organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,6,8-Tri­bromo-7-ethyl­amino-4-methyl-2H-chromen-2-one

aKey Laboratory of Fine Chemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, People's Republic of China
*Correspondence e-mail: xht@cczu.edu.cn

(Received 13 February 2012; accepted 1 March 2012; online 10 March 2012)

In the title mol­ecule, C12H10Br3NO2, the 2H-chromen ring is essentially planar (r.m.s. deviation = 0.022 Å) with the ethyl­amino group oriented at 13.9 (5)° with respect to the ring. The mol­ecular structure is stabilized by intra­molecular N—H⋯Br and C—H⋯Br interactions.

Related literature

For the synthetic procedure, see: Belluti et al. (2010[Belluti, F., Fontana, G., Bo, L. D. & Carenini, N. (2010). Bioorg. Med. Chem. 18, 3543-3550.]). For a related structure, see: Kruszynski et al. (2005[Kruszynski, R., Trzesowska, A., Majewski, P., Skretowska, S. & Marszalek, A. (2005). Acta Cryst. E61, o1248-o1250.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10Br3NO2

  • Mr = 439.94

  • Monoclinic, P 21 /c

  • a = 8.5045 (9) Å

  • b = 7.2551 (8) Å

  • c = 21.556 (2) Å

  • β = 94.720 (2)°

  • V = 1325.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 9.12 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.15 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.263, Tmax = 0.342

  • 7355 measured reflections

  • 2457 independent reflections

  • 2002 reflections with I > 2σ(I)

  • Rint = 0.034

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.099

  • S = 1.01

  • 2457 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.63 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.87 (1) 2.64 (4) 3.039 (4) 109 (3)
C10—H10A⋯Br2 0.96 2.60 3.176 (5) 118
C13—H13A⋯Br3 0.97 2.71 3.146 (7) 108

Data collection: CAD-4 Software (Enraf–Nonius, 1985)[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; cell refinement: CAD-4 Software[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The title compound is used as an important intermediate in the synthesis of fluorescent tracers (Belluti et al., (2010). The 2H-chromen ring in the title molecule (Fig. 1) is essentially planar (rmsd 0.022) with ethylamino group oriented at 13.9 (5)° with respect to the ring. The molecular dimensions of the title compound are in agreement with the corresponding dimensions of the structure of a related compound (Kruszynski et al., 2005).

In the crystal of the title compound, there are only N—H···Br and C—H···Br intramolecular hydrogen bonds which stabilize the molecular structure.

Related literature top

For the synthetic procedure, see: Belluti et al. (2010). For a related structure, see: Kruszynski et al. (2005).

Experimental top

The title compound was prepared by a method reported in the literature (Belluti et al., (2010)). To a suspension of 4-methyl-7-N,N-diethylamino coumarin (10 mmol, 2.31 g) and bromosuccinimide (11 mmol, 1.95 g) in carbon tetrachloride (100 ml), a catalytic amount of benzoyl peroxide was added. The reaction mixture was refluxed for 8 h, the succinimide thus produced during the reaction was filtered off, and the solvent was washed with water, dried and removed under reduced pressure to afford the title compound as a pale yellow product. Colorless block of the title compound were grown in ethanol (20 ml) by evaporating the solvent slowly at room temperature for about 5 days.

Refinement top

All H atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93 Å for aromatic H and 0.86 (1) Å for N—H; with Uiso(H) = xUeq(C), where x = 1.2 for aromatic H, and x = 1.5 for other H.

Structure description top

The title compound is used as an important intermediate in the synthesis of fluorescent tracers (Belluti et al., (2010). The 2H-chromen ring in the title molecule (Fig. 1) is essentially planar (rmsd 0.022) with ethylamino group oriented at 13.9 (5)° with respect to the ring. The molecular dimensions of the title compound are in agreement with the corresponding dimensions of the structure of a related compound (Kruszynski et al., 2005).

In the crystal of the title compound, there are only N—H···Br and C—H···Br intramolecular hydrogen bonds which stabilize the molecular structure.

For the synthetic procedure, see: Belluti et al. (2010). For a related structure, see: Kruszynski et al. (2005).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I).
3,6,8-Tribromo-7-ethylamino-4-methyl-2H-chromen-2-one top
Crystal data top
C12H10Br3NO2F(000) = 840
Mr = 439.94Dx = 2.205 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2620 reflections
a = 8.5045 (9) Åθ = 2.4–25.5°
b = 7.2551 (8) ŵ = 9.12 mm1
c = 21.556 (2) ÅT = 296 K
β = 94.720 (2)°BLOCK, colorless
V = 1325.5 (3) Å30.20 × 0.18 × 0.15 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
2002 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.034
Graphite monochromatorθmax = 25.5°, θmin = 1.9°
ω/2θ scansh = 910
Absorption correction: ψ scan
(North et al., 1968)
k = 88
Tmin = 0.263, Tmax = 0.342l = 2623
7355 measured reflections3 standard reflections every 200 reflections
2457 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0605P)2 + 0.6207P]
where P = (Fo2 + 2Fc2)/3
2457 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.63 e Å3
1 restraintΔρmin = 0.56 e Å3
Crystal data top
C12H10Br3NO2V = 1325.5 (3) Å3
Mr = 439.94Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.5045 (9) ŵ = 9.12 mm1
b = 7.2551 (8) ÅT = 296 K
c = 21.556 (2) Å0.20 × 0.18 × 0.15 mm
β = 94.720 (2)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2002 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.263, Tmax = 0.3423 standard reflections every 200 reflections
7355 measured reflections intensity decay: 1%
2457 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0321 restraint
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.63 e Å3
2457 reflectionsΔρmin = 0.56 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.35825 (6)0.11548 (6)0.05870 (2)0.04316 (16)
Br20.41792 (7)0.58281 (7)0.22380 (2)0.05645 (19)
Br30.01975 (6)0.79144 (7)0.09690 (2)0.05198 (18)
O10.3974 (3)0.3023 (4)0.05962 (13)0.0364 (7)
C80.1457 (5)0.6305 (6)0.0522 (2)0.0354 (9)
C50.3144 (4)0.4156 (5)0.02319 (19)0.0313 (9)
C40.2630 (5)0.5889 (5)0.0453 (2)0.0335 (9)
C70.1975 (5)0.4566 (6)0.07545 (19)0.0335 (9)
C20.3720 (5)0.5264 (6)0.14159 (19)0.0377 (10)
O20.5003 (4)0.2360 (5)0.14659 (15)0.0560 (9)
C90.1786 (5)0.6931 (5)0.0049 (2)0.0359 (9)
H90.14340.80970.01740.043*
C10.4277 (5)0.3477 (6)0.1195 (2)0.0371 (10)
C30.2947 (5)0.6444 (5)0.1069 (2)0.0334 (9)
C60.2846 (5)0.3532 (5)0.03440 (19)0.0314 (9)
N10.1665 (5)0.3812 (6)0.13117 (19)0.0511 (11)
C100.2404 (6)0.8311 (7)0.1302 (2)0.0519 (12)
H10A0.27570.85150.17080.078*
H10B0.28360.92430.10210.078*
H10C0.12730.83650.13250.078*
C130.1232 (8)0.4655 (9)0.1875 (3)0.0650 (15)
H13A0.01670.51370.18120.078*
H13B0.19380.56730.19860.078*
C140.1322 (8)0.3266 (9)0.2388 (2)0.0668 (15)
H14A0.07150.21980.22580.100*
H14B0.09060.37910.27490.100*
H14C0.24020.29160.24880.100*
H10.218 (6)0.287 (5)0.147 (2)0.064 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0588 (3)0.0282 (2)0.0433 (3)0.00216 (19)0.0097 (2)0.00324 (18)
Br20.0814 (4)0.0539 (3)0.0367 (3)0.0003 (3)0.0208 (3)0.0071 (2)
Br30.0578 (3)0.0458 (3)0.0550 (3)0.0094 (2)0.0203 (2)0.0111 (2)
O10.0488 (17)0.0293 (15)0.0323 (16)0.0073 (13)0.0110 (13)0.0001 (12)
C80.039 (2)0.033 (2)0.034 (2)0.0012 (18)0.0082 (19)0.0109 (17)
C50.033 (2)0.0264 (19)0.035 (2)0.0005 (16)0.0062 (18)0.0065 (17)
C40.038 (2)0.028 (2)0.035 (2)0.0015 (17)0.0053 (18)0.0023 (17)
C70.035 (2)0.036 (2)0.030 (2)0.0066 (18)0.0046 (17)0.0056 (18)
C20.049 (2)0.037 (2)0.028 (2)0.005 (2)0.0055 (19)0.0018 (18)
O20.083 (3)0.0467 (19)0.041 (2)0.0135 (19)0.0224 (19)0.0055 (16)
C90.041 (2)0.025 (2)0.042 (3)0.0028 (17)0.0050 (19)0.0048 (18)
C10.048 (2)0.032 (2)0.032 (2)0.0022 (19)0.009 (2)0.0029 (18)
C30.040 (2)0.027 (2)0.034 (2)0.0009 (17)0.0014 (18)0.0025 (17)
C60.039 (2)0.0244 (19)0.031 (2)0.0015 (17)0.0038 (18)0.0006 (16)
N10.071 (3)0.048 (3)0.037 (2)0.004 (2)0.017 (2)0.0048 (18)
C100.065 (3)0.040 (2)0.051 (3)0.015 (2)0.011 (3)0.014 (2)
C130.086 (4)0.068 (4)0.043 (3)0.006 (3)0.020 (3)0.009 (3)
C140.089 (4)0.079 (4)0.034 (3)0.011 (3)0.014 (3)0.005 (3)
Geometric parameters (Å, º) top
Br1—C61.894 (4)O2—C11.200 (5)
Br2—C21.891 (4)C9—H90.9300
Br3—C81.899 (4)C3—C101.503 (6)
O1—C51.372 (5)N1—C131.434 (6)
O1—C11.376 (5)N1—H10.866 (10)
C8—C91.362 (6)C10—H10A0.9600
C8—C71.415 (6)C10—H10B0.9600
C5—C61.365 (6)C10—H10C0.9600
C5—C41.402 (6)C13—C141.494 (8)
C4—C91.396 (6)C13—H13A0.9700
C4—C31.434 (6)C13—H13B0.9700
C7—N11.365 (6)C14—H14A0.9600
C7—C61.415 (6)C14—H14B0.9600
C2—C31.344 (6)C14—H14C0.9600
C2—C11.448 (6)
C5—O1—C1122.5 (3)C5—C6—C7122.6 (4)
C9—C8—C7122.4 (4)C5—C6—Br1118.1 (3)
C9—C8—Br3114.8 (3)C7—C6—Br1119.2 (3)
C7—C8—Br3122.8 (3)C7—N1—C13131.0 (4)
C6—C5—O1117.7 (3)C7—N1—H1122 (4)
C6—C5—C4122.0 (4)C13—N1—H199 (4)
O1—C5—C4120.3 (4)C3—C10—H10A109.5
C9—C4—C5115.9 (4)C3—C10—H10B109.5
C9—C4—C3124.8 (4)H10A—C10—H10B109.5
C5—C4—C3119.3 (4)C3—C10—H10C109.5
N1—C7—C8126.3 (4)H10A—C10—H10C109.5
N1—C7—C6119.2 (4)H10B—C10—H10C109.5
C8—C7—C6114.5 (4)N1—C13—C14109.8 (5)
C3—C2—C1123.3 (4)N1—C13—H13A109.7
C3—C2—Br2122.2 (3)C14—C13—H13A109.7
C1—C2—Br2114.5 (3)N1—C13—H13B109.7
C8—C9—C4122.5 (4)C14—C13—H13B109.7
C8—C9—H9118.7H13A—C13—H13B108.2
C4—C9—H9118.7C13—C14—H14A109.5
O2—C1—O1116.0 (4)C13—C14—H14B109.5
O2—C1—C2127.7 (4)H14A—C14—H14B109.5
O1—C1—C2116.2 (4)C13—C14—H14C109.5
C2—C3—C4118.3 (4)H14A—C14—H14C109.5
C2—C3—C10122.6 (4)H14B—C14—H14C109.5
C4—C3—C10119.1 (4)
C1—O1—C5—C6176.9 (4)C1—C2—C3—C41.4 (6)
C1—O1—C5—C43.0 (6)Br2—C2—C3—C4179.1 (3)
C6—C5—C4—C90.4 (6)C1—C2—C3—C10178.8 (4)
O1—C5—C4—C9179.6 (3)Br2—C2—C3—C100.7 (6)
C6—C5—C4—C3178.4 (4)C9—C4—C3—C2177.2 (4)
O1—C5—C4—C31.5 (6)C5—C4—C3—C20.6 (6)
C9—C8—C7—N1178.1 (4)C9—C4—C3—C102.6 (7)
Br3—C8—C7—N10.1 (6)C5—C4—C3—C10179.5 (4)
C9—C8—C7—C60.5 (6)O1—C5—C6—C7178.7 (3)
Br3—C8—C7—C6177.5 (3)C4—C5—C6—C71.2 (6)
C7—C8—C9—C41.4 (7)O1—C5—C6—Br10.6 (5)
Br3—C8—C9—C4176.8 (3)C4—C5—C6—Br1179.3 (3)
C5—C4—C9—C80.9 (6)N1—C7—C6—C5177.1 (4)
C3—C4—C9—C8177.0 (4)C8—C7—C6—C50.7 (6)
C5—O1—C1—O2179.4 (4)N1—C7—C6—Br11.1 (5)
C5—O1—C1—C22.2 (6)C8—C7—C6—Br1178.8 (3)
C3—C2—C1—O2178.2 (5)C8—C7—N1—C1322.3 (9)
Br2—C2—C1—O21.4 (6)C6—C7—N1—C13160.2 (5)
C3—C2—C1—O10.0 (6)C7—N1—C13—C14169.4 (5)
Br2—C2—C1—O1179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.87 (1)2.64 (4)3.039 (4)109 (3)
C10—H10A···Br20.962.603.176 (5)118
C13—H13A···Br30.972.713.146 (7)108

Experimental details

Crystal data
Chemical formulaC12H10Br3NO2
Mr439.94
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)8.5045 (9), 7.2551 (8), 21.556 (2)
β (°) 94.720 (2)
V3)1325.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)9.12
Crystal size (mm)0.20 × 0.18 × 0.15
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.263, 0.342
No. of measured, independent and
observed [I > 2σ(I)] reflections
7355, 2457, 2002
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.099, 1.01
No. of reflections2457
No. of parameters169
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.63, 0.56

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.87 (1)2.64 (4)3.039 (4)109 (3)
C10—H10A···Br20.962.603.176 (5)118
C13—H13A···Br30.972.713.146 (7)108
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for the data collection.

References

First citationBelluti, F., Fontana, G., Bo, L. D. & Carenini, N. (2010). Bioorg. Med. Chem. 18, 3543–3550.  Web of Science CrossRef CAS PubMed Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKruszynski, R., Trzesowska, A., Majewski, P., Skretowska, S. & Marszalek, A. (2005). Acta Cryst. E61, o1248–o1250.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds