C40—H402109.3
H173—C17—H172108.5H403—C40—H402109.6
C16—C17—H171109.1C39—C40—H401109.3
H173—C17—H171108.8H403—C40—H401110.3
H172—C17—H171109.2H402—C40—H401109.2
C19—C18—C23120.4 (3)C42—C41—C46119.9 (3)
C19—C18—N3120.9 (2)C42—C41—N6119.7 (2)
C23—C18—N3118.6 (2)C46—C41—N6120.3 (2)
C18—C19—C20118.8 (3)C41—C42—C43120.6 (3)
C18—C19—H191120.5C41—C42—H421119.2
C20—C19—H191120.7C43—C42—H421120.3
C19—C20—C21120.9 (3)C42—C43—C44119.7 (3)
C19—C20—H201119.2C42—C43—H431121.1
C21—C20—H201119.8C44—C43—H431119.2
C20—C21—C22119.3 (3)C43—C44—C45119.9 (3)
C20—C21—H211120.4C43—C44—H441119.9
C22—C21—H211120.4C45—C44—H441120.3
C21—C22—C23120.5 (3)C44—C45—C46120.6 (3)
C21—C22—H221119.6C44—C45—H451119.8
C23—C22—H221119.9C46—C45—H451119.6
C22—C23—C18120.0 (3)C45—C46—C41119.4 (3)
C22—C23—H231120.1C45—C46—H461120.5
C18—C23—H231119.9C41—C46—H461120.2
C16—N3—C18117.2 (2)C28—N4—C24117.1 (2)
C16—N3—C15118.9 (2)C30—N5—C32117.3 (2)
C18—N3—C15123.4 (2)C30—N5—C29118.7 (2)
C5—N1—C1117.1 (2)C32—N5—C29123.1 (2)
C7—N2—C9118.0 (2)C39—N6—C41117.7 (2)
C7—N2—C6118.2 (2)C39—N6—C38118.1 (2)
C9—N2—C6123.5 (2)C41—N6—C38124.1 (2)
C2—C1—N1—C52.0 (4)C25—C24—N4—C282.0 (4)
C6—C1—N1—C5176.5 (2)C29—C24—N4—C28176.6 (2)
N1—C1—C2—C32.5 (4)N4—C24—C25—C261.8 (4)
C6—C1—C2—C3177.1 (2)C29—C24—C25—C26176.3 (2)
N1—C1—C6—O1134.1 (3)N4—C24—C29—O3132.6 (3)
N1—C1—C6—N244.9 (3)N4—C24—C29—N543.5 (3)
C2—C1—C6—O140.8 (4)C25—C24—C29—O342.3 (4)
C2—C1—C6—N2140.3 (3)C25—C24—C29—N5141.7 (3)
C1—C2—C3—C40.5 (4)C24—C25—C26—C270.4 (4)
C2—C3—C4—C51.8 (4)C25—C26—C27—C280.7 (4)
C3—C4—C5—N12.4 (4)C26—C27—C28—N40.5 (4)
C3—C4—C5—C15169.7 (2)C26—C27—C28—C38173.4 (2)
C4—C5—N1—C10.5 (4)C27—C28—N4—C240.8 (4)
C15—C5—N1—C1172.2 (2)C38—C28—N4—C24175.2 (2)
N1—C5—C15—O246.8 (3)N4—C28—C38—O451.2 (3)
N1—C5—C15—N3136.0 (2)N4—C28—C38—N6131.1 (2)
C4—C5—C15—O2125.9 (3)C27—C28—C38—O4123.2 (3)
C4—C5—C15—N351.2 (3)C27—C28—C38—N654.5 (3)
O1—C6—N2—C74.1 (4)O3—C29—N5—C303.4 (4)
O1—C6—N2—C9169.7 (2)O3—C29—N5—C32165.3 (3)
C1—C6—N2—C7174.8 (2)C24—C29—N5—C30172.4 (2)
C1—C6—N2—C911.4 (4)C24—C29—N5—C3218.9 (4)
C8—C7—N2—C696.7 (3)C31—C30—N5—C2990.4 (3)
C8—C7—N2—C977.4 (3)C31—C30—N5—C3278.9 (3)
C10—C9—N2—C6130.0 (3)C33—C32—N5—C2953.8 (4)
C10—C9—N2—C756.2 (3)C33—C32—N5—C30115.1 (3)
C14—C9—N2—C651.7 (4)C37—C32—N5—C29128.1 (3)
C14—C9—N2—C7122.1 (3)C37—C32—N5—C3063.1 (3)
N2—C9—C10—C11178.6 (2)N5—C32—C33—C34179.0 (2)
C14—C9—C10—C113.1 (4)C37—C32—C33—C342.8 (4)
N2—C9—C14—C13178.3 (2)N5—C32—C37—C36178.4 (2)
C10—C9—C14—C133.4 (4)C33—C32—C37—C363.4 (4)
C9—C10—C11—C120.5 (4)C32—C33—C34—C350.3 (4)
C10—C11—C12—C131.6 (4)C33—C34—C35—C361.7 (4)
C11—C12—C13—C141.3 (4)C34—C35—C36—C371.0 (5)
C12—C13—C14—C91.2 (4)C35—C36—C37—C321.6 (4)
O2—C15—N3—C160.6 (4)O4—C38—N6—C394.1 (4)
O2—C15—N3—C18172.3 (2)O4—C38—N6—C41171.5 (2)
C5—C15—N3—C16177.8 (2)C28—C38—N6—C39173.7 (2)
C5—C15—N3—C1810.6 (4)C28—C38—N6—C4110.7 (4)
C17—C16—N3—C1586.6 (3)C40—C39—N6—C3879.6 (3)
C17—C16—N3—C1885.7 (3)C40—C39—N6—C41104.5 (3)
C19—C18—N3—C1560.3 (3)C42—C41—N6—C38130.0 (3)
C19—C18—N3—C16111.5 (3)C42—C41—N6—C3954.3 (3)
C23—C18—N3—C15122.4 (3)C46—C41—N6—C3854.1 (3)
C23—C18—N3—C1665.8 (3)C46—C41—N6—C39121.5 (3)
N3—C18—C19—C20178.3 (3)N6—C41—C42—C43176.7 (3)
C23—C18—C19—C201.0 (4)C46—C41—C42—C430.8 (4)
N3—C18—C23—C22177.7 (3)N6—C41—C46—C45177.9 (3)
C19—C18—C23—C220.4 (4)C42—C41—C46—C452.1 (4)
C18—C19—C20—C211.2 (5)C41—C42—C43—C440.6 (5)
C19—C20—C21—C220.7 (5)C42—C43—C44—C450.7 (5)
C20—C21—C22—C230.0 (5)C43—C44—C45—C460.6 (5)
C21—C22—C23—C180.2 (5)C44—C45—C46—C412.0 (5)
N1—C1—C2—H21178N4—C24—C25—H251178
C6—C1—C2—H214C29—C24—C25—H2513
C1—C2—C3—H31179C24—C25—C26—H261179
H21—C2—C3—C4180H251—C25—C26—C27179
H21—C2—C3—H310H251—C25—C26—H2611
C2—C3—C4—H41179C25—C26—C27—H271180
H31—C3—C4—C5179H261—C26—C27—C28179
H31—C3—C4—H411H261—C26—C27—H2710
H41—C4—C5—N1180H271—C27—C28—N4180
H41—C4—C5—C158H271—C27—C28—C386
H71—C7—N2—C6145H301—C30—N5—C29149
H71—C7—N2—C941H301—C30—N5—C3241
H72—C7—N2—C624H302—C30—N5—C2932
H72—C7—N2—C9161H302—C30—N5—C32159
N2—C7—C8—H8162N5—C30—C31—H311179
N2—C7—C8—H8257N5—C30—C31—H31258
N2—C7—C8—H83176N5—C30—C31—H31362
H71—C7—C8—H81180H301—C30—C31—H31161
H71—C7—C8—H8262H301—C30—C31—H312178
H71—C7—C8—H8358H301—C30—C31—H31359
H72—C7—C8—H8158H302—C30—C31—H31157
H72—C7—C8—H82177H302—C30—C31—H31263
H72—C7—C8—H8364H302—C30—C31—H313177
N2—C9—C10—H1010N5—C32—C33—H3310
C14—C9—C10—H101179C37—C32—C33—H331178
N2—C9—C14—H1411N5—C32—C37—H3711
C10—C9—C14—H141177C33—C32—C37—H371178
C9—C10—C11—H111178C32—C33—C34—H341179
H101—C10—C11—C12179H331—C33—C34—C35179
H101—C10—C11—H1111H331—C33—C34—H3412
C10—C11—C12—H121180C33—C34—C35—H351180
H111—C11—C12—C13180H341—C34—C35—C36178
H111—C11—C12—H1212H341—C34—C35—H3511
C11—C12—C13—H131178C34—C35—C36—H361178
H121—C12—C13—C14180H351—C35—C36—C37179
H121—C12—C13—H1311H351—C35—C36—H3610
C12—C13—C14—H141179C35—C36—C37—H371179
H131—C13—C14—C9179H361—C36—C37—C32179
H131—C13—C14—H1410H361—C36—C37—H3710
H161—C16—N3—C1535H391—C39—N6—C3845
H161—C16—N3—C18153H391—C39—N6—C41131
H162—C16—N3—C15154H392—C39—N6—C38158
H162—C16—N3—C1834H392—C39—N6—C4118
N3—C16—C17—H17155N6—C39—C40—H40152
N3—C16—C17—H17265N6—C39—C40—H40267
N3—C16—C17—H173174N6—C39—C40—H403173
H161—C16—C17—H171176H391—C39—C40—H401175
H161—C16—C17—H17256H391—C39—C40—H40255
H161—C16—C17—H17364H391—C39—C40—H40365
H162—C16—C17—H17165H392—C39—C40—H40169
H162—C16—C17—H172175H392—C39—C40—H402172
H162—C16—C17—H17355H392—C39—C40—H40352
N3—C18—C19—H1912N6—C41—C42—H4214
C23—C18—C19—H191179C46—C41—C42—H421180
N3—C18—C23—H2311N6—C41—C46—H4612
C19—C18—C23—H231179C42—C41—C46—H461178
C18—C19—C20—H201178C41—C42—C43—H431177
H191—C19—C20—C21179H421—C42—C43—C44179
H191—C19—C20—H2012H421—C42—C43—H4314
C19—C20—C21—H211179C42—C43—C44—H441179
H201—C20—C21—C22178H431—C43—C44—C45177
H201—C20—C21—H2112H431—C43—C44—H4413
C20—C21—C22—H221179C43—C44—C45—H451179
H211—C21—C22—C23180H441—C44—C45—C46180
H211—C21—C22—H2211H441—C44—C45—H4510
C21—C22—C23—H231179C44—C45—C46—H461178
H221—C22—C23—C18179H451—C45—C46—C41178
H221—C22—C23—H2310H451—C45—C46—H4612
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C34—H341···O1i0.942.423.319 (4)159
C42—H421···O2ii0.942.433.271 (4)150
C7—H71···O2ii0.992.403.208 (4)138
C43—H431···O3iii0.952.663.443 (4)140
C30—H301···O4iv0.992.363.237 (4)147
C23—H231···O4v0.942.603.125 (3)116
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x, y+2, z+1; (v) x, y+1, z+2.

Experimental details

Crystal data
Chemical formulaC23H23N3O2
Mr373.45
Crystal system, space groupTriclinic, P1
Temperature (K)170
a, b, c (Å)12.1879 (17), 12.2371 (15), 13.6798 (17)
α, β, γ (°)83.971 (10), 86.919 (11), 87.744 (10)
V3)2024.9 (5)
Z4
Radiation typeCu Kα
µ (mm1)0.63
Crystal size (mm)0.37 × 0.19 × 0.15
Data collection
DiffractometerOxford Diffraction Xcalibur
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.496, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
51216, 8553, 4586
Rint0.111
(sin θ/λ)max1)0.647
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.062, 1.14
No. of reflections4586
No. of parameters505
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: CrysAlis PRO (Agilent, 2011), SIR92 (Altomare et al., 1994), Mercury (Macrae et al., 2006), CRYSTALS (Betteridge et al., 2003), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C34—H341···O1i0.9442.4193.319 (4)159.24
C42—H421···O2ii0.9362.4303.271 (4)149.57
C7—H71···O2ii0.9872.4033.208 (4)138.29
C43—H431···O3iii0.9502.6623.443 (4)139.78
C30—H301···O4iv0.9922.3613.237 (4)146.77
C23—H231···O4v0.9382.5953.125 (3)116.21
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1, z+2; (iii) x+1, y, z; (iv) x, y+2, z+1; (v) x, y+1, z+2.
 

Acknowledgements

This work was supported by the Grant Agency of Faculty of Environmental Sciences, Czech University of Life Sciences, Prague, project No. 42900/1312/3114 "Environmental Aspects of Sustainable Development of Society".

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.  Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationAlyapyshev, M. Y., Babain, V. A. & Smirnov, I. V. (2004). Radiochemistry, 46, 270–271.  CrossRef CAS Google Scholar
First citationBetteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.  Web of Science CrossRef IUCr Journals Google Scholar
First citationDu Preez, J. G. H., van Brecht, J. A. M. & Warden, I. (1987). Inorg. Chim. Acta, 131, 295–266.  CrossRef Web of Science Google Scholar
First citationFujiwara, A., Nakano, Y., Yaita, T. & Okuno, K. (2008). J. Alloys Compd, 456, 429–435.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMalone, J. F., Murray, C. M. & Dolan, G. M. (1997). Chem. Mater. 9, 2983–2989.  Web of Science CSD CrossRef CAS Google Scholar
First citationNikitskaya, E. S., Usovskaya, V. S. & Rubtzov, M. V. (1958). Zh. Obshch. Khim. 28, 161–166.  CAS Google Scholar
First citationShimada, A., Yaita, T., Narita, H., Tachimori, S. & Okuno, K. (2004). Solvent Extr. Ion Exch. 22, 147–161.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1099-o1100
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds