metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(azido-κN)bis­­[6-(pyridin-2-yl)-1,3,5-triazine-2,4-di­amine-κ2N1,N6]manganese(II)

aKey Laboratory of Tobacco Chemistry of Yunnan, Yunnan Academy of Tobacco Science, Kunming 650106, People's Republic of China, and bCollege of Chemical Engineering, Kunming University of Science and Technology, Kunming 650224, People's Republic of China
*Correspondence e-mail: wangkunmiao@163.com

(Received 2 March 2012; accepted 9 March 2012; online 17 March 2012)

In the title complex, [Mn(N3)2(C8H8N6)2], the complete molecule is generated by the application of twofold symmetry, and is in a distorted octa­hedral environment, coordinated by four N atoms of two bidentate 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine ligands and two N atoms from two azide anions. The two chelated 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine ligands form a dihedral angle 74.75 (5)°. The mononuclear mol­ecules are alternatively linked into layers parallel to the ac plane via N—H⋯N hydrogen bonds. Adjacent layers are connected into a three-dimensional supra­molecular framework by futher N—H⋯N hydrogen-bonding inter­actions.

Related literature

For background to pyridyl-substituted diamino­triazine and azide ligands, see: Duong et al. (2011[Duong, A., Métivaud, V., Maris, T. & Wuest, J. D. (2011). Cryst. Growth Des. 11, 2026-2034.]); He et al. (2004[He, X., Lu, C. Z., Yu, Y. Q., Chen, S. M., Wu, X. Y. & Yan, Y. (2004). Z. Anorg. Allg. Chem. 630, 1131-1135.]); Carranza et al. (2008[Carranza, J., Julve, M. & Sletten, J. (2008). Inorg. Chim. Acta, 361, 2499-2507.]). For an isotypic ZnII structure, see: Zhao et al. (2009[Zhao, Q.-H., Fan, A.-L., Li, L.-N. & Xie, M.-J. (2009). Acta Cryst. E65, m622.]).

[Scheme 1]

Experimental

Crystal data
  • [Mn(N3)2(C8H8N6)2]

  • Mr = 515.41

  • Monoclinic, C 2/c

  • a = 18.330 (3) Å

  • b = 14.412 (3) Å

  • c = 9.1915 (17) Å

  • β = 115.044 (2)°

  • V = 2199.8 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.65 mm−1

  • T = 293 K

  • 0.17 × 0.11 × 0.10 mm

Data collection
  • Bruker APEXII 1K CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004[Sheldrick, G. M. (2004). SADBAS. University of Göttingen, Germany.]) Tmin = 0.924, Tmax = 0.947

  • 7095 measured reflections

  • 2600 independent reflections

  • 1562 reflections with I > 2σ(I)

  • Rint = 0.056

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.106

  • S = 1.01

  • 2600 reflections

  • 159 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.38 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5B⋯N7 0.86 2.14 2.986 (3) 166
N5—H5A⋯N9i 0.86 2.32 2.996 (4) 136
N6—H6A⋯N3ii 0.86 2.19 3.048 (3) 175
N6—H6B⋯N7iii 0.86 2.30 3.063 (3) 148
Symmetry codes: (i) -x+1, -y+1, -z; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z-1]; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Pyridyl-substituted diaminotriazine compounds are widely used as ligands in supramolecular chemistry because of their marked ability to associate by forming hydrogen bonds, aromatic interactions, and coordination to metals (Duong et al., 2011). The pseudohalide azides have also been widely used due to their versatile bridging modes. A large number of azide compounds have been synthesized based on two azide coordination modes: 1) the end-on (EO) and 2) the end-to end (EE) (He et al., 2004; Carranza et al., 2008). Herein this article, we report the crystal structure of the title compound, a mononuclear MnII complex. An isomorphous Zn-complex has been reported (Zhao et al., 2009).

The structure of the title compound (Fig. 1) comprises a mononuclear MnII complex wherein MnII lies on an inversion center. The MnII atom is coordinated by two terminal EO azide anions and two 6-(pyridin-2-yl)-1,3,5-triazine ligands via pyridyl and triazine N atoms forming a pseudo-octahedral geometry with Mn—N distances in the range 2.192 (2) to 2.277 (2) Å. The EO azide anions are in a terminal non-linear coordination mode with the MnII center as is apparent from the Mn1—N7—N8 bond angle of 116.82 (9) °. The 6-(pyridin-2-yl)-1,3,5-triazine ligands are nearly planar, with the largest deviation of any atom from its mean-plane being -0.116 Å for C3. The two chelated diaminotriazine ligands are twisted with respect to each other by a dihedral angle of 74.75 (5) °. The adjacent complex molecules are linked through intermolecular hydrogen bonds N6—H6A···N3 and N6—H6B···N7 between azide groups and diaminotriazine groups (Table 1) forming an infinite hydrogen bonded layer running parallel to the ac plane. In addition, hydrogen bonding interactions N5—H5A···N9 connect the neighboring layers to a three-dimensional supramolecular framework (Fig. 2).

Related literature top

For background to pyridyl-substituted diaminotriazine and azide ligands, see: Duong et al. (2011); He et al. (2004); Carranza et al. (2008). For an isotypic ZnII structure, see: Zhao et al. (2009).

Experimental top

A mixture of Mn(CH3COO)2.2H2O (0.1 mmol, 0.025 g), 6-(pyridin-2-yl)-1,3,5-diaminotriazine (0.2 mmol, 0.035 g) in methanol (20.0 ml) was stirred for 40 min and the mixture was filtered, sealed and kept in a dark place at room temperature for several weeks. Block crystals suitable for X-ray diffraction analysis were produced in 10% yield.

Refinement top

The H atoms of pyridine ring and amino groups were generated geometrically and included in the refinement in the riding model approximation with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C/N).

Structure description top

Pyridyl-substituted diaminotriazine compounds are widely used as ligands in supramolecular chemistry because of their marked ability to associate by forming hydrogen bonds, aromatic interactions, and coordination to metals (Duong et al., 2011). The pseudohalide azides have also been widely used due to their versatile bridging modes. A large number of azide compounds have been synthesized based on two azide coordination modes: 1) the end-on (EO) and 2) the end-to end (EE) (He et al., 2004; Carranza et al., 2008). Herein this article, we report the crystal structure of the title compound, a mononuclear MnII complex. An isomorphous Zn-complex has been reported (Zhao et al., 2009).

The structure of the title compound (Fig. 1) comprises a mononuclear MnII complex wherein MnII lies on an inversion center. The MnII atom is coordinated by two terminal EO azide anions and two 6-(pyridin-2-yl)-1,3,5-triazine ligands via pyridyl and triazine N atoms forming a pseudo-octahedral geometry with Mn—N distances in the range 2.192 (2) to 2.277 (2) Å. The EO azide anions are in a terminal non-linear coordination mode with the MnII center as is apparent from the Mn1—N7—N8 bond angle of 116.82 (9) °. The 6-(pyridin-2-yl)-1,3,5-triazine ligands are nearly planar, with the largest deviation of any atom from its mean-plane being -0.116 Å for C3. The two chelated diaminotriazine ligands are twisted with respect to each other by a dihedral angle of 74.75 (5) °. The adjacent complex molecules are linked through intermolecular hydrogen bonds N6—H6A···N3 and N6—H6B···N7 between azide groups and diaminotriazine groups (Table 1) forming an infinite hydrogen bonded layer running parallel to the ac plane. In addition, hydrogen bonding interactions N5—H5A···N9 connect the neighboring layers to a three-dimensional supramolecular framework (Fig. 2).

For background to pyridyl-substituted diaminotriazine and azide ligands, see: Duong et al. (2011); He et al. (2004); Carranza et al. (2008). For an isotypic ZnII structure, see: Zhao et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [symmetry code: A -x + 1, y, z - 1/2]
[Figure 2] Fig. 2. A view of the N—H···N hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.
Bis(azido-κN)bis[6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine- κ2N1,N6]manganese(II) top
Crystal data top
[Mn(N3)2(C8H8N6)2]F(000) = 1052
Mr = 515.41Dx = 1.556 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1457 reflections
a = 18.330 (3) Åθ = 2.5–21.6°
b = 14.412 (3) ŵ = 0.65 mm1
c = 9.1915 (17) ÅT = 293 K
β = 115.044 (2)°Block, pink
V = 2199.8 (7) Å30.17 × 0.11 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII 1K CCD area-detector
diffractometer
2600 independent reflections
Radiation source: fine-focus sealed tube1562 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
phi and ω scansθmax = 28.4°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
h = 2124
Tmin = 0.924, Tmax = 0.947k = 1917
7095 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0378P)2]
where P = (Fo2 + 2Fc2)/3
2600 reflections(Δ/σ)max < 0.001
159 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
[Mn(N3)2(C8H8N6)2]V = 2199.8 (7) Å3
Mr = 515.41Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.330 (3) ŵ = 0.65 mm1
b = 14.412 (3) ÅT = 293 K
c = 9.1915 (17) Å0.17 × 0.11 × 0.10 mm
β = 115.044 (2)°
Data collection top
Bruker APEXII 1K CCD area-detector
diffractometer
2600 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2004)
1562 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.947Rint = 0.056
7095 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.01Δρmax = 0.33 e Å3
2600 reflectionsΔρmin = 0.38 e Å3
159 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.26907 (4)0.25000.0319 (2)
N10.41792 (13)0.16367 (15)0.2907 (3)0.0378 (6)
N20.27367 (13)0.16204 (14)0.1202 (2)0.0341 (6)
N30.32528 (13)0.25285 (15)0.2755 (2)0.0352 (6)
N40.39898 (13)0.23967 (15)0.0092 (2)0.0319 (5)
N50.44191 (14)0.33368 (17)0.1419 (3)0.0506 (7)
H5A0.43660.35670.23220.061*
H5B0.48250.34900.05480.061*
N60.20573 (14)0.17337 (17)0.3926 (3)0.0517 (8)
H6A0.20000.19380.48470.062*
H6B0.16970.13760.38580.062*
N70.56500 (14)0.37854 (17)0.1881 (3)0.0400 (6)
N80.58818 (14)0.44325 (19)0.2785 (3)0.0420 (6)
N90.61109 (17)0.50489 (19)0.3684 (3)0.0631 (9)
C10.4266 (2)0.1298 (2)0.4336 (4)0.0555 (9)
H1A0.47460.14160.52300.067*
C20.3687 (2)0.0789 (2)0.4542 (4)0.0595 (10)
H2A0.37730.05720.55550.071*
C30.29800 (19)0.0605 (2)0.3237 (4)0.0478 (8)
H3A0.25760.02630.33500.057*
C40.28749 (17)0.09327 (18)0.1750 (3)0.0385 (7)
H4A0.24030.08070.08430.046*
C50.34803 (16)0.14502 (18)0.1631 (3)0.0306 (6)
C60.33940 (16)0.18485 (17)0.0066 (3)0.0291 (6)
C70.26999 (16)0.19689 (19)0.2612 (3)0.0341 (7)
C80.38731 (16)0.27449 (19)0.1370 (3)0.0329 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0284 (3)0.0374 (4)0.0248 (3)0.0000.0064 (2)0.000
N10.0369 (14)0.0401 (15)0.0285 (13)0.0048 (11)0.0062 (11)0.0062 (10)
N20.0321 (13)0.0406 (14)0.0254 (12)0.0039 (11)0.0081 (10)0.0001 (10)
N30.0322 (13)0.0442 (15)0.0243 (12)0.0066 (11)0.0073 (10)0.0001 (10)
N40.0304 (13)0.0382 (14)0.0243 (11)0.0043 (11)0.0087 (10)0.0007 (10)
N50.0422 (16)0.076 (2)0.0260 (13)0.0219 (14)0.0071 (11)0.0089 (12)
N60.0431 (16)0.076 (2)0.0263 (13)0.0227 (14)0.0057 (12)0.0010 (12)
N70.0357 (15)0.0461 (16)0.0370 (14)0.0042 (12)0.0142 (12)0.0013 (12)
N80.0308 (14)0.0508 (17)0.0409 (15)0.0008 (13)0.0119 (12)0.0098 (13)
N90.069 (2)0.0530 (19)0.0545 (18)0.0183 (15)0.0141 (16)0.0114 (14)
C10.053 (2)0.063 (2)0.0345 (18)0.0142 (17)0.0040 (15)0.0131 (15)
C20.070 (2)0.064 (2)0.0374 (18)0.0201 (19)0.0166 (17)0.0160 (16)
C30.054 (2)0.0431 (19)0.052 (2)0.0071 (16)0.0276 (17)0.0071 (15)
C40.0367 (18)0.0364 (17)0.0383 (16)0.0056 (13)0.0118 (14)0.0016 (13)
C50.0336 (16)0.0296 (15)0.0284 (14)0.0004 (12)0.0127 (12)0.0009 (12)
C60.0303 (15)0.0286 (15)0.0273 (14)0.0015 (12)0.0111 (12)0.0009 (11)
C70.0287 (16)0.0393 (17)0.0286 (15)0.0007 (13)0.0067 (12)0.0020 (12)
C80.0298 (15)0.0406 (17)0.0264 (14)0.0005 (13)0.0100 (12)0.0007 (12)
Geometric parameters (Å, º) top
Mn1—N7i2.192 (2)N5—H5B0.8600
Mn1—N72.192 (2)N6—C71.325 (3)
Mn1—N42.244 (2)N6—H6A0.8600
Mn1—N4i2.244 (2)N6—H6B0.8600
Mn1—N12.277 (2)N7—N81.201 (3)
Mn1—N1i2.277 (2)N8—N91.164 (3)
N1—C11.346 (3)C1—C21.368 (4)
N1—C51.348 (3)C1—H1A0.9300
N2—C61.315 (3)C2—C31.369 (4)
N2—C71.365 (3)C2—H2A0.9300
N3—C81.336 (3)C3—C41.380 (4)
N3—C71.345 (3)C3—H3A0.9300
N4—C61.340 (3)C4—C51.379 (4)
N4—C81.364 (3)C4—H4A0.9300
N5—C81.330 (3)C5—C61.493 (3)
N5—H5A0.8600
N7i—Mn1—N787.95 (13)H6A—N6—H6B120.0
N7i—Mn1—N494.56 (8)N8—N7—Mn1116.8 (2)
N7—Mn1—N4101.08 (8)N9—N8—N7178.8 (3)
N7i—Mn1—N4i101.08 (8)N1—C1—C2123.4 (3)
N7—Mn1—N4i94.56 (8)N1—C1—H1A118.3
N4—Mn1—N4i158.23 (11)C2—C1—H1A118.3
N7i—Mn1—N188.17 (9)C1—C2—C3119.0 (3)
N7—Mn1—N1172.72 (8)C1—C2—H2A120.5
N4—Mn1—N173.10 (8)C3—C2—H2A120.5
N4i—Mn1—N192.23 (8)C2—C3—C4119.0 (3)
N7i—Mn1—N1i172.72 (8)C2—C3—H3A120.5
N7—Mn1—N1i88.17 (9)C4—C3—H3A120.5
N4—Mn1—N1i92.23 (8)C5—C4—C3119.0 (3)
N4i—Mn1—N1i73.10 (8)C5—C4—H4A120.5
N1—Mn1—N1i96.33 (12)C3—C4—H4A120.5
C1—N1—C5117.0 (2)N1—C5—C4122.6 (2)
C1—N1—Mn1126.03 (19)N1—C5—C6115.8 (2)
C5—N1—Mn1116.15 (17)C4—C5—C6121.6 (2)
C6—N2—C7114.1 (2)N2—C6—N4126.7 (2)
C8—N3—C7114.8 (2)N2—C6—C5116.2 (2)
C6—N4—C8114.4 (2)N4—C6—C5117.1 (2)
C6—N4—Mn1117.05 (16)N6—C7—N3118.7 (3)
C8—N4—Mn1128.46 (18)N6—C7—N2116.0 (3)
C8—N5—H5A120.0N3—C7—N2125.3 (2)
C8—N5—H5B120.0N5—C8—N3117.8 (2)
H5A—N5—H5B120.0N5—C8—N4117.6 (2)
C7—N6—H6A120.0N3—C8—N4124.6 (3)
C7—N6—H6B120.0
N7i—Mn1—N1—C181.4 (3)C1—N1—C5—C40.4 (4)
N4—Mn1—N1—C1176.8 (3)Mn1—N1—C5—C4170.5 (2)
N4i—Mn1—N1—C119.6 (3)C1—N1—C5—C6178.9 (3)
N1i—Mn1—N1—C192.8 (3)Mn1—N1—C5—C68.9 (3)
N7i—Mn1—N1—C587.6 (2)C3—C4—C5—N11.2 (4)
N4—Mn1—N1—C57.71 (19)C3—C4—C5—C6178.2 (3)
N4i—Mn1—N1—C5171.4 (2)C7—N2—C6—N42.4 (4)
N1i—Mn1—N1—C598.1 (2)C7—N2—C6—C5177.4 (2)
N7i—Mn1—N4—C681.2 (2)C8—N4—C6—N20.7 (4)
N7—Mn1—N4—C6170.01 (19)Mn1—N4—C6—N2177.3 (2)
N4i—Mn1—N4—C654.83 (18)C8—N4—C6—C5179.5 (2)
N1—Mn1—N4—C65.48 (18)Mn1—N4—C6—C52.9 (3)
N1i—Mn1—N4—C6101.42 (19)N1—C5—C6—N2175.8 (2)
N7i—Mn1—N4—C894.8 (2)C4—C5—C6—N24.9 (4)
N7—Mn1—N4—C86.0 (2)N1—C5—C6—N44.1 (4)
N4i—Mn1—N4—C8129.1 (2)C4—C5—C6—N4175.3 (2)
N1—Mn1—N4—C8178.5 (2)C8—N3—C7—N6178.8 (3)
N1i—Mn1—N4—C882.5 (2)C8—N3—C7—N20.5 (4)
N7i—Mn1—N7—N843.16 (18)C6—N2—C7—N6178.2 (2)
N4—Mn1—N7—N8137.4 (2)C6—N2—C7—N32.6 (4)
N4i—Mn1—N7—N857.8 (2)C7—N3—C8—N5176.4 (3)
N1i—Mn1—N7—N8130.7 (2)C7—N3—C8—N44.1 (4)
C5—N1—C1—C20.3 (5)C6—N4—C8—N5176.3 (2)
Mn1—N1—C1—C2168.6 (3)Mn1—N4—C8—N50.1 (4)
N1—C1—C2—C30.3 (6)C6—N4—C8—N34.2 (4)
C1—C2—C3—C40.4 (5)Mn1—N4—C8—N3179.68 (19)
C2—C3—C4—C51.1 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···N70.862.142.986 (3)166
N5—H5A···N9ii0.862.322.996 (4)136
N6—H6A···N3iii0.862.193.048 (3)175
N6—H6B···N7iv0.862.303.063 (3)148
Symmetry codes: (ii) x+1, y+1, z; (iii) x+1/2, y+1/2, z1; (iv) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(N3)2(C8H8N6)2]
Mr515.41
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)18.330 (3), 14.412 (3), 9.1915 (17)
β (°) 115.044 (2)
V3)2199.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.65
Crystal size (mm)0.17 × 0.11 × 0.10
Data collection
DiffractometerBruker APEXII 1K CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2004)
Tmin, Tmax0.924, 0.947
No. of measured, independent and
observed [I > 2σ(I)] reflections
7095, 2600, 1562
Rint0.056
(sin θ/λ)max1)0.669
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.106, 1.01
No. of reflections2600
No. of parameters159
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.38

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5B···N70.862.142.986 (3)166.4
N5—H5A···N9i0.862.322.996 (4)135.6
N6—H6A···N3ii0.862.193.048 (3)175.2
N6—H6B···N7iii0.862.303.063 (3)147.5
Symmetry codes: (i) x+1, y+1, z; (ii) x+1/2, y+1/2, z1; (iii) x1/2, y+1/2, z1/2.
 

References

First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCarranza, J., Julve, M. & Sletten, J. (2008). Inorg. Chim. Acta, 361, 2499–2507.  Web of Science CSD CrossRef CAS Google Scholar
First citationDuong, A., Métivaud, V., Maris, T. & Wuest, J. D. (2011). Cryst. Growth Des. 11, 2026–2034.  Web of Science CSD CrossRef CAS Google Scholar
First citationHe, X., Lu, C. Z., Yu, Y. Q., Chen, S. M., Wu, X. Y. & Yan, Y. (2004). Z. Anorg. Allg. Chem. 630, 1131–1135.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2004). SADBAS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, Q.-H., Fan, A.-L., Li, L.-N. & Xie, M.-J. (2009). Acta Cryst. E65, m622.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds