metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m411-m412

(2,2′-Bi­pyridine-6,6′-di­carboxyl­ato-κ3N,N′,O6)(6′-carb­­oxy-2,2′-bi­pyridine-6-carboxyl­ato-κ3N,N′,O6)cobalt(III)

aCollege of Life Sciences, Inner Mongolia University, Hohhot 010021, People's Republic of China, and bSchool of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, People's Republic of China
*Correspondence e-mail: haiquansu@yahoo.com

(Received 2 March 2012; accepted 6 March 2012; online 14 March 2012)

The CoIII atom in the title compound, [Co(C12H6N2O4)(C12H7N2O4)], is six-coordinated in a distorted octa­hedral geometry by four N atoms and two O atoms of the chelating 2,2′-bipyridine-6,6′-dicarboxyl­ate and 6′-carb­oxy-2,2′-bipyridine-6-carboxyl­ate ligands. Intermolecular O—H⋯O hydrogen bonds and face-to-face π-stacking inter­actions [centroid–centroid distance = 3.6352 (16) Å] between inversion-related pyridine rings link adjacent mononuclear units into a two-dimensional supra­molecular structure, and several inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For the structure of a CoII compound with pyridine-2,6-dicarboxyl­ate and 4,4′-bipyridine, see: Ghosh et al. (2005[Ghosh, S., Ribas, J. & Bharadwaj, P. (2005). Cryst. Growth Des. 5, 623-629.]). For the structures and thermal properties of five LnIII (Ln is a lanthanide) compounds with the title ligand, see: Wang et al. (2010[Wang, C., Wang, Z., Gu, F. & Guo, G. (2010). J. Mol. Struct. 979, 92-100.]), for a related RhIII compound with the title ligand, see: Wang et al. (2012[Wang, H., Gu, X., Zhang, B., Su, H. & Hu, M. (2012). Acta Cryst. E68, m290-m291.]) and for a related NiII compound with the title ligand, see: Wang, Su et al. (2009[Wang, H., Su, H., Xu, J., Bai, F. & Gao, Y. (2009). Acta Cryst. E65, m352-m353.]). For the structures and magnetic properties of [GdIII4CoIICoIII(μ3-OH)3(μ3-O)(pydc)6(H2O)5]·8H2O (pydc = 2,5-pyridinedicarboxylate dianion), see: Wang, Yue et al. (2009[Wang, N., Yue, S., Liu, Y., Yang, H. & Wu, H. (2009). Cryst. Growth Des. 9, 368-371.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C12H6N2O4)(C12H7N2O4)]

  • Mr = 544.31

  • Monoclinic, P 21 /c

  • a = 9.3329 (19) Å

  • b = 13.561 (3) Å

  • c = 16.894 (3) Å

  • β = 100.70 (3)°

  • V = 2101.0 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.88 mm−1

  • T = 153 K

  • 0.26 × 0.20 × 0.08 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.803, Tmax = 0.933

  • 13969 measured reflections

  • 3696 independent reflections

  • 3219 reflections with I > 2σ(I)

  • Rint = 0.043

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.091

  • S = 1.06

  • 3696 reflections

  • 335 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.47 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O7i 0.82 1.65 2.445 (3) 164
C15—H15⋯O2i 0.93 2.58 3.391 (3) 147
C8—H8⋯O10ii 0.93 2.41 3.142 (3) 135
C16—H16⋯O6iii 0.93 2.52 3.044 (3) 116
C20—H20⋯O1iv 0.93 2.55 3.315 (3) 140
C22—H22⋯O9v 0.93 2.35 3.091 (3) 136
Symmetry codes: (i) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iv) -x+2, -y+1, -z+2; (v) -x+1, -y+1, -z+2.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2006[Brandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

In recent years, many bipyridine dicarboxylic acid ligands such as 2,2'-dipyridine-4,4'-dicarboxylic acid, 2,2'-dipyridine-5,5'-dicarboxylic acid and 2,2'-dipyridine-6,6'-dicarboxylic acid have been used in metal–organic coordination chemistry because of their diverse coordination modes, which leads to more stable and fascinating architectures (Wang et al., 2012). Some X-ray crystal structures constructed from the title ligand and metal ions, such as [NiL2].4H2O (Wang, Su et al., 2009), [Ln3L4(HL)(H2O)2].12H2O (Ln=Ce, Nd, Pr) (Wang et al., 2010) and [RhL(HL)] (Wang et al., 2012), have been investigated previously. In this work, we report the synthesis and structure of the title compound, and a careful literature survey showed that it is the first compound constructed from CoIII ion and the title ligand.

In the title compound, the CoIII center is six-coordinated in a distorted octahedral geometry by four N atoms and two O atoms of two chelating ligands L and HL (H2L= 2,2'-bipyridine-6,6'-dicarboxylic acid) (Fig. 1). Support for the assignment of a +3 oxidation state to Co comes from the Co—N and Co—O bond distances [1.8546 (19) and 1.9941 (19) Å for Co—N bonds and 1.9018 (16) and 1.9055 (18) Å for Co—O bonds which are shorter than those reported for CoII compounds (Ghosh et al., 2005; Wang, Yue et al., 2009). The coordinated bipyridine fragments are nearly coplanar [see torsion angles = 2.0 (3) and 2.2 (3)° in Table 1].

In the structure, the hydrogen-bond donor O10 is connected to the acceptor O7 from adjacent molecule to form a one-dimensional chain along the c-axis (O10—H10A···O7i = 1.65 Å, i = x, -y+3/2, z-1/2, Table 2). Moreover, the adjacent chains are linked into a two-dimensional layer by ππ contacts between inversion-related pyridine rings with Cg7···Cg8ii distance of 3.6352 Å (Fig. 2). Cg7 and Cg8 are the centroids of the pyridine rings (N3, C14–C18) and (N4, C19–C23), respectively (symmetry code: ii = -x, 1-y, -z). Several intermolecular C—H···O interactions contribute to stabilize the crystal structure.

Related literature top

For the structure of a CoII compound with pyridine-2,6-dicarboxylate and 4,4'-bipyridine, see: Ghosh et al. (2005). For the structures and thermal properties of five LnIII (Ln is a lanthanide) compounds with the title ligand, see: Wang et al. (2010), for a related RhIII compound with the title ligand, see: Wang et al. (2012) and for a related NiII compound with the title ligand, see: Wang, Su et al. (2009). For the structures and magnetic properties of [GdIII4CoIICoIII3-OH)33-O)(pydc)6(H2O)5].8H2O, see: Wang, Yue et al. (2009).

Experimental top

The title compound was obtained by the reaction of the mixture of Co(NO3)2.6H2O, and 2,2'-dipyridine-6,6'-dicarboxylic acid in a molar ratio of 1:0.8 and 8 ml of water under hydrothermal conditions (at 393 K for 4 days and cooled to room temperature with a 2 K h-1 rate). The brown block crystals were washed by water (Yield: 30%).

Refinement top

The H atoms were placed in geometrically idealized positions (C—H = 0.95 Å and O—H = 0.82–0.84 Å) with Uiso(H) = 1.2Ueq(C) and Uiso(H) = 1.5Ueq(O).

Structure description top

The CoIII center in the title compound,Co(C12H6N2O4)(C12H7N2O4), is six-coordinated in a distorted octahedral geometry by four N atoms and two O atoms of two chelated ligands L and HL (H2L= 2,2'-bipyridine-6,6'-dicarboxylic acid). The intermolecular O—H···O hydrogen bonds and face-to-face π-stacking interactions [centroid···centroid distances of 3.6352?Å] between inversion related pyridine rings link the adjacent mononuclear units into one-dimensional double-chain supramolecular structure along the c-axis. In recent years, many bipyridine dicarboxylic acid ligands such as 2,2'-dipyridine-4,4'-dicarboxylic acid, 2,2'-dipyridine-5,5'-dicarboxylic acid and 2,2'-dipyridine-6,6'-dicarboxylic acid have been used in metal–organic coordination chemistry because of their diverse coordination modes, which leads to more stable and fascinating architectures (Wang et al., 2012). Some X-ray crystal structures constructed from the title ligand and metal ions have been investigated previously, such as [NiL2].4H2O (Wang et al., 2009) and [Ln3L4(HL)(H2O)2].12H2O (Ln=Ce, Nd, Pr) (Wang et al., 2010) and [RhL(HL)] (Wang et al., 2012) . In this work, we report the synthesis and structure of the title compound, and a careful literature survey showed that it is the first compound constructed from CoIII ion and the title ligand. In the title compound, the CoIII center is six-coordinated in a distorted octahedral geometry by four N atoms and two O atoms of two chelated ligands L and HL (H2L= 2,2'-bipyridine-6,6'-dicarboxylic acid) (Fig. 1).The Co atom in the crystal structure exhibit +3 oxidation state, which can also be proved that the Co—O and Co—N bond distances [1.8546 (19) -1.9941 (19)?Å for Co—N bond lengths; 1.9018 (16) and 1.9055 (18) Å for Co—O bond lengths] in our structure are shorter than those in the reported CoII compounds (Ghosh, S., et al., 2005; Wang, N., et al., 2009). The coordinated bipyridine fragments are nearly coplanar [see torsion angles = 2.0 (3) and 2.2 (3)° in Table 1]. The one-dimensional double-chain structure of the title compound via hydrogen bonds and face-to-face π-stacking interactions is illustrated in Fig. 2. The hydrogen-bond donor O10 is connected to the acceptor O7 from adjacent moiety (Table 2) to form a one-dimensional chain along the c-axis. Moreover, two adjacent chains are connected to form the one-dimensional double-chain structure along the c-axis through the face-to-face π-stacking interactions between inversion related pyridine rings with Cg7···Cg8ii distance of 3.64Å (Cg7 and Cg8 are the centroids of the pyridine rings (N3, C14 - C18) and (N4, C19 - C23), respectively. Symmetry codes: (ii) = -x, 1-y, -z, see Fig. 2).

The title compound was obtained by the reaction of the mixture of Co(NO3)2.6H2O, and 2,2'-dipyridine-6,6'-dicarboxylic acid in a molar ratio of 1:0.8 and 8?mL of water under hydrothermal conditions (at 120 °C for 4 days and cooled to room temperature with a 2 °C h-1 rate). The brown block crystals were washed by water (Yield: 30%).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The structure of the title compound with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The two-dimensional layer structure of the title compound via hydrogen bonds and face-to-face π-stacking interactions.
(2,2'-Bipyridine-6,6'-dicarboxylato-κ3N,N',O6)(6'- carboxy-2,2'-bipyridine-6-carboxylato- κ3N,N',O6)cobalt(III) top
Crystal data top
[Co(C12H6N2O4)(C12H7N2O4)]Z = 4
Mr = 544.31F(000) = 1104
Monoclinic, P21/cDx = 1.721 Mg m3
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 9.3329 (19) ŵ = 0.88 mm1
b = 13.561 (3) ÅT = 153 K
c = 16.894 (3) ÅBlock, brown
β = 100.70 (3)°0.26 × 0.20 × 0.08 mm
V = 2101.0 (7) Å3
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3696 independent reflections
Radiation source: fine-focus sealed tube3219 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
ω and φ scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 118
Tmin = 0.803, Tmax = 0.933k = 1616
13969 measured reflectionsl = 1820
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0499P)2 + 0.3348P]
where P = (Fo2 + 2Fc2)/3
3696 reflections(Δ/σ)max = 0.001
335 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.47 e Å3
Crystal data top
[Co(C12H6N2O4)(C12H7N2O4)]V = 2101.0 (7) Å3
Mr = 544.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.3329 (19) ŵ = 0.88 mm1
b = 13.561 (3) ÅT = 153 K
c = 16.894 (3) Å0.26 × 0.20 × 0.08 mm
β = 100.70 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
3696 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
3219 reflections with I > 2σ(I)
Tmin = 0.803, Tmax = 0.933Rint = 0.043
13969 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.06Δρmax = 0.24 e Å3
3696 reflectionsΔρmin = 0.47 e Å3
335 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.84031 (3)0.73728 (2)0.932821 (17)0.02082 (12)
O11.01239 (19)0.73257 (12)1.01357 (9)0.0282 (4)
O21.1381 (2)0.81870 (16)1.11603 (10)0.0460 (5)
O50.93674 (17)0.81669 (12)0.86609 (9)0.0267 (4)
O61.0973 (2)0.80414 (14)0.78364 (11)0.0450 (5)
N10.8057 (2)0.85278 (14)0.98537 (11)0.0251 (4)
N20.6513 (2)0.77321 (14)0.86292 (11)0.0234 (4)
N30.9085 (2)0.63364 (14)0.87852 (10)0.0216 (4)
N40.7596 (2)0.62602 (14)0.98808 (10)0.0234 (4)
C11.0325 (3)0.80793 (19)1.06293 (13)0.0299 (6)
C20.9115 (3)0.88248 (18)1.04578 (13)0.0286 (6)
C30.9052 (3)0.97481 (19)1.07909 (14)0.0365 (6)
H30.97660.99561.12180.044*
C40.7900 (3)1.0357 (2)1.04739 (16)0.0416 (7)
H40.78231.09751.07020.050*
C50.6856 (3)1.00621 (19)0.98213 (17)0.0382 (7)
H50.61061.04840.95950.046*
C60.6962 (3)0.91155 (18)0.95143 (14)0.0291 (6)
C70.6051 (3)0.86495 (18)0.88142 (14)0.0296 (6)
C80.4839 (3)0.9092 (2)0.83680 (16)0.0392 (7)
H80.45540.97160.85050.047*
C90.4047 (3)0.8600 (2)0.77141 (17)0.0421 (7)
H90.32250.88880.74060.051*
C100.4492 (3)0.7678 (2)0.75259 (17)0.0396 (7)
H100.39710.73350.70890.048*
C110.5733 (3)0.72615 (19)0.79957 (14)0.0281 (6)
C120.6111 (3)0.62148 (19)0.78089 (13)0.0286 (6)
C131.0147 (3)0.76672 (18)0.82270 (14)0.0272 (6)
C140.9955 (2)0.65787 (18)0.82720 (12)0.0240 (5)
C151.0604 (3)0.58537 (19)0.78857 (13)0.0302 (6)
H151.12040.60140.75230.036*
C161.0332 (3)0.48753 (19)0.80572 (14)0.0323 (6)
H161.07460.43730.78000.039*
C170.9449 (3)0.46388 (18)0.86091 (13)0.0286 (6)
H170.92710.39850.87240.034*
C180.8844 (3)0.53988 (17)0.89816 (13)0.0232 (5)
C190.7946 (3)0.53543 (17)0.96114 (13)0.0236 (5)
C200.7504 (3)0.44827 (19)0.99124 (14)0.0298 (6)
H200.77480.38790.97120.036*
C210.6691 (3)0.4523 (2)1.05193 (15)0.0351 (6)
H210.63660.39471.07270.042*
C220.6372 (3)0.5430 (2)1.08100 (14)0.0336 (6)
H220.58500.54691.12270.040*
C230.6831 (3)0.62865 (19)1.04793 (13)0.0272 (5)
C240.6458 (3)0.7264 (2)1.08152 (15)0.0319 (6)
O90.5735 (2)0.55690 (13)0.82239 (10)0.0396 (5)
O70.7342 (2)0.74748 (14)1.14778 (11)0.0418 (5)
O100.6766 (2)0.60709 (13)0.72153 (10)0.0401 (5)
H10A0.68060.65910.69720.060*
O80.5416 (2)0.77371 (16)1.04846 (13)0.0504 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0249 (2)0.01599 (19)0.02186 (19)0.00158 (13)0.00513 (13)0.00048 (12)
O10.0310 (10)0.0244 (9)0.0281 (9)0.0023 (7)0.0025 (7)0.0007 (7)
O20.0432 (12)0.0567 (14)0.0329 (9)0.0020 (10)0.0064 (9)0.0069 (9)
O50.0325 (10)0.0184 (9)0.0312 (8)0.0005 (7)0.0108 (7)0.0014 (7)
O60.0528 (13)0.0339 (11)0.0572 (12)0.0022 (9)0.0331 (10)0.0083 (9)
N10.0325 (12)0.0199 (11)0.0246 (9)0.0003 (9)0.0097 (9)0.0003 (8)
N20.0244 (11)0.0210 (11)0.0250 (10)0.0006 (8)0.0047 (8)0.0025 (8)
N30.0246 (10)0.0196 (10)0.0204 (9)0.0012 (8)0.0037 (8)0.0010 (8)
N40.0259 (11)0.0225 (11)0.0216 (9)0.0015 (9)0.0036 (8)0.0012 (8)
C10.0369 (15)0.0295 (14)0.0239 (12)0.0025 (12)0.0076 (11)0.0032 (10)
C20.0384 (15)0.0260 (13)0.0239 (12)0.0047 (11)0.0123 (11)0.0022 (10)
C30.0550 (18)0.0283 (15)0.0287 (13)0.0095 (13)0.0143 (12)0.0072 (11)
C40.0585 (19)0.0241 (14)0.0481 (16)0.0011 (14)0.0255 (15)0.0100 (12)
C50.0461 (17)0.0222 (14)0.0509 (16)0.0084 (12)0.0211 (14)0.0005 (12)
C60.0319 (14)0.0241 (13)0.0345 (13)0.0029 (11)0.0143 (11)0.0010 (11)
C70.0301 (14)0.0255 (14)0.0354 (13)0.0058 (11)0.0118 (11)0.0073 (11)
C80.0365 (16)0.0324 (16)0.0497 (16)0.0108 (13)0.0103 (13)0.0089 (13)
C90.0304 (15)0.0444 (18)0.0502 (16)0.0071 (13)0.0041 (13)0.0218 (14)
C100.0317 (16)0.0448 (18)0.0384 (15)0.0024 (13)0.0036 (12)0.0092 (13)
C110.0280 (14)0.0306 (14)0.0260 (12)0.0044 (11)0.0057 (11)0.0071 (10)
C120.0307 (14)0.0304 (14)0.0222 (12)0.0080 (11)0.0014 (11)0.0017 (11)
C130.0277 (14)0.0241 (13)0.0295 (13)0.0013 (11)0.0044 (11)0.0032 (10)
C140.0243 (13)0.0265 (13)0.0208 (11)0.0005 (10)0.0032 (10)0.0004 (10)
C150.0344 (15)0.0339 (15)0.0241 (12)0.0030 (12)0.0099 (11)0.0028 (11)
C160.0386 (15)0.0291 (14)0.0292 (13)0.0056 (12)0.0065 (11)0.0088 (11)
C170.0350 (15)0.0198 (13)0.0291 (12)0.0002 (11)0.0012 (11)0.0022 (10)
C180.0240 (13)0.0201 (12)0.0236 (11)0.0015 (10)0.0001 (10)0.0001 (9)
C190.0245 (13)0.0206 (12)0.0241 (11)0.0006 (10)0.0005 (10)0.0001 (9)
C200.0316 (14)0.0236 (14)0.0323 (13)0.0008 (11)0.0011 (11)0.0027 (10)
C210.0356 (15)0.0312 (15)0.0373 (14)0.0088 (12)0.0040 (12)0.0105 (12)
C220.0339 (15)0.0387 (16)0.0299 (13)0.0049 (12)0.0103 (11)0.0050 (11)
C230.0245 (13)0.0327 (14)0.0238 (11)0.0005 (11)0.0029 (10)0.0012 (10)
C240.0345 (16)0.0333 (15)0.0325 (14)0.0019 (12)0.0183 (12)0.0058 (11)
O90.0513 (12)0.0310 (11)0.0378 (10)0.0101 (9)0.0116 (9)0.0074 (8)
O70.0494 (12)0.0421 (12)0.0340 (10)0.0100 (9)0.0078 (9)0.0072 (8)
O100.0612 (13)0.0283 (10)0.0332 (10)0.0079 (9)0.0148 (9)0.0017 (8)
O80.0472 (13)0.0497 (13)0.0542 (12)0.0178 (11)0.0092 (10)0.0045 (10)
Geometric parameters (Å, º) top
Co1—N31.8546 (19)C8—H80.9300
Co1—N11.8580 (19)C9—C101.372 (4)
Co1—O51.9018 (16)C9—H90.9300
Co1—O11.9055 (18)C10—C111.397 (4)
Co1—N21.993 (2)C10—H100.9300
Co1—N41.9941 (19)C11—C121.510 (4)
O1—C11.310 (3)C12—O91.214 (3)
O2—C11.212 (3)C12—O101.282 (3)
O5—C131.313 (3)C13—C141.491 (3)
O6—C131.215 (3)C14—C151.381 (3)
N1—C61.338 (3)C15—C161.391 (4)
N1—C21.344 (3)C15—H150.9300
N2—C111.339 (3)C16—C171.392 (3)
N2—C71.372 (3)C16—H160.9300
N3—C141.334 (3)C17—C181.382 (3)
N3—C181.343 (3)C17—H170.9300
N4—C231.342 (3)C18—C191.473 (3)
N4—C191.371 (3)C19—C201.380 (3)
C1—C21.503 (4)C20—C211.385 (3)
C2—C31.378 (3)C20—H200.9300
C3—C41.383 (4)C21—C221.377 (4)
C3—H30.9300C21—H210.9300
C4—C51.388 (4)C22—C231.391 (3)
C4—H40.9300C22—H220.9300
C5—C61.395 (3)C23—C241.508 (4)
C5—H50.9300C24—O81.211 (3)
C6—C71.466 (3)C24—O71.293 (3)
C7—C81.375 (3)O10—H10A0.8200
C8—C91.382 (4)
N3—Co1—N1168.91 (8)C7—C8—H8120.3
N3—Co1—O583.81 (8)C9—C8—H8120.3
N1—Co1—O587.09 (8)C10—C9—C8119.0 (2)
N3—Co1—O190.43 (8)C10—C9—H9120.5
N1—Co1—O183.36 (8)C8—C9—H9120.5
O5—Co1—O190.84 (7)C9—C10—C11119.5 (3)
N3—Co1—N2103.87 (8)C9—C10—H10120.3
N1—Co1—N282.17 (8)C11—C10—H10120.3
O5—Co1—N288.54 (7)N2—C11—C10122.1 (2)
O1—Co1—N2165.53 (7)N2—C11—C12120.1 (2)
N3—Co1—N481.51 (8)C10—C11—C12117.6 (2)
N1—Co1—N4107.45 (8)O9—C12—O10125.0 (3)
O5—Co1—N4165.32 (7)O9—C12—C11117.0 (2)
O1—Co1—N488.91 (7)O10—C12—C11118.0 (2)
N2—Co1—N495.32 (8)O6—C13—O5124.1 (2)
C1—O1—Co1115.57 (15)O6—C13—C14122.4 (2)
C13—O5—Co1114.27 (15)O5—C13—C14113.5 (2)
C6—N1—C2122.8 (2)N3—C14—C15120.3 (2)
C6—N1—Co1118.95 (16)N3—C14—C13111.7 (2)
C2—N1—Co1116.55 (16)C15—C14—C13127.8 (2)
C11—N2—C7117.8 (2)C14—C15—C16117.9 (2)
C11—N2—Co1130.32 (17)C14—C15—H15121.1
C7—N2—Co1111.60 (15)C16—C15—H15121.1
C14—N3—C18122.9 (2)C15—C16—C17120.9 (2)
C14—N3—Co1116.17 (16)C15—C16—H16119.6
C18—N3—Co1120.42 (15)C17—C16—H16119.6
C23—N4—C19117.8 (2)C18—C17—C16118.4 (2)
C23—N4—Co1129.24 (17)C18—C17—H17120.8
C19—N4—Co1112.87 (15)C16—C17—H17120.8
O2—C1—O1124.4 (2)N3—C18—C17119.5 (2)
O2—C1—C2122.7 (2)N3—C18—C19111.17 (19)
O1—C1—C2112.8 (2)C17—C18—C19129.3 (2)
N1—C2—C3120.1 (2)N4—C19—C20122.6 (2)
N1—C2—C1111.4 (2)N4—C19—C18113.95 (19)
C3—C2—C1128.3 (2)C20—C19—C18123.4 (2)
C2—C3—C4118.3 (2)C19—C20—C21118.8 (2)
C2—C3—H3120.9C19—C20—H20120.6
C4—C3—H3120.9C21—C20—H20120.6
C3—C4—C5121.1 (2)C22—C21—C20118.9 (2)
C3—C4—H4119.5C22—C21—H21120.5
C5—C4—H4119.5C20—C21—H21120.5
C4—C5—C6118.2 (3)C21—C22—C23120.0 (2)
C4—C5—H5120.9C21—C22—H22120.0
C6—C5—H5120.9C23—C22—H22120.0
N1—C6—C5119.3 (2)N4—C23—C22121.8 (2)
N1—C6—C7111.8 (2)N4—C23—C24119.9 (2)
C5—C6—C7128.8 (2)C22—C23—C24118.3 (2)
N2—C7—C8122.1 (2)O8—C24—O7127.6 (3)
N2—C7—C6114.5 (2)O8—C24—C23120.9 (2)
C8—C7—C6123.3 (2)O7—C24—C23111.4 (2)
C7—C8—C9119.4 (3)C12—O10—H10A109.5
N3—Co1—O1—C1167.56 (17)Co1—N1—C6—C78.9 (3)
N1—Co1—O1—C13.23 (16)C4—C5—C6—N10.1 (4)
O5—Co1—O1—C183.75 (16)C4—C5—C6—C7176.8 (2)
N2—Co1—O1—C13.7 (4)C11—N2—C7—C80.7 (3)
N4—Co1—O1—C1110.93 (17)Co1—N2—C7—C8174.33 (19)
N3—Co1—O5—C136.93 (16)C11—N2—C7—C6180.0 (2)
N1—Co1—O5—C13166.73 (16)Co1—N2—C7—C65.0 (2)
O1—Co1—O5—C1383.42 (16)N1—C6—C7—N22.0 (3)
N2—Co1—O5—C13111.04 (16)C5—C6—C7—N2174.9 (2)
N4—Co1—O5—C135.5 (4)N1—C6—C7—C8178.8 (2)
N3—Co1—N1—C6114.4 (4)C5—C6—C7—C84.4 (4)
O5—Co1—N1—C679.54 (18)N2—C7—C8—C90.5 (4)
O1—Co1—N1—C6170.72 (19)C6—C7—C8—C9179.7 (2)
N2—Co1—N1—C69.38 (18)C7—C8—C9—C100.0 (4)
N4—Co1—N1—C6102.53 (18)C8—C9—C10—C110.2 (4)
N3—Co1—N1—C251.4 (5)C7—N2—C11—C100.5 (3)
O5—Co1—N1—C286.23 (17)Co1—N2—C11—C10173.46 (18)
O1—Co1—N1—C24.96 (16)C7—N2—C11—C12174.5 (2)
N2—Co1—N1—C2175.15 (17)Co1—N2—C11—C1211.6 (3)
N4—Co1—N1—C291.71 (17)C9—C10—C11—N20.0 (4)
N3—Co1—N2—C1111.2 (2)C9—C10—C11—C12175.1 (2)
N1—Co1—N2—C11178.3 (2)N2—C11—C12—O977.1 (3)
O5—Co1—N2—C1194.5 (2)C10—C11—C12—O998.1 (3)
O1—Co1—N2—C11177.8 (3)N2—C11—C12—O10104.8 (3)
N4—Co1—N2—C1171.3 (2)C10—C11—C12—O1080.0 (3)
N3—Co1—N2—C7163.00 (15)Co1—O5—C13—O6171.1 (2)
N1—Co1—N2—C77.52 (15)Co1—O5—C13—C147.4 (2)
O5—Co1—N2—C779.74 (16)C18—N3—C14—C153.0 (3)
O1—Co1—N2—C78.0 (4)Co1—N3—C14—C15175.12 (17)
N4—Co1—N2—C7114.45 (16)C18—N3—C14—C13174.2 (2)
N1—Co1—N3—C1430.2 (5)Co1—N3—C14—C132.1 (2)
O5—Co1—N3—C144.85 (16)O6—C13—C14—N3175.0 (2)
O1—Co1—N3—C1485.95 (16)O5—C13—C14—N33.6 (3)
N2—Co1—N3—C1491.80 (16)O6—C13—C14—C151.9 (4)
N4—Co1—N3—C14174.78 (17)O5—C13—C14—C15179.5 (2)
N1—Co1—N3—C18142.1 (4)N3—C14—C15—C160.7 (3)
O5—Co1—N3—C18177.15 (18)C13—C14—C15—C16176.0 (2)
O1—Co1—N3—C1886.35 (18)C14—C15—C16—C170.9 (4)
N2—Co1—N3—C1895.90 (18)C15—C16—C17—C180.2 (4)
N4—Co1—N3—C182.48 (17)C14—N3—C18—C173.7 (3)
N3—Co1—N4—C23178.3 (2)Co1—N3—C18—C17175.46 (16)
N1—Co1—N4—C235.0 (2)C14—N3—C18—C19175.02 (19)
O5—Co1—N4—C23176.9 (2)Co1—N3—C18—C193.3 (3)
O1—Co1—N4—C2387.71 (19)C16—C17—C18—N32.0 (3)
N2—Co1—N4—C2378.42 (19)C16—C17—C18—C19176.5 (2)
N3—Co1—N4—C190.99 (15)C23—N4—C19—C202.2 (3)
N1—Co1—N4—C19172.30 (15)Co1—N4—C19—C20179.82 (18)
O5—Co1—N4—C190.5 (4)C23—N4—C19—C18177.24 (19)
O1—Co1—N4—C1989.61 (16)Co1—N4—C19—C180.4 (2)
N2—Co1—N4—C19104.26 (16)N3—C18—C19—N42.2 (3)
Co1—O1—C1—O2177.4 (2)C17—C18—C19—N4176.4 (2)
Co1—O1—C1—C21.1 (2)N3—C18—C19—C20178.4 (2)
C6—N1—C2—C34.3 (3)C17—C18—C19—C203.0 (4)
Co1—N1—C2—C3169.50 (18)N4—C19—C20—C210.9 (4)
C6—N1—C2—C1170.7 (2)C18—C19—C20—C21178.4 (2)
Co1—N1—C2—C15.5 (2)C19—C20—C21—C221.0 (3)
O2—C1—C2—N1178.7 (2)C20—C21—C22—C231.8 (4)
O1—C1—C2—N12.8 (3)C19—N4—C23—C221.4 (3)
O2—C1—C2—C36.8 (4)Co1—N4—C23—C22178.62 (18)
O1—C1—C2—C3171.7 (2)C19—N4—C23—C24178.1 (2)
N1—C2—C3—C41.5 (4)Co1—N4—C23—C240.9 (3)
C1—C2—C3—C4172.5 (2)C21—C22—C23—N40.5 (4)
C2—C3—C4—C52.0 (4)C21—C22—C23—C24180.0 (2)
C3—C4—C5—C62.8 (4)N4—C23—C24—O882.6 (3)
C2—N1—C6—C53.5 (3)C22—C23—C24—O897.9 (3)
Co1—N1—C6—C5168.27 (18)N4—C23—C24—O799.5 (3)
C2—N1—C6—C7173.7 (2)C22—C23—C24—O780.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O7i0.821.652.445 (3)164
C15—H15···O2i0.932.583.391 (3)147
C8—H8···O10ii0.932.413.142 (3)135
C16—H16···O6iii0.932.523.044 (3)116
C20—H20···O1iv0.932.553.315 (3)140
C22—H22···O9v0.932.353.091 (3)136
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Co(C12H6N2O4)(C12H7N2O4)]
Mr544.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)153
a, b, c (Å)9.3329 (19), 13.561 (3), 16.894 (3)
β (°) 100.70 (3)
V3)2101.0 (7)
Z4
Radiation typeMo Kα
µ (mm1)0.88
Crystal size (mm)0.26 × 0.20 × 0.08
Data collection
DiffractometerRigaku Saturn CCD area-detector
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.803, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
13969, 3696, 3219
Rint0.043
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.091, 1.06
No. of reflections3696
No. of parameters335
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.47

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O10—H10A···O7i0.821.652.445 (3)164.2
C15—H15···O2i0.932.583.391 (3)146.5
C8—H8···O10ii0.932.413.142 (3)135.3
C16—H16···O6iii0.932.523.044 (3)116.0
C20—H20···O1iv0.932.553.315 (3)140.0
C22—H22···O9v0.932.353.091 (3)136.1
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+2, y1/2, z+3/2; (iv) x+2, y+1, z+2; (v) x+1, y+1, z+2.
 

Acknowledgements

This project was supported financially by the National Natural Science Foundation of China (grant No. 21166014) and a Key Grant of the Inner Mongolia Natural Science Foundation of China (grant No. 2010ZD01).

References

First citationBrandenburg, K. & Putz, H. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationGhosh, S., Ribas, J. & Bharadwaj, P. (2005). Cryst. Growth Des. 5, 623–629.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Gu, X., Zhang, B., Su, H. & Hu, M. (2012). Acta Cryst. E68, m290–m291.  CSD CrossRef IUCr Journals Google Scholar
First citationWang, H., Su, H., Xu, J., Bai, F. & Gao, Y. (2009). Acta Cryst. E65, m352–m353.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWang, C., Wang, Z., Gu, F. & Guo, G. (2010). J. Mol. Struct. 979, 92–100.  Web of Science CSD CrossRef CAS Google Scholar
First citationWang, N., Yue, S., Liu, Y., Yang, H. & Wu, H. (2009). Cryst. Growth Des. 9, 368–371.  Web of Science CSD CrossRef CAS Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m411-m412
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds