metal-organic compounds
Bis(azido-κN)bis[6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine-κ2N1,N6]manganese(II)
aKey Laboratory of Tobacco Chemistry of Yunnan, Yunnan Academy of Tobacco Science, Kunming 650106, People's Republic of China, and bCollege of Chemical Engineering, Kunming University of Science and Technology, Kunming 650224, People's Republic of China
*Correspondence e-mail: wangkunmiao@163.com
In the title complex, [Mn(N3)2(C8H8N6)2], the complete molecule is generated by the application of twofold symmetry, and is in a distorted octahedral environment, coordinated by four N atoms of two bidentate 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine ligands and two N atoms from two azide anions. The two chelated 6-(pyridin-2-yl)-1,3,5-triazine-2,4-diamine ligands form a dihedral angle 74.75 (5)°. The mononuclear molecules are alternatively linked into layers parallel to the ac plane via N—H⋯N hydrogen bonds. Adjacent layers are connected into a three-dimensional supramolecular framework by futher N—H⋯N hydrogen-bonding interactions.
Related literature
For background to pyridyl-substituted diaminotriazine and azide ligands, see: Duong et al. (2011); He et al. (2004); Carranza et al. (2008). For an isotypic ZnII structure, see: Zhao et al. (2009).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2004); cell SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.
Supporting information
10.1107/S160053681201046X/pv2519sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681201046X/pv2519Isup2.hkl
A mixture of Mn(CH3COO)2.2H2O (0.1 mmol, 0.025 g), 6-(pyridin-2-yl)-1,3,5-diaminotriazine (0.2 mmol, 0.035 g) in methanol (20.0 ml) was stirred for 40 min and the mixture was filtered, sealed and kept in a dark place at room temperature for several weeks. Block crystals suitable for X-ray
were produced in 10% yield.The H atoms of pyridine ring and amino groups were generated geometrically and included in the
in the riding model approximation with C—H = 0.93 and N—H = 0.86 Å and Uiso(H) = 1.2Ueq(C/N).Pyridyl-substituted diaminotriazine compounds are widely used as ligands in supramolecular chemistry because of their marked ability to associate by forming hydrogen bonds, aromatic interactions, and coordination to metals (Duong et al., 2011). The pseudohalide
have also been widely used due to their versatile bridging modes. A large number of azide compounds have been synthesized based on two azide coordination modes: 1) the end-on (EO) and 2) the end-to end (EE) (He et al., 2004; Carranza et al., 2008). Herein this article, we report the of the title compound, a mononuclear MnII complex. An isomorphous Zn-complex has been reported (Zhao et al., 2009).The structure of the title compound (Fig. 1) comprises a mononuclear MnII complex wherein MnII lies on an inversion center. The MnII atom is coordinated by two terminal EO azide anions and two 6-(pyridin-2-yl)-1,3,5-triazine ligands via pyridyl and triazine N atoms forming a pseudo-octahedral geometry with Mn—N distances in the range 2.192 (2) to 2.277 (2) Å. The EO azide anions are in a terminal non-linear coordination mode with the MnII center as is apparent from the Mn1—N7—N8 bond angle of 116.82 (9) °. The 6-(pyridin-2-yl)-1,3,5-triazine ligands are nearly planar, with the largest deviation of any atom from its mean-plane being -0.116 Å for C3. The two chelated diaminotriazine ligands are twisted with respect to each other by a dihedral angle of 74.75 (5) °. The adjacent complex molecules are linked through intermolecular hydrogen bonds N6—H6A···N3 and N6—H6B···N7 between azide groups and diaminotriazine groups (Table 1) forming an infinite hydrogen bonded layer running parallel to the ac plane. In addition, hydrogen bonding interactions N5—H5A···N9 connect the neighboring layers to a three-dimensional supramolecular framework (Fig. 2).
For background to pyridyl-substituted diaminotriazine and azide ligands, see: Duong et al. (2011); He et al. (2004); Carranza et al. (2008). For an isotypic ZnII structure, see: Zhao et al. (2009).
Data collection: APEX2 (Bruker, 2004); cell
SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).[Mn(N3)2(C8H8N6)2] | F(000) = 1052 |
Mr = 515.41 | Dx = 1.556 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 1457 reflections |
a = 18.330 (3) Å | θ = 2.5–21.6° |
b = 14.412 (3) Å | µ = 0.65 mm−1 |
c = 9.1915 (17) Å | T = 293 K |
β = 115.044 (2)° | Block, pink |
V = 2199.8 (7) Å3 | 0.17 × 0.11 × 0.10 mm |
Z = 4 |
Bruker APEXII 1K CCD area-detector diffractometer | 2600 independent reflections |
Radiation source: fine-focus sealed tube | 1562 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.056 |
phi and ω scans | θmax = 28.4°, θmin = 1.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | h = −21→24 |
Tmin = 0.924, Tmax = 0.947 | k = −19→17 |
7095 measured reflections | l = −11→11 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.01 | w = 1/[σ2(Fo2) + (0.0378P)2] where P = (Fo2 + 2Fc2)/3 |
2600 reflections | (Δ/σ)max < 0.001 |
159 parameters | Δρmax = 0.33 e Å−3 |
0 restraints | Δρmin = −0.38 e Å−3 |
[Mn(N3)2(C8H8N6)2] | V = 2199.8 (7) Å3 |
Mr = 515.41 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 18.330 (3) Å | µ = 0.65 mm−1 |
b = 14.412 (3) Å | T = 293 K |
c = 9.1915 (17) Å | 0.17 × 0.11 × 0.10 mm |
β = 115.044 (2)° |
Bruker APEXII 1K CCD area-detector diffractometer | 2600 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) | 1562 reflections with I > 2σ(I) |
Tmin = 0.924, Tmax = 0.947 | Rint = 0.056 |
7095 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.106 | H-atom parameters constrained |
S = 1.01 | Δρmax = 0.33 e Å−3 |
2600 reflections | Δρmin = −0.38 e Å−3 |
159 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Mn1 | 0.5000 | 0.26907 (4) | 0.2500 | 0.0319 (2) | |
N1 | 0.41792 (13) | 0.16367 (15) | 0.2907 (3) | 0.0378 (6) | |
N2 | 0.27367 (13) | 0.16204 (14) | −0.1202 (2) | 0.0341 (6) | |
N3 | 0.32528 (13) | 0.25285 (15) | −0.2755 (2) | 0.0352 (6) | |
N4 | 0.39898 (13) | 0.23967 (15) | 0.0092 (2) | 0.0319 (5) | |
N5 | 0.44191 (14) | 0.33368 (17) | −0.1419 (3) | 0.0506 (7) | |
H5A | 0.4366 | 0.3567 | −0.2322 | 0.061* | |
H5B | 0.4825 | 0.3490 | −0.0548 | 0.061* | |
N6 | 0.20573 (14) | 0.17337 (17) | −0.3926 (3) | 0.0517 (8) | |
H6A | 0.2000 | 0.1938 | −0.4847 | 0.062* | |
H6B | 0.1697 | 0.1376 | −0.3858 | 0.062* | |
N7 | 0.56500 (14) | 0.37854 (17) | 0.1881 (3) | 0.0400 (6) | |
N8 | 0.58818 (14) | 0.44325 (19) | 0.2785 (3) | 0.0420 (6) | |
N9 | 0.61109 (17) | 0.50489 (19) | 0.3684 (3) | 0.0631 (9) | |
C1 | 0.4266 (2) | 0.1298 (2) | 0.4336 (4) | 0.0555 (9) | |
H1A | 0.4746 | 0.1416 | 0.5230 | 0.067* | |
C2 | 0.3687 (2) | 0.0789 (2) | 0.4542 (4) | 0.0595 (10) | |
H2A | 0.3773 | 0.0572 | 0.5555 | 0.071* | |
C3 | 0.29800 (19) | 0.0605 (2) | 0.3237 (4) | 0.0478 (8) | |
H3A | 0.2576 | 0.0263 | 0.3350 | 0.057* | |
C4 | 0.28749 (17) | 0.09327 (18) | 0.1750 (3) | 0.0385 (7) | |
H4A | 0.2403 | 0.0807 | 0.0843 | 0.046* | |
C5 | 0.34803 (16) | 0.14502 (18) | 0.1631 (3) | 0.0306 (6) | |
C6 | 0.33940 (16) | 0.18485 (17) | 0.0066 (3) | 0.0291 (6) | |
C7 | 0.26999 (16) | 0.19689 (19) | −0.2612 (3) | 0.0341 (7) | |
C8 | 0.38731 (16) | 0.27449 (19) | −0.1370 (3) | 0.0329 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Mn1 | 0.0284 (3) | 0.0374 (4) | 0.0248 (3) | 0.000 | 0.0064 (2) | 0.000 |
N1 | 0.0369 (14) | 0.0401 (15) | 0.0285 (13) | −0.0048 (11) | 0.0062 (11) | 0.0062 (10) |
N2 | 0.0321 (13) | 0.0406 (14) | 0.0254 (12) | −0.0039 (11) | 0.0081 (10) | 0.0001 (10) |
N3 | 0.0322 (13) | 0.0442 (15) | 0.0243 (12) | −0.0066 (11) | 0.0073 (10) | −0.0001 (10) |
N4 | 0.0304 (13) | 0.0382 (14) | 0.0243 (11) | −0.0043 (11) | 0.0087 (10) | 0.0007 (10) |
N5 | 0.0422 (16) | 0.076 (2) | 0.0260 (13) | −0.0219 (14) | 0.0071 (11) | 0.0089 (12) |
N6 | 0.0431 (16) | 0.076 (2) | 0.0263 (13) | −0.0227 (14) | 0.0057 (12) | 0.0010 (12) |
N7 | 0.0357 (15) | 0.0461 (16) | 0.0370 (14) | −0.0042 (12) | 0.0142 (12) | −0.0013 (12) |
N8 | 0.0308 (14) | 0.0508 (17) | 0.0409 (15) | −0.0008 (13) | 0.0119 (12) | 0.0098 (13) |
N9 | 0.069 (2) | 0.0530 (19) | 0.0545 (18) | −0.0183 (15) | 0.0141 (16) | −0.0114 (14) |
C1 | 0.053 (2) | 0.063 (2) | 0.0345 (18) | −0.0142 (17) | 0.0040 (15) | 0.0131 (15) |
C2 | 0.070 (2) | 0.064 (2) | 0.0374 (18) | −0.0201 (19) | 0.0166 (17) | 0.0160 (16) |
C3 | 0.054 (2) | 0.0431 (19) | 0.052 (2) | −0.0071 (16) | 0.0276 (17) | 0.0071 (15) |
C4 | 0.0367 (18) | 0.0364 (17) | 0.0383 (16) | −0.0056 (13) | 0.0118 (14) | −0.0016 (13) |
C5 | 0.0336 (16) | 0.0296 (15) | 0.0284 (14) | −0.0004 (12) | 0.0127 (12) | 0.0009 (12) |
C6 | 0.0303 (15) | 0.0286 (15) | 0.0273 (14) | 0.0015 (12) | 0.0111 (12) | −0.0009 (11) |
C7 | 0.0287 (16) | 0.0393 (17) | 0.0286 (15) | 0.0007 (13) | 0.0067 (12) | −0.0020 (12) |
C8 | 0.0298 (15) | 0.0406 (17) | 0.0264 (14) | −0.0005 (13) | 0.0100 (12) | 0.0007 (12) |
Mn1—N7i | 2.192 (2) | N5—H5B | 0.8600 |
Mn1—N7 | 2.192 (2) | N6—C7 | 1.325 (3) |
Mn1—N4 | 2.244 (2) | N6—H6A | 0.8600 |
Mn1—N4i | 2.244 (2) | N6—H6B | 0.8600 |
Mn1—N1 | 2.277 (2) | N7—N8 | 1.201 (3) |
Mn1—N1i | 2.277 (2) | N8—N9 | 1.164 (3) |
N1—C1 | 1.346 (3) | C1—C2 | 1.368 (4) |
N1—C5 | 1.348 (3) | C1—H1A | 0.9300 |
N2—C6 | 1.315 (3) | C2—C3 | 1.369 (4) |
N2—C7 | 1.365 (3) | C2—H2A | 0.9300 |
N3—C8 | 1.336 (3) | C3—C4 | 1.380 (4) |
N3—C7 | 1.345 (3) | C3—H3A | 0.9300 |
N4—C6 | 1.340 (3) | C4—C5 | 1.379 (4) |
N4—C8 | 1.364 (3) | C4—H4A | 0.9300 |
N5—C8 | 1.330 (3) | C5—C6 | 1.493 (3) |
N5—H5A | 0.8600 | ||
N7i—Mn1—N7 | 87.95 (13) | H6A—N6—H6B | 120.0 |
N7i—Mn1—N4 | 94.56 (8) | N8—N7—Mn1 | 116.8 (2) |
N7—Mn1—N4 | 101.08 (8) | N9—N8—N7 | 178.8 (3) |
N7i—Mn1—N4i | 101.08 (8) | N1—C1—C2 | 123.4 (3) |
N7—Mn1—N4i | 94.56 (8) | N1—C1—H1A | 118.3 |
N4—Mn1—N4i | 158.23 (11) | C2—C1—H1A | 118.3 |
N7i—Mn1—N1 | 88.17 (9) | C1—C2—C3 | 119.0 (3) |
N7—Mn1—N1 | 172.72 (8) | C1—C2—H2A | 120.5 |
N4—Mn1—N1 | 73.10 (8) | C3—C2—H2A | 120.5 |
N4i—Mn1—N1 | 92.23 (8) | C2—C3—C4 | 119.0 (3) |
N7i—Mn1—N1i | 172.72 (8) | C2—C3—H3A | 120.5 |
N7—Mn1—N1i | 88.17 (9) | C4—C3—H3A | 120.5 |
N4—Mn1—N1i | 92.23 (8) | C5—C4—C3 | 119.0 (3) |
N4i—Mn1—N1i | 73.10 (8) | C5—C4—H4A | 120.5 |
N1—Mn1—N1i | 96.33 (12) | C3—C4—H4A | 120.5 |
C1—N1—C5 | 117.0 (2) | N1—C5—C4 | 122.6 (2) |
C1—N1—Mn1 | 126.03 (19) | N1—C5—C6 | 115.8 (2) |
C5—N1—Mn1 | 116.15 (17) | C4—C5—C6 | 121.6 (2) |
C6—N2—C7 | 114.1 (2) | N2—C6—N4 | 126.7 (2) |
C8—N3—C7 | 114.8 (2) | N2—C6—C5 | 116.2 (2) |
C6—N4—C8 | 114.4 (2) | N4—C6—C5 | 117.1 (2) |
C6—N4—Mn1 | 117.05 (16) | N6—C7—N3 | 118.7 (3) |
C8—N4—Mn1 | 128.46 (18) | N6—C7—N2 | 116.0 (3) |
C8—N5—H5A | 120.0 | N3—C7—N2 | 125.3 (2) |
C8—N5—H5B | 120.0 | N5—C8—N3 | 117.8 (2) |
H5A—N5—H5B | 120.0 | N5—C8—N4 | 117.6 (2) |
C7—N6—H6A | 120.0 | N3—C8—N4 | 124.6 (3) |
C7—N6—H6B | 120.0 | ||
N7i—Mn1—N1—C1 | −81.4 (3) | C1—N1—C5—C4 | −0.4 (4) |
N4—Mn1—N1—C1 | −176.8 (3) | Mn1—N1—C5—C4 | −170.5 (2) |
N4i—Mn1—N1—C1 | 19.6 (3) | C1—N1—C5—C6 | 178.9 (3) |
N1i—Mn1—N1—C1 | 92.8 (3) | Mn1—N1—C5—C6 | 8.9 (3) |
N7i—Mn1—N1—C5 | 87.6 (2) | C3—C4—C5—N1 | 1.2 (4) |
N4—Mn1—N1—C5 | −7.71 (19) | C3—C4—C5—C6 | −178.2 (3) |
N4i—Mn1—N1—C5 | −171.4 (2) | C7—N2—C6—N4 | 2.4 (4) |
N1i—Mn1—N1—C5 | −98.1 (2) | C7—N2—C6—C5 | −177.4 (2) |
N7i—Mn1—N4—C6 | −81.2 (2) | C8—N4—C6—N2 | 0.7 (4) |
N7—Mn1—N4—C6 | −170.01 (19) | Mn1—N4—C6—N2 | 177.3 (2) |
N4i—Mn1—N4—C6 | 54.83 (18) | C8—N4—C6—C5 | −179.5 (2) |
N1—Mn1—N4—C6 | 5.48 (18) | Mn1—N4—C6—C5 | −2.9 (3) |
N1i—Mn1—N4—C6 | 101.42 (19) | N1—C5—C6—N2 | 175.8 (2) |
N7i—Mn1—N4—C8 | 94.8 (2) | C4—C5—C6—N2 | −4.9 (4) |
N7—Mn1—N4—C8 | 6.0 (2) | N1—C5—C6—N4 | −4.1 (4) |
N4i—Mn1—N4—C8 | −129.1 (2) | C4—C5—C6—N4 | 175.3 (2) |
N1—Mn1—N4—C8 | −178.5 (2) | C8—N3—C7—N6 | 178.8 (3) |
N1i—Mn1—N4—C8 | −82.5 (2) | C8—N3—C7—N2 | −0.5 (4) |
N7i—Mn1—N7—N8 | 43.16 (18) | C6—N2—C7—N6 | 178.2 (2) |
N4—Mn1—N7—N8 | 137.4 (2) | C6—N2—C7—N3 | −2.6 (4) |
N4i—Mn1—N7—N8 | −57.8 (2) | C7—N3—C8—N5 | −176.4 (3) |
N1i—Mn1—N7—N8 | −130.7 (2) | C7—N3—C8—N4 | 4.1 (4) |
C5—N1—C1—C2 | −0.3 (5) | C6—N4—C8—N5 | 176.3 (2) |
Mn1—N1—C1—C2 | 168.6 (3) | Mn1—N4—C8—N5 | 0.1 (4) |
N1—C1—C2—C3 | 0.3 (6) | C6—N4—C8—N3 | −4.2 (4) |
C1—C2—C3—C4 | 0.4 (5) | Mn1—N4—C8—N3 | 179.68 (19) |
C2—C3—C4—C5 | −1.1 (5) |
Symmetry code: (i) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5B···N7 | 0.86 | 2.14 | 2.986 (3) | 166 |
N5—H5A···N9ii | 0.86 | 2.32 | 2.996 (4) | 136 |
N6—H6A···N3iii | 0.86 | 2.19 | 3.048 (3) | 175 |
N6—H6B···N7iv | 0.86 | 2.30 | 3.063 (3) | 148 |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x+1/2, −y+1/2, −z−1; (iv) x−1/2, −y+1/2, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | [Mn(N3)2(C8H8N6)2] |
Mr | 515.41 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 18.330 (3), 14.412 (3), 9.1915 (17) |
β (°) | 115.044 (2) |
V (Å3) | 2199.8 (7) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 0.17 × 0.11 × 0.10 |
Data collection | |
Diffractometer | Bruker APEXII 1K CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2004) |
Tmin, Tmax | 0.924, 0.947 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7095, 2600, 1562 |
Rint | 0.056 |
(sin θ/λ)max (Å−1) | 0.669 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.046, 0.106, 1.01 |
No. of reflections | 2600 |
No. of parameters | 159 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.38 |
Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
D—H···A | D—H | H···A | D···A | D—H···A |
N5—H5B···N7 | 0.86 | 2.14 | 2.986 (3) | 166.4 |
N5—H5A···N9i | 0.86 | 2.32 | 2.996 (4) | 135.6 |
N6—H6A···N3ii | 0.86 | 2.19 | 3.048 (3) | 175.2 |
N6—H6B···N7iii | 0.86 | 2.30 | 3.063 (3) | 147.5 |
Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x+1/2, −y+1/2, −z−1; (iii) x−1/2, −y+1/2, z−1/2. |
References
Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Carranza, J., Julve, M. & Sletten, J. (2008). Inorg. Chim. Acta, 361, 2499–2507. Web of Science CSD CrossRef CAS Google Scholar
Duong, A., Métivaud, V., Maris, T. & Wuest, J. D. (2011). Cryst. Growth Des. 11, 2026–2034. Web of Science CSD CrossRef CAS Google Scholar
He, X., Lu, C. Z., Yu, Y. Q., Chen, S. M., Wu, X. Y. & Yan, Y. (2004). Z. Anorg. Allg. Chem. 630, 1131–1135. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (2004). SADBAS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Zhao, Q.-H., Fan, A.-L., Li, L.-N. & Xie, M.-J. (2009). Acta Cryst. E65, m622. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Pyridyl-substituted diaminotriazine compounds are widely used as ligands in supramolecular chemistry because of their marked ability to associate by forming hydrogen bonds, aromatic interactions, and coordination to metals (Duong et al., 2011). The pseudohalide azides have also been widely used due to their versatile bridging modes. A large number of azide compounds have been synthesized based on two azide coordination modes: 1) the end-on (EO) and 2) the end-to end (EE) (He et al., 2004; Carranza et al., 2008). Herein this article, we report the crystal structure of the title compound, a mononuclear MnII complex. An isomorphous Zn-complex has been reported (Zhao et al., 2009).
The structure of the title compound (Fig. 1) comprises a mononuclear MnII complex wherein MnII lies on an inversion center. The MnII atom is coordinated by two terminal EO azide anions and two 6-(pyridin-2-yl)-1,3,5-triazine ligands via pyridyl and triazine N atoms forming a pseudo-octahedral geometry with Mn—N distances in the range 2.192 (2) to 2.277 (2) Å. The EO azide anions are in a terminal non-linear coordination mode with the MnII center as is apparent from the Mn1—N7—N8 bond angle of 116.82 (9) °. The 6-(pyridin-2-yl)-1,3,5-triazine ligands are nearly planar, with the largest deviation of any atom from its mean-plane being -0.116 Å for C3. The two chelated diaminotriazine ligands are twisted with respect to each other by a dihedral angle of 74.75 (5) °. The adjacent complex molecules are linked through intermolecular hydrogen bonds N6—H6A···N3 and N6—H6B···N7 between azide groups and diaminotriazine groups (Table 1) forming an infinite hydrogen bonded layer running parallel to the ac plane. In addition, hydrogen bonding interactions N5—H5A···N9 connect the neighboring layers to a three-dimensional supramolecular framework (Fig. 2).