organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1225-o1226

4,4-Di­methyl-2-[3-nitro-2-phenyl-1-(phenyl­sulfan­yl)prop­yl]-4,5-di­hydro-1,3-oxazole

aBioMat-Departamento de Física, Universidade Federal de São Carlos, C.P. 676, 13565-905, São Carlos, SP, Brazil, bLaboratório de Cristalografia, Estereodinâmica e, Modelagem Molecular, Universidade Federal de São Carlos, Departamento de Química, C.P. 676, 13565-905, São Carlos, SP, Brazil, cUniversidade Federal de São João del Rei, Av. Sebastião Goncalves Coelho, 400, 35501-296, Divinópolis, MG, Brazil, dUniversidade Federal do Paraná, Departamento de Química, C.P. 19081, 81531-990, Curitiba, PR, Brazil, and eDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: ignez@ufscar.br

(Received 19 March 2012; accepted 22 March 2012; online 31 March 2012)

In the title compound, C20H22N2O3S, the oxazoline ring is planar (r.m.s. deviation = 0.045 Å) and forms dihedral angles of 47.24 (8) and 10.11 (8)° with the S- and C-bound phenyl rings, respectively. The nitro group lies to the same side of the mol­ecule as the oxazoline ring but is orientated so as not to inter­act with the ring. Linear supra­molecular chains along [010] are formed via C—H⋯O and C—H⋯S contacts. Chains are consolidated into a three-dimensional architecture by C—H⋯π and van der Waals inter­actions.

Related literature

For background on the biological activities of Rolipram, see: de Visser et al. (2008[de Visser, Y. P., Walther, F. J., Laghmani, E. H., van Wijngaarden, S., Nieuwland, K. & Wagenaar, G. T. (2008). Eur. Respir. J. 31, 633-644.]). For the synthesis of the title compound, see Villar (2008[Villar, J. A. F. P. (2008). PhD thesis, Universidade Federal do Paraná, Brazil.]); Oliveira et al. (2007[Oliveira, A. R. M., Villar, J. A. F. P., Simonelli, F., Gariani, R. A., Wosch, C. L. & Zarbin, H. G. (2007). Tetrahedron Lett. 48, 1507-1509.]).

[Scheme 1]

Experimental

Crystal data
  • C20H22N2O3S

  • Mr = 370.47

  • Monoclinic, P 21 /c

  • a = 15.339 (3) Å

  • b = 5.7040 (8) Å

  • c = 22.786 (4) Å

  • β = 107.166 (2)°

  • V = 1904.8 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 98 K

  • 0.25 × 0.15 × 0.15 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.809, Tmax = 1.000

  • 15389 measured reflections

  • 4362 independent reflections

  • 4146 reflections with I > 2σ(I)

  • Rint = 0.035

  • Standard reflections: 0

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.114

  • S = 1.11

  • 4362 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C7–C12 and C15–C20 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯O3i 0.99 2.52 3.376 (2) 145
C20—H20⋯S1ii 0.95 2.79 3.7194 (19) 166
C8—H8⋯Cg2iii 0.95 2.71 3.4345 (18) 134
C17—H17⋯Cg3iv 0.95 2.99 3.712 (2) 134
Symmetry codes: (i) -x+1, -y+1, -z+2; (ii) x, y+1, z; (iii) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]) and MarvinSketch (ChemAxon, 2009[ChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

While developing a new route aiming at the synthesis of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]pyrrolidin-2-one (Rolipram), a phosphodiesterase-4 inhibitor which has been shown to have anti-inflammatory properties (de Visser et al., 2008), the title compound, (I), was obtained during a systematic study of the addition reaction of oxazolines to nitroestyrene (Villar, 2008; Oliveira et al. 2007). The crystals were crystallographically characterized and the results are now reported herein.

In (I), Fig. 1, the oxazoline ring is planar (r.m.s. deviation = 0.045 Å) with the maximum deviations being 0.036 (2) Å for the C3 atom and -0.038 (2) Å for the C4 atom. The five-membered ring and the S-bound phenyl ring (C7–C12) are proximate and make a dihedral angle of 47.24 (8)°. The dihedral angles formed by these rings and the C-bound phenyl ring (C15–C20) are 10.11 (8) and 57.13 (8)°, respectively. The nitro group lies to the same side of the molecule as the oxazoline ring but is orientated away from the ring.

In the crystal packing, inversion related molecules are linked via C14—H14B···O3 contacts with the resultant dimeric aggregates connected into a linear supramolecular chain along [010] via C20—H20···S1 contacts, Fig. 2 and Table 1. Chains are consolidated in the three-dimensional packing by C—H···π and van der Waals interactions, Fig. 3 and Table 1.

Related literature top

For background on the biological activities of Rolipram, see: de Visser et al. (2008). For the synthesis of the title compound, see Villar (2008); Oliveira et al. (2007).

Experimental top

The detailed synthesis of the title compound is described in a Ph.D. thesis (Villar, 2008). Crystals were grown by slow evaporation from an ethylacetate/ hexane solution held at 293 K. 1H-NMR (CDCl3, 400 MHz): δ (p.p.m.) 1.07 (s, 3H); 1.18 (s, 3H); 3.87(d, 1H, J = 8.15 Hz); 3.93 (d, 1H, J = 8.15 Hz); 3.98 (ddd, 1H, J = 8.43, 9.15, 5.27 Hz); 4.17 (d, 1H, J = 8.43 Hz); 4.97 (dd, 1H, J = 13.25, 5.27 Hz); 5.01 (dd, 1H, J = 13.25, 9.15 Hz); 7.18–7.34 (m, 8H); 7.38–7.42 (m, 2H); 13C (CDCl3, 100 MHz) δ (p.p.m.) 162.01; 136.34; 133.75; 132.43; 129.08; 128.91; 128.55; 128.39; 127.93; 79.44; 77.22; 67.44; 49.93; 45.85; 28.04. Analysis found: C 64.83, H 5.97, N 7.61, S 8.85%. C20H22N2O3S requires: C 64.84, H 5.99, N 7.56, S 8.65%.

Refinement top

The H atoms were geometrically placed (C—H = 0.95–1.00 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(methyl-C).

Structure description top

While developing a new route aiming at the synthesis of 4-[3-(cyclopentyloxy)-4-methoxyphenyl]pyrrolidin-2-one (Rolipram), a phosphodiesterase-4 inhibitor which has been shown to have anti-inflammatory properties (de Visser et al., 2008), the title compound, (I), was obtained during a systematic study of the addition reaction of oxazolines to nitroestyrene (Villar, 2008; Oliveira et al. 2007). The crystals were crystallographically characterized and the results are now reported herein.

In (I), Fig. 1, the oxazoline ring is planar (r.m.s. deviation = 0.045 Å) with the maximum deviations being 0.036 (2) Å for the C3 atom and -0.038 (2) Å for the C4 atom. The five-membered ring and the S-bound phenyl ring (C7–C12) are proximate and make a dihedral angle of 47.24 (8)°. The dihedral angles formed by these rings and the C-bound phenyl ring (C15–C20) are 10.11 (8) and 57.13 (8)°, respectively. The nitro group lies to the same side of the molecule as the oxazoline ring but is orientated away from the ring.

In the crystal packing, inversion related molecules are linked via C14—H14B···O3 contacts with the resultant dimeric aggregates connected into a linear supramolecular chain along [010] via C20—H20···S1 contacts, Fig. 2 and Table 1. Chains are consolidated in the three-dimensional packing by C—H···π and van der Waals interactions, Fig. 3 and Table 1.

For background on the biological activities of Rolipram, see: de Visser et al. (2008). For the synthesis of the title compound, see Villar (2008); Oliveira et al. (2007).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of compound (I) showing atom labelling scheme and displacement ellipsoids at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. Supramolecular chain in (I) extending along [010] and sustained by C14—H14B···O3 and C20—H20···S1 contacts, shown as orange and blue dashed lines, respectively.
[Figure 3] Fig. 3. A view of the unit cell contents of (I) shown in projection down the b axis. One supramolecular chain is highlighted in space-filling mode. The C—H···O, C—H···S and C—H···π contacts are shown as orange, blue and purple dashed lines, respectively.
4,4-Dimethyl-2-[3-nitro-2-phenyl-1-(phenylsulfanyl)propyl]- 4,5-dihydro-1,3-oxazole top
Crystal data top
C20H22N2O3SF(000) = 784
Mr = 370.47Dx = 1.292 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10219 reflections
a = 15.339 (3) Åθ = 1.9–40.6°
b = 5.7040 (8) ŵ = 0.19 mm1
c = 22.786 (4) ÅT = 98 K
β = 107.166 (2)°Block, colourless
V = 1904.8 (6) Å30.25 × 0.15 × 0.15 mm
Z = 4
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4362 independent reflections
Radiation source: fine-focus sealed tube4146 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.035
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1919
Tmin = 0.809, Tmax = 1.000k = 77
15389 measured reflectionsl = 2929
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 1.11 w = 1/[σ2(Fo2) + (0.0504P)2 + 0.9546P]
where P = (Fo2 + 2Fc2)/3
4362 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C20H22N2O3SV = 1904.8 (6) Å3
Mr = 370.47Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.339 (3) ŵ = 0.19 mm1
b = 5.7040 (8) ÅT = 98 K
c = 22.786 (4) Å0.25 × 0.15 × 0.15 mm
β = 107.166 (2)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
4362 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4146 reflections with I > 2σ(I)
Tmin = 0.809, Tmax = 1.000Rint = 0.035
15389 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 1.11Δρmax = 0.28 e Å3
4362 reflectionsΔρmin = 0.33 e Å3
235 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.19877 (2)0.17504 (7)0.813988 (16)0.02204 (11)
O10.27948 (8)0.1328 (2)0.95576 (5)0.0253 (2)
O20.50324 (9)0.8943 (3)0.91166 (7)0.0465 (4)
O30.53747 (8)0.5316 (2)0.93550 (6)0.0361 (3)
N10.19037 (9)0.4465 (2)0.95984 (6)0.0224 (3)
N20.48312 (9)0.6943 (3)0.92173 (6)0.0265 (3)
C10.24888 (9)0.4033 (3)0.87082 (6)0.0180 (3)
H10.21590.55400.85710.022*
C20.23715 (9)0.3355 (3)0.93164 (6)0.0176 (3)
C30.25828 (11)0.1010 (3)1.01329 (7)0.0271 (3)
H3A0.31420.11201.04860.033*
H3B0.22930.05341.01440.033*
C40.19137 (10)0.3029 (3)1.01474 (7)0.0230 (3)
C50.09488 (12)0.2111 (4)1.00615 (8)0.0344 (4)
H5A0.07540.11730.96850.052*
H5B0.05310.34361.00300.052*
H5C0.09430.11351.04140.052*
C60.22443 (14)0.4495 (3)1.07286 (8)0.0347 (4)
H6A0.28630.50631.07720.052*
H6B0.22480.35321.10860.052*
H6C0.18350.58351.07030.052*
C70.09006 (10)0.1354 (3)0.82616 (6)0.0190 (3)
C80.02137 (10)0.3010 (3)0.80472 (7)0.0205 (3)
H80.03370.44240.78660.025*
C90.06542 (10)0.2590 (3)0.80984 (7)0.0240 (3)
H90.11190.37370.79610.029*
C100.08439 (10)0.0499 (3)0.83492 (7)0.0248 (3)
H100.14430.01950.83710.030*
C110.01562 (11)0.1148 (3)0.85681 (7)0.0250 (3)
H110.02850.25750.87410.030*
C120.07213 (11)0.0708 (3)0.85336 (7)0.0224 (3)
H120.11960.18100.86950.027*
C130.35030 (9)0.4353 (3)0.87367 (6)0.0184 (3)
H130.38500.29170.89230.022*
C140.38517 (10)0.6438 (3)0.91664 (7)0.0220 (3)
H14A0.34760.78380.90060.026*
H14B0.37940.60820.95790.026*
C150.36148 (9)0.4727 (3)0.81003 (6)0.0179 (3)
C160.40566 (10)0.3047 (3)0.78483 (7)0.0224 (3)
H160.43030.16880.80790.027*
C170.41408 (11)0.3347 (3)0.72591 (7)0.0255 (3)
H170.44430.21900.70900.031*
C180.37849 (10)0.5328 (3)0.69199 (7)0.0251 (3)
H180.38390.55280.65180.030*
C190.33489 (11)0.7019 (3)0.71705 (7)0.0245 (3)
H190.31080.83840.69410.029*
C200.32642 (10)0.6719 (3)0.77579 (7)0.0220 (3)
H200.29650.78830.79270.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.01822 (19)0.0306 (2)0.01930 (19)0.00031 (14)0.00869 (14)0.00508 (14)
O10.0314 (6)0.0267 (6)0.0215 (5)0.0077 (5)0.0136 (5)0.0083 (4)
O20.0322 (7)0.0477 (8)0.0588 (9)0.0099 (6)0.0124 (6)0.0209 (7)
O30.0209 (6)0.0469 (8)0.0387 (7)0.0037 (5)0.0060 (5)0.0024 (6)
N10.0230 (6)0.0289 (7)0.0175 (6)0.0028 (5)0.0094 (5)0.0014 (5)
N20.0193 (6)0.0395 (8)0.0200 (6)0.0034 (5)0.0048 (5)0.0044 (6)
C10.0162 (6)0.0228 (7)0.0163 (6)0.0023 (5)0.0066 (5)0.0009 (5)
C20.0151 (6)0.0206 (7)0.0169 (6)0.0001 (5)0.0047 (5)0.0014 (5)
C30.0301 (8)0.0326 (9)0.0223 (7)0.0010 (7)0.0135 (6)0.0094 (7)
C40.0239 (7)0.0304 (8)0.0167 (7)0.0033 (6)0.0089 (6)0.0007 (6)
C50.0269 (8)0.0541 (11)0.0263 (8)0.0091 (8)0.0143 (7)0.0035 (8)
C60.0479 (11)0.0374 (10)0.0208 (8)0.0101 (8)0.0133 (7)0.0045 (7)
C70.0185 (6)0.0234 (7)0.0167 (6)0.0006 (5)0.0077 (5)0.0029 (5)
C80.0215 (7)0.0229 (7)0.0173 (6)0.0005 (5)0.0058 (5)0.0001 (5)
C90.0198 (7)0.0304 (8)0.0216 (7)0.0043 (6)0.0059 (6)0.0008 (6)
C100.0216 (7)0.0329 (8)0.0228 (7)0.0028 (6)0.0110 (6)0.0037 (6)
C110.0319 (8)0.0240 (8)0.0232 (7)0.0022 (6)0.0142 (6)0.0007 (6)
C120.0261 (7)0.0230 (7)0.0200 (7)0.0048 (6)0.0099 (6)0.0001 (6)
C130.0156 (6)0.0238 (7)0.0175 (6)0.0032 (5)0.0074 (5)0.0034 (5)
C140.0177 (7)0.0307 (8)0.0190 (7)0.0012 (6)0.0076 (5)0.0011 (6)
C150.0149 (6)0.0226 (7)0.0180 (6)0.0001 (5)0.0073 (5)0.0022 (5)
C160.0211 (7)0.0238 (7)0.0250 (7)0.0026 (6)0.0108 (6)0.0015 (6)
C170.0245 (7)0.0311 (8)0.0247 (8)0.0004 (6)0.0133 (6)0.0044 (6)
C180.0221 (7)0.0373 (9)0.0168 (6)0.0059 (6)0.0071 (6)0.0012 (6)
C190.0238 (7)0.0295 (8)0.0193 (7)0.0002 (6)0.0051 (6)0.0059 (6)
C200.0229 (7)0.0247 (8)0.0199 (7)0.0038 (6)0.0086 (6)0.0023 (6)
Geometric parameters (Å, º) top
S1—C71.7837 (15)C8—C91.391 (2)
S1—C11.8372 (15)C8—H80.9500
O1—C21.3601 (18)C9—C101.390 (2)
O1—C31.4520 (17)C9—H90.9500
O2—N21.221 (2)C10—C111.390 (2)
O3—N21.2250 (19)C10—H100.9500
N1—C21.2652 (19)C11—C121.394 (2)
N1—C41.4914 (19)C11—H110.9500
N2—C141.5004 (19)C12—H120.9500
C1—C21.4996 (19)C13—C151.5246 (18)
C1—C131.5487 (19)C13—C141.533 (2)
C1—H11.0000C13—H131.0000
C3—C41.549 (2)C14—H14A0.9900
C3—H3A0.9900C14—H14B0.9900
C3—H3B0.9900C15—C161.392 (2)
C4—C61.521 (2)C15—C201.393 (2)
C4—C51.527 (2)C16—C171.397 (2)
C5—H5A0.9800C16—H160.9500
C5—H5B0.9800C17—C181.387 (2)
C5—H5C0.9800C17—H170.9500
C6—H6A0.9800C18—C191.389 (2)
C6—H6B0.9800C18—H180.9500
C6—H6C0.9800C19—C201.393 (2)
C7—C81.392 (2)C19—H190.9500
C7—C121.394 (2)C20—H200.9500
C7—S1—C1101.31 (6)C7—C8—H8120.1
C2—O1—C3105.29 (11)C10—C9—C8120.25 (14)
C2—N1—C4106.52 (13)C10—C9—H9119.9
O2—N2—O3124.43 (14)C8—C9—H9119.9
O2—N2—C14117.89 (14)C9—C10—C11119.91 (14)
O3—N2—C14117.67 (14)C9—C10—H10120.0
C2—C1—C13112.63 (11)C11—C10—H10120.0
C2—C1—S1109.23 (10)C10—C11—C12120.06 (15)
C13—C1—S1108.62 (9)C10—C11—H11120.0
C2—C1—H1108.8C12—C11—H11120.0
C13—C1—H1108.8C7—C12—C11119.83 (14)
S1—C1—H1108.8C7—C12—H12120.1
N1—C2—O1119.64 (13)C11—C12—H12120.1
N1—C2—C1125.53 (14)C15—C13—C14112.52 (12)
O1—C2—C1114.79 (12)C15—C13—C1111.73 (11)
O1—C3—C4104.63 (12)C14—C13—C1105.96 (11)
O1—C3—H3A110.8C15—C13—H13108.8
C4—C3—H3A110.8C14—C13—H13108.8
O1—C3—H3B110.8C1—C13—H13108.8
C4—C3—H3B110.8N2—C14—C13110.55 (12)
H3A—C3—H3B108.9N2—C14—H14A109.5
N1—C4—C6110.28 (13)C13—C14—H14A109.5
N1—C4—C5108.13 (13)N2—C14—H14B109.5
C6—C4—C5111.19 (13)C13—C14—H14B109.5
N1—C4—C3103.49 (11)H14A—C14—H14B108.1
C6—C4—C3111.99 (14)C16—C15—C20119.01 (13)
C5—C4—C3111.44 (14)C16—C15—C13120.08 (13)
C4—C5—H5A109.5C20—C15—C13120.90 (13)
C4—C5—H5B109.5C15—C16—C17120.45 (14)
H5A—C5—H5B109.5C15—C16—H16119.8
C4—C5—H5C109.5C17—C16—H16119.8
H5A—C5—H5C109.5C18—C17—C16120.16 (15)
H5B—C5—H5C109.5C18—C17—H17119.9
C4—C6—H6A109.5C16—C17—H17119.9
C4—C6—H6B109.5C17—C18—C19119.66 (14)
H6A—C6—H6B109.5C17—C18—H18120.2
C4—C6—H6C109.5C19—C18—H18120.2
H6A—C6—H6C109.5C18—C19—C20120.17 (15)
H6B—C6—H6C109.5C18—C19—H19119.9
C8—C7—C12120.02 (13)C20—C19—H19119.9
C8—C7—S1120.32 (11)C19—C20—C15120.54 (14)
C12—C7—S1119.50 (11)C19—C20—H20119.7
C9—C8—C7119.85 (14)C15—C20—H20119.7
C9—C8—H8120.1
C7—S1—C1—C248.49 (11)C8—C7—C12—C112.6 (2)
C7—S1—C1—C13171.69 (10)S1—C7—C12—C11172.84 (12)
C4—N1—C2—O13.18 (18)C10—C11—C12—C72.0 (2)
C4—N1—C2—C1174.70 (13)C2—C1—C13—C15172.60 (12)
C3—O1—C2—N11.22 (18)S1—C1—C13—C1551.47 (14)
C3—O1—C2—C1179.33 (12)C2—C1—C13—C1464.52 (15)
C13—C1—C2—N1123.03 (16)S1—C1—C13—C14174.35 (9)
S1—C1—C2—N1116.19 (15)O2—N2—C14—C13127.19 (16)
C13—C1—C2—O158.99 (16)O3—N2—C14—C1352.53 (18)
S1—C1—C2—O161.79 (14)C15—C13—C14—N256.37 (16)
C2—O1—C3—C44.81 (16)C1—C13—C14—N2178.76 (11)
C2—N1—C4—C6125.75 (15)C14—C13—C15—C16127.36 (14)
C2—N1—C4—C5112.49 (15)C1—C13—C15—C16113.57 (15)
C2—N1—C4—C35.81 (16)C14—C13—C15—C2053.86 (18)
O1—C3—C4—N16.40 (16)C1—C13—C15—C2065.21 (18)
O1—C3—C4—C6125.16 (14)C20—C15—C16—C170.5 (2)
O1—C3—C4—C5109.57 (14)C13—C15—C16—C17178.30 (14)
C1—S1—C7—C875.16 (13)C15—C16—C17—C180.1 (2)
C1—S1—C7—C12109.45 (12)C16—C17—C18—C190.4 (2)
C12—C7—C8—C90.8 (2)C17—C18—C19—C200.4 (2)
S1—C7—C8—C9174.58 (11)C18—C19—C20—C150.0 (2)
C7—C8—C9—C101.6 (2)C16—C15—C20—C190.4 (2)
C8—C9—C10—C112.1 (2)C13—C15—C20—C19178.36 (14)
C9—C10—C11—C120.3 (2)
Hydrogen-bond geometry (Å, º) top
Please define Cg2 and Cg3
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.992.523.376 (2)145
C20—H20···S1ii0.952.793.7194 (19)166
C8—H8···Cg2iii0.952.713.4345 (18)134
C17—H17···Cg3iv0.952.993.712 (2)134
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H22N2O3S
Mr370.47
Crystal system, space groupMonoclinic, P21/c
Temperature (K)98
a, b, c (Å)15.339 (3), 5.7040 (8), 22.786 (4)
β (°) 107.166 (2)
V3)1904.8 (6)
Z4
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.25 × 0.15 × 0.15
Data collection
DiffractometerRigaku AFC12K/SATURN724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.809, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
15389, 4362, 4146
Rint0.035
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.114, 1.11
No. of reflections4362
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.33

Computer programs: CrystalClear (Molecular Structure Corporation & Rigaku, 2005), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and MarvinSketch (ChemAxon, 2009), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Please define Cg2 and Cg3
D—H···AD—HH···AD···AD—H···A
C14—H14B···O3i0.992.523.376 (2)145
C20—H20···S1ii0.952.793.7194 (19)166
C8—H8···Cg2iii0.952.713.4345 (18)134
C17—H17···Cg3iv0.952.993.712 (2)134
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y+1, z; (iii) x, y1/2, z+1/2; (iv) x+1, y+1/2, z+1/2.
 

Acknowledgements

The authors thank FAPESP, CNPq (grant No. 306532/2009-3 to JZS; grant No. 308116/2010-0 to IC) and CAPES (grant No. 808/2009 to JZS and IC) for financial support. The authors also gratefully thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM.C/HIR/MOHE/SC/12).

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChemAxon (2009). MarvinSketch. URL: www.chemaxon.com.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationOliveira, A. R. M., Villar, J. A. F. P., Simonelli, F., Gariani, R. A., Wosch, C. L. & Zarbin, H. G. (2007). Tetrahedron Lett. 48, 1507–1509.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationVillar, J. A. F. P. (2008). PhD thesis, Universidade Federal do Paraná, Brazil.  Google Scholar
First citationde Visser, Y. P., Walther, F. J., Laghmani, E. H., van Wijngaarden, S., Nieuwland, K. & Wagenaar, G. T. (2008). Eur. Respir. J. 31, 633–644.  Web of Science CrossRef PubMed CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1225-o1226
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds