organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 7-methyl-3-oxo-5-phenyl-2-(2,4,6-trimeth­­oxy­benzyl­­idene)-2,3-di­hydro-5H-thia­zolo[3,2-a]pyrimidine-6-carboxyl­ate

aDepartment of Chemistry, KNS Institute of Technology, Bangalore 560 064, India, and bDepartment of Chemistry, Dr Ambedkar Institute of Technology, Bangalore 560 056, India
*Correspondence e-mail: bheemarajuv54@gmail.com

(Received 24 February 2012; accepted 21 March 2012; online 28 March 2012)

In the title compound, C26H26N2O6S, the benzene ring is positioned axially to the thia­zolopyrimidine ring and bis­ects it with a dihedral angle of 80.94 (7)°. The pyrimidine ring adopts a flattened boat conformation. In the crystal, pairs of bifurcated C—H⋯O hydrogen bonds link the mol­ecules into chains along the c axis.

Related literature

For the pharmacological activity of pyrimidine derivatives, see: Alam et al. (2010[Alam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245-1258.]). For a related crystal structure, see: Chen et al. (2012[Chen, X.-Y., Wang, H.-C., Zhang, Q., Song, Z.-J. & Zheng, F.-Y. (2012). Acta Cryst. E68, o127.]).

[Scheme 1]

Experimental

Crystal data
  • C26H26N2O6S

  • Mr = 494.55

  • Monoclinic, P 21 /n

  • a = 7.5363 (19) Å

  • b = 18.178 (5) Å

  • c = 16.973 (4) Å

  • β = 94.465 (5)°

  • V = 2318.1 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 296 K

  • 0.18 × 0.16 × 0.16 mm

Data collection
  • Bruker SMART APEX CCD detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.967, Tmax = 0.971

  • 13918 measured reflections

  • 5055 independent reflections

  • 3500 reflections with I > 2σ(I)

  • Rint = 0.052

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.168

  • S = 1.07

  • 5055 reflections

  • 321 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C24—H24C⋯O5i 0.96 2.63 3.537 (3) 158
C25—H25A⋯O5i 0.96 2.57 3.319 (3) 135
Symmetry code: (i) [x+{\script{3\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and CAMERON (Watkin et al., 1996[Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Pyrimidine derivatives are of interest because of their pharmacological properties (Alam et al., 2010). In the title compound (Fig. 1), the central pyrimidine ring with a chiral C5 atom is significantly puckered and adopts conformation as seen earlier (Chen et al., 2012). The atom C5 deviates from the mean plane formed by the atoms N2/C9/N1/C6/C7 by 0.224 (2) Å, indicating that the conformation of the ring is that of a flattened boat. In the molecule, the fused thiazolopyrimidine ring makes a dihedral angle of 80.94 (7)° with the benzene ring (C11–C16). In the crystal, pairs of C—H···O hydrogen bonds are bifurcated linking the molecules into chains along c-axis (Fig. 2 and Table 1).

Related literature top

For the pharmacological activity of pyrimidine derivatives, see: Alam et al. (2010). For a related crystal structure, see: Chen et al. (2012).

Experimental top

A mixture of 5-phenyl-6-methyl-2-thioxo-1,2,3,4-tetrahydro -pyrimidine-5-carboxylic acid ethyl ester (0.01 mol, 2.76 g), chloroaceticacid (0.01 mol, 0.94 g), 2,4,6-trimethoxy benzaldehyde (0.01 mol, 1.96 g) and sodium acetate (1.5 g) in a mixture of glacial acetic acid and acetic anhydride (25 ml, 1:1) was refluxed for 8–10 h. The reaction mixture was concentrated and the solid thus obtained was filtered and recrystallized from ethyl acetate to get the title compound (78% yield, mp 427–428 K). The compound was recrystallized by slow evaporation of an ethyl acetate-ethanol (3:2) solution, yielding pale yellow single crystals suitable for X-ray diffraction studies.

Refinement top

The H atoms were placed at calculated positions in the riding model approximation with C—H = 0.93, 0.96 and 0.98 Å for aryl, methyl and methylene H-atoms, respectively, with Uiso(H) = 1.2–1.5Ueq(C).

Structure description top

Pyrimidine derivatives are of interest because of their pharmacological properties (Alam et al., 2010). In the title compound (Fig. 1), the central pyrimidine ring with a chiral C5 atom is significantly puckered and adopts conformation as seen earlier (Chen et al., 2012). The atom C5 deviates from the mean plane formed by the atoms N2/C9/N1/C6/C7 by 0.224 (2) Å, indicating that the conformation of the ring is that of a flattened boat. In the molecule, the fused thiazolopyrimidine ring makes a dihedral angle of 80.94 (7)° with the benzene ring (C11–C16). In the crystal, pairs of C—H···O hydrogen bonds are bifurcated linking the molecules into chains along c-axis (Fig. 2 and Table 1).

For the pharmacological activity of pyrimidine derivatives, see: Alam et al. (2010). For a related crystal structure, see: Chen et al. (2012).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SMART (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. ORTEP (Farrugia, 1997) view of the title compound, showing 50% probability ellipsoids and the atom numbering scheme.
[Figure 2] Fig. 2. A unit cell packing of the title compound showing intermolecular interactions with dotted lines. H-atoms not involved in hydrogen bonding have been excluded for clarity.
Ethyl 7-methyl-3-oxo-5-phenyl-2-(2,4,6-trimethoxybenzylidene)- 2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate top
Crystal data top
C26H26N2O6SF(000) = 1040
Mr = 494.55Dx = 1.417 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 5055 reflections
a = 7.5363 (19) Åθ = 2.2–27.0°
b = 18.178 (5) ŵ = 0.19 mm1
c = 16.973 (4) ÅT = 296 K
β = 94.465 (5)°Block, yellow
V = 2318.1 (10) Å30.18 × 0.16 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEX CCD detector
diffractometer
5055 independent reflections
Radiation source: fine-focus sealed tube3500 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.052
ω scansθmax = 27.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
h = 96
Tmin = 0.967, Tmax = 0.971k = 1923
13918 measured reflectionsl = 2120
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.168H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0854P)2]
where P = (Fo2 + 2Fc2)/3
5055 reflections(Δ/σ)max = 0.001
321 parametersΔρmax = 0.59 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C26H26N2O6SV = 2318.1 (10) Å3
Mr = 494.55Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.5363 (19) ŵ = 0.19 mm1
b = 18.178 (5) ÅT = 296 K
c = 16.973 (4) Å0.18 × 0.16 × 0.16 mm
β = 94.465 (5)°
Data collection top
Bruker SMART APEX CCD detector
diffractometer
5055 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1998)
3500 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.971Rint = 0.052
13918 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.168H-atom parameters constrained
S = 1.07Δρmax = 0.59 e Å3
5055 reflectionsΔρmin = 0.38 e Å3
321 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.73105 (9)0.14251 (3)0.58179 (4)0.02186 (19)
O50.0478 (3)0.28751 (10)0.67802 (11)0.0280 (5)
O21.1137 (2)0.27911 (9)0.35791 (11)0.0259 (5)
O41.0502 (2)0.09339 (9)0.54509 (10)0.0250 (4)
N10.4401 (3)0.16361 (12)0.65853 (12)0.0224 (5)
O10.6191 (2)0.32009 (9)0.46396 (11)0.0252 (4)
O60.0574 (2)0.36348 (10)0.58753 (12)0.0285 (5)
N20.5119 (3)0.25231 (11)0.56348 (12)0.0209 (5)
O31.5463 (3)0.08397 (10)0.39073 (11)0.0276 (5)
C160.5164 (3)0.36754 (14)0.69908 (15)0.0218 (6)
H160.52700.32190.72370.026*
C110.4425 (3)0.37259 (14)0.62157 (15)0.0195 (6)
C60.2376 (4)0.26532 (14)0.62849 (15)0.0220 (6)
C100.0685 (4)0.30403 (14)0.63572 (16)0.0237 (6)
C201.3047 (4)0.08844 (14)0.46749 (15)0.0221 (6)
H201.34730.04590.49290.027*
C90.5401 (4)0.18888 (13)0.60625 (15)0.0207 (6)
C170.9132 (3)0.22160 (13)0.46628 (15)0.0201 (6)
H170.89680.26440.43650.024*
C70.2822 (4)0.20292 (14)0.66861 (15)0.0221 (6)
C20.7777 (3)0.21079 (13)0.51239 (15)0.0209 (6)
C50.3682 (3)0.30400 (13)0.57885 (16)0.0214 (6)
H50.30620.31860.52840.026*
C30.6336 (4)0.26750 (14)0.50774 (15)0.0218 (6)
C181.0776 (3)0.18488 (13)0.45027 (15)0.0204 (6)
C211.3967 (3)0.12094 (14)0.40848 (15)0.0220 (6)
C80.1730 (4)0.16755 (15)0.72924 (16)0.0288 (7)
H8A0.16860.19970.77390.043*
H8B0.22650.12170.74600.043*
H8C0.05440.15880.70630.043*
C191.1482 (4)0.12100 (14)0.48744 (14)0.0206 (6)
C150.5743 (4)0.43039 (14)0.73975 (16)0.0236 (6)
H150.62510.42680.79130.028*
C120.4283 (4)0.44127 (14)0.58605 (16)0.0242 (6)
H120.38050.44520.53400.029*
C221.3384 (3)0.18520 (14)0.37125 (15)0.0213 (6)
H221.40330.20700.33310.026*
C130.4841 (4)0.50407 (14)0.62696 (17)0.0261 (6)
H130.47280.54990.60270.031*
C231.1808 (4)0.21644 (13)0.39216 (15)0.0216 (6)
C251.6375 (4)0.11104 (16)0.32485 (17)0.0328 (7)
H25A1.55610.11270.27850.049*
H25B1.73480.07890.31570.049*
H25C1.68220.15960.33660.049*
C140.5563 (4)0.49832 (14)0.70364 (16)0.0247 (6)
H140.59340.54040.73130.030*
C261.1201 (4)0.03154 (14)0.58899 (15)0.0255 (6)
H26A1.13620.00870.55360.038*
H26B1.03860.01730.62700.038*
H26C1.23250.04440.61590.038*
C241.2289 (4)0.32127 (14)0.31204 (16)0.0267 (6)
H24A1.33560.33350.34400.040*
H24B1.16950.36570.29420.040*
H24C1.25870.29290.26720.040*
C10.0260 (4)0.48913 (16)0.6104 (2)0.0390 (8)
H1A0.02620.48980.66380.059*
H1B0.12340.52330.60520.059*
H1C0.06200.50300.57520.059*
C40.0928 (4)0.41300 (15)0.59001 (19)0.0325 (7)
H4A0.17030.39630.62940.039*
H4B0.16060.41360.53900.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0216 (4)0.0219 (4)0.0231 (4)0.0004 (3)0.0078 (3)0.0010 (3)
O50.0244 (11)0.0318 (11)0.0296 (11)0.0015 (9)0.0135 (9)0.0016 (8)
O20.0233 (11)0.0237 (10)0.0322 (11)0.0035 (8)0.0118 (8)0.0075 (8)
O40.0284 (11)0.0222 (10)0.0262 (10)0.0018 (8)0.0128 (8)0.0051 (7)
N10.0211 (13)0.0240 (11)0.0229 (12)0.0026 (10)0.0072 (10)0.0004 (9)
O10.0235 (11)0.0232 (10)0.0299 (11)0.0014 (8)0.0095 (8)0.0031 (8)
O60.0181 (10)0.0291 (10)0.0396 (12)0.0037 (8)0.0111 (9)0.0051 (8)
N20.0177 (12)0.0211 (11)0.0250 (12)0.0024 (9)0.0081 (9)0.0007 (9)
O30.0245 (11)0.0334 (11)0.0265 (10)0.0095 (9)0.0123 (8)0.0050 (8)
C160.0200 (14)0.0208 (13)0.0256 (14)0.0003 (11)0.0082 (11)0.0020 (10)
C110.0128 (13)0.0232 (13)0.0239 (14)0.0011 (10)0.0098 (11)0.0023 (10)
C60.0184 (14)0.0207 (13)0.0275 (14)0.0013 (11)0.0064 (11)0.0046 (11)
C100.0211 (15)0.0229 (14)0.0277 (15)0.0056 (11)0.0059 (12)0.0064 (11)
C200.0225 (15)0.0243 (13)0.0196 (13)0.0023 (11)0.0016 (11)0.0010 (10)
C90.0201 (14)0.0191 (13)0.0232 (14)0.0026 (11)0.0038 (11)0.0048 (10)
C170.0221 (15)0.0196 (13)0.0194 (13)0.0020 (11)0.0062 (11)0.0012 (10)
C70.0189 (14)0.0244 (14)0.0237 (14)0.0079 (11)0.0065 (11)0.0064 (11)
C20.0201 (14)0.0184 (13)0.0246 (14)0.0011 (11)0.0050 (11)0.0018 (10)
C50.0159 (14)0.0240 (13)0.0251 (14)0.0008 (11)0.0072 (11)0.0012 (11)
C30.0207 (15)0.0243 (14)0.0211 (14)0.0032 (11)0.0066 (11)0.0026 (11)
C180.0190 (14)0.0204 (13)0.0227 (14)0.0009 (11)0.0069 (11)0.0019 (10)
C210.0173 (14)0.0273 (14)0.0215 (13)0.0023 (11)0.0029 (11)0.0024 (11)
C80.0292 (17)0.0258 (14)0.0334 (16)0.0049 (12)0.0143 (13)0.0007 (12)
C190.0215 (14)0.0233 (13)0.0177 (13)0.0036 (11)0.0064 (11)0.0015 (10)
C150.0204 (14)0.0284 (14)0.0228 (14)0.0002 (12)0.0060 (11)0.0034 (11)
C120.0212 (15)0.0286 (14)0.0234 (14)0.0015 (11)0.0057 (11)0.0042 (11)
C220.0173 (14)0.0282 (14)0.0191 (13)0.0023 (11)0.0059 (11)0.0022 (10)
C130.0258 (16)0.0161 (13)0.0376 (17)0.0012 (11)0.0095 (13)0.0043 (11)
C230.0215 (15)0.0187 (13)0.0252 (14)0.0018 (11)0.0051 (11)0.0014 (10)
C250.0297 (17)0.0396 (17)0.0311 (16)0.0119 (14)0.0146 (13)0.0078 (13)
C140.0207 (15)0.0222 (14)0.0323 (15)0.0028 (11)0.0096 (12)0.0053 (11)
C260.0276 (16)0.0230 (14)0.0265 (15)0.0008 (12)0.0063 (12)0.0031 (11)
C240.0296 (16)0.0240 (14)0.0276 (15)0.0031 (12)0.0091 (13)0.0065 (11)
C10.0296 (18)0.0357 (17)0.053 (2)0.0054 (14)0.0103 (15)0.0013 (15)
C40.0186 (15)0.0355 (16)0.0447 (18)0.0046 (13)0.0103 (13)0.0040 (13)
Geometric parameters (Å, º) top
S1—C91.745 (3)C2—C31.495 (4)
S1—C21.765 (3)C5—H50.9800
O5—C101.213 (3)C18—C191.406 (4)
O2—C231.359 (3)C18—C231.423 (3)
O2—C241.433 (3)C21—C221.383 (4)
O4—C191.367 (3)C8—H8A0.9600
O4—C261.427 (3)C8—H8B0.9600
N1—C91.292 (3)C8—H8C0.9600
N1—C71.410 (3)C15—C141.381 (4)
O1—C31.211 (3)C15—H150.9300
O6—C101.354 (3)C12—C131.385 (4)
O6—C41.449 (3)C12—H120.9300
N2—C91.370 (3)C22—C231.387 (3)
N2—C31.395 (3)C22—H220.9300
N2—C51.473 (3)C13—C141.375 (4)
O3—C211.367 (3)C13—H130.9300
O3—C251.443 (3)C25—H25A0.9600
C16—C151.387 (4)C25—H25B0.9600
C16—C111.391 (4)C25—H25C0.9600
C16—H160.9300C14—H140.9300
C11—C121.387 (3)C26—H26A0.9600
C11—C51.527 (3)C26—H26B0.9600
C6—C71.352 (4)C26—H26C0.9600
C6—C101.469 (4)C24—H24A0.9600
C6—C51.517 (3)C24—H24B0.9600
C20—C191.385 (3)C24—H24C0.9600
C20—C211.393 (3)C1—C41.504 (4)
C20—H200.9300C1—H1A0.9600
C17—C21.348 (3)C1—H1B0.9600
C17—C181.451 (3)C1—H1C0.9600
C17—H170.9300C4—H4A0.9700
C7—C81.511 (3)C4—H4B0.9700
C9—S1—C291.72 (12)C7—C8—H8C109.5
C23—O2—C24117.4 (2)H8A—C8—H8C109.5
C19—O4—C26117.7 (2)H8B—C8—H8C109.5
C9—N1—C7116.5 (2)O4—C19—C20122.4 (2)
C10—O6—C4119.3 (2)O4—C19—C18114.7 (2)
C9—N2—C3116.3 (2)C20—C19—C18122.9 (2)
C9—N2—C5121.9 (2)C14—C15—C16120.0 (3)
C3—N2—C5121.7 (2)C14—C15—H15120.0
C21—O3—C25117.0 (2)C16—C15—H15120.0
C15—C16—C11120.2 (2)C13—C12—C11120.9 (3)
C15—C16—H16119.9C13—C12—H12119.5
C11—C16—H16119.9C11—C12—H12119.5
C12—C11—C16118.8 (2)C21—C22—C23118.5 (2)
C12—C11—C5121.0 (2)C21—C22—H22120.8
C16—C11—C5120.0 (2)C23—C22—H22120.8
C7—C6—C10122.9 (2)C14—C13—C12119.6 (2)
C7—C6—C5121.5 (2)C14—C13—H13120.2
C10—C6—C5115.4 (2)C12—C13—H13120.2
O5—C10—O6122.8 (2)O2—C23—C22122.1 (2)
O5—C10—C6127.0 (3)O2—C23—C18115.4 (2)
O6—C10—C6110.2 (2)C22—C23—C18122.5 (2)
C19—C20—C21118.4 (2)O3—C25—H25A109.5
C19—C20—H20120.8O3—C25—H25B109.5
C21—C20—H20120.8H25A—C25—H25B109.5
N1—C9—N2126.0 (2)O3—C25—H25C109.5
N1—C9—S1121.8 (2)H25A—C25—H25C109.5
N2—C9—S1112.16 (18)H25B—C25—H25C109.5
C2—C17—C18137.5 (2)C13—C14—C15120.4 (2)
C2—C17—H17111.2C13—C14—H14119.8
C18—C17—H17111.2C15—C14—H14119.8
C6—C7—N1122.9 (2)O4—C26—H26A109.5
C6—C7—C8124.9 (2)O4—C26—H26B109.5
N1—C7—C8112.1 (2)H26A—C26—H26B109.5
C17—C2—C3116.7 (2)O4—C26—H26C109.5
C17—C2—S1133.6 (2)H26A—C26—H26C109.5
C3—C2—S1109.77 (18)H26B—C26—H26C109.5
N2—C5—C6108.7 (2)O2—C24—H24A109.5
N2—C5—C11110.9 (2)O2—C24—H24B109.5
C6—C5—C11110.2 (2)H24A—C24—H24B109.5
N2—C5—H5109.0O2—C24—H24C109.5
C6—C5—H5109.0H24A—C24—H24C109.5
C11—C5—H5109.0H24B—C24—H24C109.5
O1—C3—N2122.7 (2)C4—C1—H1A109.5
O1—C3—C2127.4 (2)C4—C1—H1B109.5
N2—C3—C2109.9 (2)H1A—C1—H1B109.5
C19—C18—C23115.8 (2)C4—C1—H1C109.5
C19—C18—C17126.5 (2)H1A—C1—H1C109.5
C23—C18—C17117.7 (2)H1B—C1—H1C109.5
O3—C21—C22123.6 (2)O6—C4—C1109.3 (2)
O3—C21—C20114.5 (2)O6—C4—H4A109.8
C22—C21—C20121.9 (2)C1—C4—H4A109.8
C7—C8—H8A109.5O6—C4—H4B109.8
C7—C8—H8B109.5C1—C4—H4B109.8
H8A—C8—H8B109.5H4A—C4—H4B108.3
C15—C16—C11—C120.1 (4)C5—N2—C3—O16.9 (4)
C15—C16—C11—C5176.1 (2)C9—N2—C3—C23.8 (3)
C4—O6—C10—O54.6 (4)C5—N2—C3—C2172.4 (2)
C4—O6—C10—C6175.1 (2)C17—C2—C3—O14.5 (4)
C7—C6—C10—O51.9 (4)S1—C2—C3—O1176.6 (2)
C5—C6—C10—O5172.4 (3)C17—C2—C3—N2174.8 (2)
C7—C6—C10—O6178.4 (2)S1—C2—C3—N24.1 (3)
C5—C6—C10—O67.3 (3)C2—C17—C18—C193.3 (5)
C7—N1—C9—N24.1 (4)C2—C17—C18—C23177.7 (3)
C7—N1—C9—S1175.11 (18)C25—O3—C21—C225.5 (4)
C3—N2—C9—N1177.5 (2)C25—O3—C21—C20174.1 (2)
C5—N2—C9—N16.3 (4)C19—C20—C21—O3178.0 (2)
C3—N2—C9—S11.8 (3)C19—C20—C21—C221.7 (4)
C5—N2—C9—S1174.44 (18)C26—O4—C19—C204.1 (4)
C2—S1—C9—N1180.0 (2)C26—O4—C19—C18175.8 (2)
C2—S1—C9—N20.7 (2)C21—C20—C19—O4179.4 (2)
C10—C6—C7—N1176.5 (2)C21—C20—C19—C180.6 (4)
C5—C6—C7—N19.6 (4)C23—C18—C19—O4177.6 (2)
C10—C6—C7—C84.2 (4)C17—C18—C19—O41.4 (4)
C5—C6—C7—C8169.8 (2)C23—C18—C19—C202.4 (4)
C9—N1—C7—C62.2 (4)C17—C18—C19—C20178.6 (2)
C9—N1—C7—C8178.3 (2)C11—C16—C15—C140.9 (4)
C18—C17—C2—C3179.5 (3)C16—C11—C12—C130.8 (4)
C18—C17—C2—S10.9 (5)C5—C11—C12—C13175.3 (2)
C9—S1—C2—C17175.9 (3)O3—C21—C22—C23177.6 (2)
C9—S1—C2—C32.7 (2)C20—C21—C22—C231.9 (4)
C9—N2—C5—C615.9 (3)C11—C12—C13—C140.6 (4)
C3—N2—C5—C6168.1 (2)C24—O2—C23—C2213.5 (4)
C9—N2—C5—C11105.4 (3)C24—O2—C23—C18167.1 (2)
C3—N2—C5—C1170.6 (3)C21—C22—C23—O2179.4 (2)
C7—C6—C5—N217.4 (3)C21—C22—C23—C180.0 (4)
C10—C6—C5—N2168.2 (2)C19—C18—C23—O2178.5 (2)
C7—C6—C5—C11104.3 (3)C17—C18—C23—O20.6 (3)
C10—C6—C5—C1170.0 (3)C19—C18—C23—C222.0 (4)
C12—C11—C5—N2115.6 (3)C17—C18—C23—C22178.8 (2)
C16—C11—C5—N268.3 (3)C12—C13—C14—C150.3 (4)
C12—C11—C5—C6123.9 (3)C16—C15—C14—C131.1 (4)
C16—C11—C5—C652.1 (3)C10—O6—C4—C1121.5 (3)
C9—N2—C3—O1176.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24C···O5i0.962.633.537 (3)158
C25—H25A···O5i0.962.573.319 (3)135
Symmetry code: (i) x+3/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC26H26N2O6S
Mr494.55
Crystal system, space groupMonoclinic, P21/n
Temperature (K)296
a, b, c (Å)7.5363 (19), 18.178 (5), 16.973 (4)
β (°) 94.465 (5)
V3)2318.1 (10)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.18 × 0.16 × 0.16
Data collection
DiffractometerBruker SMART APEX CCD detector
Absorption correctionMulti-scan
(SADABS; Bruker, 1998)
Tmin, Tmax0.967, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
13918, 5055, 3500
Rint0.052
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.168, 1.07
No. of reflections5055
No. of parameters321
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.59, 0.38

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and CAMERON (Watkin et al., 1996), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C24—H24C···O5i0.962.6273.537 (3)158
C25—H25A···O5i0.962.5703.319 (3)135
Symmetry code: (i) x+3/2, y+1/2, z1/2.
 

Acknowledgements

NAB is grateful to KNS Institute of Technology for the encouragement and Rayalaseema University, Kurnool, India, for the data collection facility.

References

First citationAlam, O., Khan, S. A., Siddiqui, N. & Ahsan, W. (2010). Med. Chem. Res. 19, 1245–1258.  Web of Science CrossRef CAS Google Scholar
First citationBruker. (1998). SMART, SAINT-Plus and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, X.-Y., Wang, H.-C., Zhang, Q., Song, Z.-J. & Zheng, F.-Y. (2012). Acta Cryst. E68, o127.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWatkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, University of Oxford, England.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds