organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Amino-3-carb­­oxy-1H-1,2,4-triazol-4-ium nitrate monohydrate

aLaboratoire de Chimie Appliquée et Technologie des Matériaux LCATM, Université Larbi Ben M'Hidi, 04000 Oum El Bouaghi, Algeria, bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Faculté des Sciences Exactes, Université Mentouri Constantine 25000, Algeria, and cCentre de difractométrie X, UMR 6226 CNRS Unité Sciences Chimiques de Rennes, Université de Rennes I, 263 Avenue du Général Leclerc, 35042 Rennes, France
*Correspondence e-mail: fadilaber@yahoo.fr

(Received 7 March 2012; accepted 14 March 2012; online 21 March 2012)

The two-dimensional crystal packing of the title compound, C3H5N4O2+·NO2·H2O, results from the stacking of well separated layers (i.e. with nothing between the layers) parallel to the (-113) plane in which adjacent cations adopt a head-to-head arrangement such that two –COOH groups are linked via two water mol­ecules (the water O atom behaves simultaneously as donor and acceptor of hydrogen bonds) and two –NH2 groups are linked through two nitrate anions. This arrangement leads to alternating hydro­philic and hydro­phobic zones in which O—H⋯O and N—H⋯O hydrogen bonds, respectively, are observed.

Related literature

For properties of 1,2,4-triazoles, see: Ouakkaf et al. (2011[Ouakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171-o1172.]). For related structures, see: Fernandes et al. (2011[Fernandes, J. A., Liu, B., Tomé, J. C., Cunha-Silva, L. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2073-o2074.]); Berrah et al. (2011a[Berrah, F., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o2057-o2058.],b[Berrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525-o526.]); Jebas et al. (2006[Jebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481-o3482.]).

[Scheme 1]

Experimental

Crystal data
  • C3H5N4O2+·NO3·H2O

  • Mr = 209.14

  • Triclinic, [P \overline 1]

  • a = 4.9934 (13) Å

  • b = 6.7454 (17) Å

  • c = 12.446 (3) Å

  • α = 97.572 (12)°

  • β = 100.524 (13)°

  • γ = 98.933 (13)°

  • V = 401.60 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 150 K

  • 0.42 × 0.2 × 0.11 mm

Data collection
  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.863, Tmax = 0.982

  • 4012 measured reflections

  • 1821 independent reflections

  • 1563 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.109

  • S = 1.03

  • 1821 reflections

  • 134 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯O1W 0.82 1.72 2.5210 (17) 166
O1W—H2W⋯O4i 0.84 (3) 1.97 (3) 2.7985 (18) 166 (2)
O1W—H1W⋯N3ii 0.86 (2) 2.05 (3) 2.9011 (19) 172 (2)
N5—H5B⋯O2iii 0.86 2.04 2.8352 (18) 154
N2—H2⋯O1iii 0.86 2.02 2.8790 (17) 178
N4—H4⋯O1 0.86 2.06 2.9112 (18) 171
Symmetry codes: (i) -x, -y+2, -z; (ii) -x-1, -y+1, -z; (iii) x+1, y+1, z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Following our on-going interest on crystal structures of hybrid compounds established by hydrogen bonds and in attempts to clarify anion substitution influence upon hydrogen bonding patterns, we have undertaken synthesis of new compounds using 1,2,4-triazol derivatives and various inorganic acids (Ouakkaf et al., 2011). In this article, we report the preparations and crystal structure of the title compound.

The asymmetric unit of the title compound contains a cation, an anion and a water molecule linked by O—H···O and N—H···O hydrogen bonds (Fig.1.) The geometry of the triazole planar ring is similar to that seen in related compounds (Fernandes et al., 2011; Ouakkaf et al., 2011); it exhibits a short distance of 1.3023 (19) Å showing the double-bond formed between atoms C2 and N3, two intermediat bonds (1.3443 (18) and 1.3529 (19) Å) associated with a delocalized double bond (N4 C3 N2), and two long distances 1.3698 (19) and 1.3779 (18) Å related to the single bonds C2—N2 and N3—N4, respectively.

The two-dimensional network of the title compound results from the stacking of well separated planar layers parallel to (-113) plane (Fig. 2); analogous networks have been observed in other nitrate compounds (Berrah et al., 2011a,b; Jebas et al., 2006). In each layer, the adjacent cations are oriented in a head to head configuration in such a manner that two –COOH groups are linked via two water molecules (H2O behaves simultaneously as donor and acceptor of hydrogen bonds) and two –NH2groups are linked through two nitrate anions (Fig. 3 and Table 1). This arrangement leads to an alternating hydrophilic and hydrophobic zones where O—H···O and N—H···O H-bonds are observed, respectively.

Related literature top

For background information, see: Ouakkaf et al. (2011). For related structures, see: Fernandes et al. (2011); Berrah et al. (2011a,b); Jebas et al. (2006).

Experimental top

Colourless crystals of the title compound were grown by slow evaporation of water-methanol (1:1) solution of 5-amino-1,2,4-triazol-1H-3-carboxylic acid hydrate and nitric acid in a 1:1 stoichiometric ratio.

Refinement top

The H atoms of the water molecule were located from a difference Fourier map and were refined with Uiso(H) = 1.5Ueq(O). The remaining H atoms were located from differnce Fourier maps but introduced in calculated positions and treated as riding on their parent atoms with O—H = 0.82 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Structure description top

Following our on-going interest on crystal structures of hybrid compounds established by hydrogen bonds and in attempts to clarify anion substitution influence upon hydrogen bonding patterns, we have undertaken synthesis of new compounds using 1,2,4-triazol derivatives and various inorganic acids (Ouakkaf et al., 2011). In this article, we report the preparations and crystal structure of the title compound.

The asymmetric unit of the title compound contains a cation, an anion and a water molecule linked by O—H···O and N—H···O hydrogen bonds (Fig.1.) The geometry of the triazole planar ring is similar to that seen in related compounds (Fernandes et al., 2011; Ouakkaf et al., 2011); it exhibits a short distance of 1.3023 (19) Å showing the double-bond formed between atoms C2 and N3, two intermediat bonds (1.3443 (18) and 1.3529 (19) Å) associated with a delocalized double bond (N4 C3 N2), and two long distances 1.3698 (19) and 1.3779 (18) Å related to the single bonds C2—N2 and N3—N4, respectively.

The two-dimensional network of the title compound results from the stacking of well separated planar layers parallel to (-113) plane (Fig. 2); analogous networks have been observed in other nitrate compounds (Berrah et al., 2011a,b; Jebas et al., 2006). In each layer, the adjacent cations are oriented in a head to head configuration in such a manner that two –COOH groups are linked via two water molecules (H2O behaves simultaneously as donor and acceptor of hydrogen bonds) and two –NH2groups are linked through two nitrate anions (Fig. 3 and Table 1). This arrangement leads to an alternating hydrophilic and hydrophobic zones where O—H···O and N—H···O H-bonds are observed, respectively.

For background information, see: Ouakkaf et al. (2011). For related structures, see: Fernandes et al. (2011); Berrah et al. (2011a,b); Jebas et al. (2006).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. An asymmetric unit of the title compound with the atomic labelling scheme. Displacement are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. A two-dimensional network of the title compound viewed along the [1–10] direction. Hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A view of the title compound parallel to the (-113 ) plane of the planar infinite layer showing alternating hydrophilic and hydrophobic zones involving O—H···O and N—H···O hydrogen bonds, respectively; hydrogen bonds are shown as dashed lines.
5-Amino-3-carboxy-1H-1,2,4-triazol-4-ium nitrate monohydrate top
Crystal data top
C3H5N4O2+·NO3·H2OZ = 2
Mr = 209.14F(000) = 216
Triclinic, P1Dx = 1.729 Mg m3
a = 4.9934 (13) ÅMo Kα radiation, λ = 0.71073 Å
b = 6.7454 (17) ÅCell parameters from 1584 reflections
c = 12.446 (3) Åθ = 3.4–27.4°
α = 97.572 (12)°µ = 0.17 mm1
β = 100.524 (13)°T = 150 K
γ = 98.933 (13)°Stick, colourless
V = 401.60 (18) Å30.42 × 0.2 × 0.11 mm
Data collection top
Bruker APEXII
diffractometer
1563 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
CCD rotation images, thin slices scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 66
Tmin = 0.863, Tmax = 0.982k = 68
4012 measured reflectionsl = 1615
1821 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.0973P]
where P = (Fo2 + 2Fc2)/3
1821 reflections(Δ/σ)max < 0.001
134 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C3H5N4O2+·NO3·H2Oγ = 98.933 (13)°
Mr = 209.14V = 401.60 (18) Å3
Triclinic, P1Z = 2
a = 4.9934 (13) ÅMo Kα radiation
b = 6.7454 (17) ŵ = 0.17 mm1
c = 12.446 (3) ÅT = 150 K
α = 97.572 (12)°0.42 × 0.2 × 0.11 mm
β = 100.524 (13)°
Data collection top
Bruker APEXII
diffractometer
1821 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
1563 reflections with I > 2σ(I)
Tmin = 0.863, Tmax = 0.982Rint = 0.040
4012 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.35 e Å3
1821 reflectionsΔρmin = 0.29 e Å3
134 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1877 (2)0.15602 (16)0.31865 (9)0.0218 (3)
N30.0716 (3)0.32704 (19)0.20042 (11)0.0174 (3)
O40.2001 (2)0.80430 (17)0.13489 (10)0.0241 (3)
O50.2192 (2)0.59982 (18)0.06811 (10)0.0234 (3)
H50.25050.68880.03110.035*
O1W0.3752 (3)0.82557 (19)0.06786 (10)0.0272 (3)
H2W0.319 (5)0.946 (4)0.0762 (18)0.041*
H1W0.544 (5)0.791 (3)0.1043 (19)0.041*
N50.5272 (3)0.2985 (2)0.39298 (11)0.0219 (3)
H5A0.49990.1850.41720.026*
H5B0.68290.38110.41620.026*
O20.0623 (2)0.34292 (17)0.44188 (10)0.0284 (3)
O30.2143 (2)0.06970 (17)0.43144 (10)0.0262 (3)
N20.3435 (2)0.51522 (18)0.27273 (10)0.0158 (3)
H20.48060.61540.28540.019*
N40.0781 (3)0.23345 (19)0.27646 (10)0.0167 (3)
H40.01760.11780.29370.02*
N10.0104 (3)0.18948 (19)0.39831 (10)0.0171 (3)
C30.3308 (3)0.3458 (2)0.32034 (12)0.0155 (3)
C20.0952 (3)0.4958 (2)0.20038 (12)0.0165 (3)
C10.0296 (3)0.6523 (2)0.12995 (13)0.0175 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0199 (5)0.0212 (6)0.0216 (6)0.0009 (4)0.0034 (4)0.0088 (5)
N30.0166 (6)0.0160 (6)0.0191 (7)0.0023 (5)0.0004 (5)0.0077 (5)
O40.0237 (6)0.0185 (6)0.0289 (6)0.0007 (5)0.0009 (5)0.0109 (5)
O50.0219 (6)0.0198 (6)0.0261 (6)0.0013 (5)0.0043 (5)0.0114 (5)
O1W0.0219 (6)0.0221 (6)0.0343 (7)0.0020 (5)0.0057 (5)0.0159 (5)
N50.0150 (6)0.0186 (7)0.0293 (8)0.0034 (5)0.0034 (5)0.0123 (6)
O20.0274 (6)0.0189 (6)0.0339 (7)0.0075 (5)0.0047 (5)0.0156 (5)
O30.0183 (6)0.0212 (6)0.0334 (7)0.0073 (5)0.0039 (5)0.0105 (5)
N20.0135 (6)0.0134 (6)0.0190 (6)0.0007 (5)0.0002 (5)0.0060 (5)
N40.0149 (6)0.0150 (6)0.0195 (6)0.0004 (5)0.0011 (5)0.0095 (5)
N10.0166 (6)0.0139 (6)0.0195 (7)0.0002 (5)0.0015 (5)0.0047 (5)
C30.0153 (7)0.0134 (7)0.0177 (7)0.0016 (5)0.0023 (6)0.0045 (6)
C20.0151 (7)0.0153 (7)0.0182 (7)0.0021 (5)0.0008 (6)0.0042 (6)
C10.0201 (7)0.0136 (7)0.0187 (7)0.0022 (6)0.0031 (6)0.0053 (6)
Geometric parameters (Å, º) top
O1—N11.2720 (16)N5—H5B0.86
N3—C21.3023 (19)O2—N11.2443 (16)
N3—N41.3779 (18)O3—N11.2426 (16)
O4—C11.2139 (18)N2—C31.3529 (19)
O5—C11.3051 (19)N2—C21.3698 (19)
O5—H50.82N2—H20.86
O1W—H2W0.84 (3)N4—C31.3443 (18)
O1W—H1W0.86 (2)N4—H40.86
N5—C31.3155 (19)C2—C11.495 (2)
N5—H5A0.86
C2—N3—N4103.98 (12)O3—N1—O2120.44 (13)
C1—O5—H5109.5O3—N1—O1119.79 (12)
H2W—O1W—H1W107 (2)O2—N1—O1119.77 (12)
C3—N5—H5A120N5—C3—N4126.95 (13)
C3—N5—H5B120N5—C3—N2127.13 (13)
H5A—N5—H5B120N4—C3—N2105.91 (12)
C3—N2—C2106.57 (12)N3—C2—N2112.16 (13)
C3—N2—H2126.7N3—C2—C1124.96 (14)
C2—N2—H2126.7N2—C2—C1122.89 (13)
C3—N4—N3111.38 (12)O4—C1—O5128.33 (15)
C3—N4—H4124.3O4—C1—C2120.16 (14)
N3—N4—H4124.3O5—C1—C2111.50 (13)
C2—N3—N4—C30.23 (16)C3—N2—C2—N30.52 (17)
N3—N4—C3—N5178.18 (15)C3—N2—C2—C1179.10 (13)
N3—N4—C3—N20.55 (16)N3—C2—C1—O4179.23 (15)
C2—N2—C3—N5178.10 (15)N2—C2—C1—O40.3 (2)
C2—N2—C3—N40.62 (15)N3—C2—C1—O50.5 (2)
N4—N3—C2—N20.18 (16)N2—C2—C1—O5179.93 (13)
N4—N3—C2—C1179.43 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1W0.821.722.5210 (17)166
O1W—H2W···O4i0.84 (3)1.97 (3)2.7985 (18)166 (2)
O1W—H1W···N3ii0.86 (2)2.05 (3)2.9011 (19)172 (2)
N5—H5A···O30.862.12.8672 (18)148
N5—H5A···O3iii0.862.443.0498 (19)129
N5—H5B···O2iv0.862.042.8352 (18)154
N5—H5B···O2iii0.862.413.0060 (18)127
N2—H2···O1iv0.862.022.8790 (17)178
N4—H4···O10.862.062.9112 (18)171
N4—H4···O30.862.423.0590 (18)132
N4—H4···N10.862.593.4099 (19)160
Symmetry codes: (i) x, y+2, z; (ii) x1, y+1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC3H5N4O2+·NO3·H2O
Mr209.14
Crystal system, space groupTriclinic, P1
Temperature (K)150
a, b, c (Å)4.9934 (13), 6.7454 (17), 12.446 (3)
α, β, γ (°)97.572 (12), 100.524 (13), 98.933 (13)
V3)401.60 (18)
Z2
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.42 × 0.2 × 0.11
Data collection
DiffractometerBruker APEXII
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.863, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
4012, 1821, 1563
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.109, 1.03
No. of reflections1821
No. of parameters134
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.35, 0.29

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···O1W0.821.722.5210 (17)165.6
O1W—H2W···O4i0.84 (3)1.97 (3)2.7985 (18)166 (2)
O1W—H1W···N3ii0.86 (2)2.05 (3)2.9011 (19)172 (2)
N5—H5B···O2iii0.862.042.8352 (18)154.3
N2—H2···O1iii0.862.022.8790 (17)177.7
N4—H4···O10.862.062.9112 (18)170.7
Symmetry codes: (i) x, y+2, z; (ii) x1, y+1, z; (iii) x+1, y+1, z.
 

Footnotes

Département Sciences de la Matière, Faculté des Sciences Exactes et Sciences de la Nature et de la Vie, Université Larbi Ben M'hidi, 04000 Oum El Bouaghi, Algeria

Acknowledgements

We are grateful to the LCATM laboratory, Université Larbi Ben M'Hidi, Oum El Bouaghi, Algeria, for financial support.

References

First citationBerrah, F., Bouacida, S. & Roisnel, T. (2011a). Acta Cryst. E67, o2057–o2058.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerrah, F., Ouakkaf, A., Bouacida, S. & Roisnel, T. (2011b). Acta Cryst. E67, o525–o526.  Web of Science CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFernandes, J. A., Liu, B., Tomé, J. C., Cunha-Silva, L. & Almeida Paz, F. A. (2011). Acta Cryst. E67, o2073–o2074.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJebas, S. R., Balasubramanian, T. & Light, M. E. (2006). Acta Cryst. E62, o3481–o3482.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOuakkaf, A., Berrah, F., Bouacida, S. & Roisnel, T. (2011). Acta Cryst. E67, o1171–o1172.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds