organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N′-(3,5-Di­chloro-2-hy­dr­oxy­benzyl­­idene)-4-(di­methyl­amino)­benzohydrazide methanol monosolvate

aCollege of Marine Sciences, Zhejiang Ocean University, Zhoushan 316000, People's Republic of China
*Correspondence e-mail: jingyasun2009@163.com

(Received 7 March 2012; accepted 7 March 2012; online 10 March 2012)

The title compound, C16H15Cl2N3O2·CH3OH, a Schiff base molecule, is prepared by the reaction of 3,5-dichloro­salicyl­aldehyde with 4-dimethyl­amino­benzohydrazide in methanol. The Schiff base mol­ecule is approximately planar, with a mean deviation from the least-squares plane defined by the non-H atoms of 0.0452 (3) Å, and with a dihedral angle between the benzene rings of 4.2 (3)°. This planarity is assisted by the formation of an intra­molecular O—H⋯N hydrogen bond. In the crystal, adjacent Schiff base mol­ecules are linked by two methanol mol­ecules through N—H⋯O and O—H⋯O hydrogen bonds, forming dimers.

Related literature

For the preparation of Schiff base compounds by the condensation reaction between aldehydes with organic primary amines, see: Miura et al. (2009[Miura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.]); Zhao et al. (2010[Zhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.]); Karadağ et al. (2011)[Karadağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.]; Bingöl Alpaslan et al. (2010[Bingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15Cl2N3O2·CH4O

  • Mr = 384.25

  • Monoclinic, P 21 /n

  • a = 7.6498 (15) Å

  • b = 14.338 (3) Å

  • c = 16.884 (2) Å

  • β = 103.076 (2)°

  • V = 1803.8 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.38 mm−1

  • T = 298 K

  • 0.13 × 0.12 × 0.10 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.952, Tmax = 0.963

  • 8311 measured reflections

  • 3238 independent reflections

  • 1790 reflections with I > 2σ(I)

  • Rint = 0.072

Refinement
  • R[F2 > 2σ(F2)] = 0.079

  • wR(F2) = 0.180

  • S = 1.03

  • 3238 reflections

  • 231 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O3i 0.86 2.10 2.848 (5) 145
O1—H1⋯N1 0.82 1.91 2.600 (5) 141
O3—H3⋯O2 0.82 1.97 2.771 (5) 166
Symmetry code: (i) -x+1, -y+1, -z+1.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The condensation reaction between aldehydes with organic primary amines readily forms Schiff bases containing the typical –C=N– groups (Miura et al., 2009; Zhao et al., 2010; Karadağ et al., 2011; Bingöl Alpaslan et al., 2010). In this paper, the new title compound (Fig. 1), was prepared by the reaction of 3,5-dichlorosalicylaldehyde with 4-dimethylaminobenzohydrazide in methanol.

The asymmetric unit comprises a Schiff base molecule and a methanol molecule. The Schiff base molecule is approximately planar, with mean deviation from the least squares plane defined by the non-hydrogen atoms of 0.0452 (3) Å, and with the dihedral angle between the two benzene rings of 4.2 (3)°. This planarity is assisted by the formation of an intramolecular O1—H1···N1 hydrogen bond (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987). In the crystal structure adjacent Schiff base molecules are linked by two methanol molecules through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2).

Related literature top

For the preparation of Schiff base compounds by the condensation reaction between aldehydes with organic primary amines, see: Miura et al. (2009); Zhao et al. (2010); Karadağ et al. (2011); Bingöl Alpaslan et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Experimental top

3,5-Dichlorosalicylaldehyde (1.0 mmol, 0.190 g) and 4-dimethylaminobenzohydrazide (1.0 mmol, 0.179 g) were refluxed for 30 min in 30 ml me thanol, and cooled to room temperature to give colorless solid, which was isoloated by filtration. Single crystals of the title compound were formed by recrystallization of the solid product in methanol.

Refinement top

Hydrogen atoms were positioned geometrically and refined using the riding-model approximation, with C—H = 0.93–0.96 Å, O—H = 0.82 Å, N—H = 0.86 Å, and Uiso(H) = 1.2Ueq(C,N) or Uiso(H) = 1.5Ueq(O).

Structure description top

The condensation reaction between aldehydes with organic primary amines readily forms Schiff bases containing the typical –C=N– groups (Miura et al., 2009; Zhao et al., 2010; Karadağ et al., 2011; Bingöl Alpaslan et al., 2010). In this paper, the new title compound (Fig. 1), was prepared by the reaction of 3,5-dichlorosalicylaldehyde with 4-dimethylaminobenzohydrazide in methanol.

The asymmetric unit comprises a Schiff base molecule and a methanol molecule. The Schiff base molecule is approximately planar, with mean deviation from the least squares plane defined by the non-hydrogen atoms of 0.0452 (3) Å, and with the dihedral angle between the two benzene rings of 4.2 (3)°. This planarity is assisted by the formation of an intramolecular O1—H1···N1 hydrogen bond (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987). In the crystal structure adjacent Schiff base molecules are linked by two methanol molecules through intermolecular N—H···O and O—H···O hydrogen bonds (Table 1) to form a dimer (Fig. 2).

For the preparation of Schiff base compounds by the condensation reaction between aldehydes with organic primary amines, see: Miura et al. (2009); Zhao et al. (2010); Karadağ et al. (2011); Bingöl Alpaslan et al. (2010). For standard bond lengths, see: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compounds with atom labels and the 30% probability displacement ellipsoids. Hydrogen bonds are shown as dashed lines.
[Figure 2] Fig. 2. The molecular packing of the title compound. Hydrogen bonds are shown as dashed lines.
N'-(3,5-Dichloro-2-hydroxybenzylidene)-4-(dimethylamino)benzohydrazide methanol monosolvate top
Crystal data top
C16H15Cl2N3O2·CH4OF(000) = 800
Mr = 384.25Dx = 1.415 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.6498 (15) ÅCell parameters from 2546 reflections
b = 14.338 (3) Åθ = 2.5–28.3°
c = 16.884 (2) ŵ = 0.38 mm1
β = 103.076 (2)°T = 298 K
V = 1803.8 (5) Å3Block, colorless
Z = 40.13 × 0.12 × 0.10 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
3238 independent reflections
Radiation source: fine-focus sealed tube1790 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.072
ω scansθmax = 25.5°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 99
Tmin = 0.952, Tmax = 0.963k = 1617
8311 measured reflectionsl = 1320
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.079Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.180H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0664P)2 + 0.8315P]
where P = (Fo2 + 2Fc2)/3
3238 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C16H15Cl2N3O2·CH4OV = 1803.8 (5) Å3
Mr = 384.25Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.6498 (15) ŵ = 0.38 mm1
b = 14.338 (3) ÅT = 298 K
c = 16.884 (2) Å0.13 × 0.12 × 0.10 mm
β = 103.076 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3238 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1790 reflections with I > 2σ(I)
Tmin = 0.952, Tmax = 0.963Rint = 0.072
8311 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0790 restraints
wR(F2) = 0.180H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
3238 reflectionsΔρmin = 0.22 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.4325 (2)0.29209 (10)0.15198 (9)0.0674 (5)
Cl20.4175 (2)0.65692 (11)0.07222 (9)0.0719 (5)
N10.2957 (5)0.4874 (3)0.4015 (2)0.0450 (10)
N20.2686 (5)0.5167 (3)0.4749 (2)0.0431 (10)
H20.27020.57510.48640.052*
N30.1064 (6)0.5808 (3)0.8296 (2)0.0490 (11)
O10.3448 (5)0.3581 (2)0.3007 (2)0.0564 (10)
H10.30130.37800.33760.085*
O20.2453 (5)0.3677 (2)0.5161 (2)0.0530 (10)
O30.5727 (5)0.3035 (2)0.4941 (2)0.0608 (10)
H30.46850.31450.49600.091*
C10.3425 (6)0.5229 (3)0.2711 (3)0.0394 (12)
C20.3621 (6)0.4282 (3)0.2505 (3)0.0420 (12)
C30.4009 (6)0.4078 (4)0.1756 (3)0.0483 (13)
C40.4178 (6)0.4767 (4)0.1208 (3)0.0463 (13)
H40.44410.46160.07120.056*
C50.3950 (6)0.5682 (4)0.1411 (3)0.0481 (13)
C60.3577 (6)0.5909 (4)0.2145 (3)0.0474 (13)
H60.34220.65320.22660.057*
C70.3097 (6)0.5495 (3)0.3482 (3)0.0407 (12)
H70.29840.61230.35990.049*
C80.2386 (6)0.4510 (4)0.5302 (3)0.0388 (12)
C90.1976 (6)0.4892 (3)0.6054 (3)0.0363 (11)
C100.1902 (6)0.4268 (3)0.6673 (3)0.0408 (12)
H100.20870.36370.65920.049*
C110.1562 (6)0.4551 (3)0.7403 (3)0.0436 (12)
H110.14970.41090.77990.052*
C120.1311 (6)0.5505 (3)0.7556 (3)0.0358 (11)
C130.1359 (6)0.6129 (3)0.6922 (3)0.0455 (12)
H130.11730.67610.69960.055*
C140.1672 (6)0.5830 (3)0.6193 (3)0.0427 (12)
H140.16810.62630.57840.051*
C150.0961 (8)0.5155 (4)0.8937 (3)0.0577 (15)
H15A0.00120.47160.87430.087*
H15B0.07230.54870.93950.087*
H15C0.20800.48270.90980.087*
C160.0752 (7)0.6783 (4)0.8461 (3)0.0591 (15)
H16A0.17870.71450.84250.089*
H16B0.05380.68410.89970.089*
H16C0.02740.70070.80690.089*
C170.5794 (7)0.2197 (4)0.4506 (3)0.0619 (16)
H17A0.70020.19640.46260.093*
H17B0.54110.23150.39340.093*
H17C0.50160.17430.46650.093*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0718 (10)0.0608 (9)0.0729 (10)0.0044 (7)0.0235 (8)0.0241 (8)
Cl20.0840 (11)0.0797 (11)0.0536 (9)0.0156 (9)0.0192 (8)0.0149 (8)
N10.047 (3)0.048 (3)0.040 (3)0.000 (2)0.011 (2)0.009 (2)
N20.057 (3)0.039 (2)0.033 (2)0.002 (2)0.010 (2)0.0098 (19)
N30.071 (3)0.037 (2)0.046 (3)0.001 (2)0.026 (2)0.000 (2)
O10.078 (3)0.045 (2)0.048 (2)0.0047 (19)0.018 (2)0.0026 (18)
O20.074 (2)0.035 (2)0.055 (2)0.0019 (17)0.0234 (19)0.0095 (17)
O30.069 (2)0.041 (2)0.077 (3)0.0039 (19)0.025 (2)0.0124 (19)
C10.035 (3)0.046 (3)0.034 (3)0.002 (2)0.001 (2)0.005 (2)
C20.043 (3)0.049 (3)0.031 (3)0.002 (2)0.002 (2)0.001 (2)
C30.042 (3)0.058 (3)0.047 (3)0.002 (2)0.014 (2)0.013 (3)
C40.037 (3)0.070 (4)0.032 (3)0.002 (2)0.007 (2)0.000 (3)
C50.044 (3)0.062 (4)0.036 (3)0.016 (3)0.004 (2)0.006 (3)
C60.050 (3)0.044 (3)0.046 (3)0.008 (2)0.005 (2)0.000 (3)
C70.042 (3)0.040 (3)0.039 (3)0.002 (2)0.007 (2)0.004 (2)
C80.029 (3)0.050 (3)0.037 (3)0.003 (2)0.008 (2)0.000 (3)
C90.036 (3)0.038 (3)0.038 (3)0.002 (2)0.015 (2)0.003 (2)
C100.040 (3)0.032 (3)0.053 (3)0.002 (2)0.015 (2)0.002 (2)
C110.047 (3)0.043 (3)0.043 (3)0.005 (2)0.016 (2)0.008 (2)
C120.036 (3)0.036 (3)0.037 (3)0.005 (2)0.013 (2)0.005 (2)
C130.055 (3)0.033 (3)0.052 (3)0.000 (2)0.020 (3)0.003 (3)
C140.058 (3)0.032 (3)0.043 (3)0.004 (2)0.021 (2)0.005 (2)
C150.070 (4)0.063 (4)0.042 (3)0.003 (3)0.015 (3)0.001 (3)
C160.068 (4)0.054 (3)0.062 (4)0.001 (3)0.030 (3)0.011 (3)
C170.074 (4)0.053 (4)0.063 (4)0.009 (3)0.024 (3)0.009 (3)
Geometric parameters (Å, º) top
Cl1—C31.736 (5)C6—H60.9300
Cl2—C51.758 (5)C7—H70.9300
N1—C71.288 (6)C8—C91.480 (6)
N1—N21.367 (5)C9—C101.387 (6)
N2—C81.381 (6)C9—C141.394 (6)
N2—H20.8600C10—C111.378 (6)
N3—C121.374 (6)C10—H100.9300
N3—C151.447 (6)C11—C121.414 (6)
N3—C161.456 (6)C11—H110.9300
O1—C21.342 (5)C12—C131.402 (6)
O1—H10.8200C13—C141.374 (6)
O2—C81.222 (5)C13—H130.9300
O3—C171.415 (6)C14—H140.9300
O3—H30.8200C15—H15A0.9600
C1—C61.388 (6)C15—H15B0.9600
C1—C21.417 (6)C15—H15C0.9600
C1—C71.433 (6)C16—H16A0.9600
C2—C31.393 (6)C16—H16B0.9600
C3—C41.379 (7)C16—H16C0.9600
C4—C51.378 (7)C17—H17A0.9600
C4—H40.9300C17—H17B0.9600
C5—C61.372 (7)C17—H17C0.9600
C7—N1—N2118.3 (4)C14—C9—C8125.3 (4)
N1—N2—C8119.1 (4)C11—C10—C9122.2 (4)
N1—N2—H2120.5C11—C10—H10118.9
C8—N2—H2120.5C9—C10—H10118.9
C12—N3—C15121.1 (4)C10—C11—C12120.6 (4)
C12—N3—C16122.6 (4)C10—C11—H11119.7
C15—N3—C16116.1 (4)C12—C11—H11119.7
C2—O1—H1109.5N3—C12—C13121.7 (4)
C17—O3—H3109.5N3—C12—C11121.6 (4)
C6—C1—C2118.3 (4)C13—C12—C11116.7 (4)
C6—C1—C7119.8 (5)C14—C13—C12121.6 (4)
C2—C1—C7121.9 (5)C14—C13—H13119.2
O1—C2—C3119.2 (5)C12—C13—H13119.2
O1—C2—C1122.1 (4)C13—C14—C9121.5 (5)
C3—C2—C1118.7 (5)C13—C14—H14119.3
C4—C3—C2122.0 (5)C9—C14—H14119.3
C4—C3—Cl1119.4 (4)N3—C15—H15A109.5
C2—C3—Cl1118.6 (4)N3—C15—H15B109.5
C5—C4—C3118.6 (5)H15A—C15—H15B109.5
C5—C4—H4120.7N3—C15—H15C109.5
C3—C4—H4120.7H15A—C15—H15C109.5
C6—C5—C4120.9 (5)H15B—C15—H15C109.5
C6—C5—Cl2119.9 (4)N3—C16—H16A109.5
C4—C5—Cl2119.2 (4)N3—C16—H16B109.5
C5—C6—C1121.5 (5)H16A—C16—H16B109.5
C5—C6—H6119.3N3—C16—H16C109.5
C1—C6—H6119.3H16A—C16—H16C109.5
N1—C7—C1120.7 (4)H16B—C16—H16C109.5
N1—C7—H7119.7O3—C17—H17A109.5
C1—C7—H7119.7O3—C17—H17B109.5
O2—C8—N2120.9 (4)H17A—C17—H17B109.5
O2—C8—C9123.7 (4)O3—C17—H17C109.5
N2—C8—C9115.4 (4)H17A—C17—H17C109.5
C10—C9—C14117.3 (4)H17B—C17—H17C109.5
C10—C9—C8117.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.102.848 (5)145
O1—H1···N10.821.912.600 (5)141
O3—H3···O20.821.972.771 (5)166
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC16H15Cl2N3O2·CH4O
Mr384.25
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.6498 (15), 14.338 (3), 16.884 (2)
β (°) 103.076 (2)
V3)1803.8 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.13 × 0.12 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.952, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
8311, 3238, 1790
Rint0.072
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.079, 0.180, 1.03
No. of reflections3238
No. of parameters231
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.22

Computer programs: SMART (Bruker, 2007), SAINT (Bruker, 2007), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O3i0.862.102.848 (5)145.3
O1—H1···N10.821.912.600 (5)141.2
O3—H3···O20.821.972.771 (5)165.9
Symmetry code: (i) x+1, y+1, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBingöl Alpaslan, Y., Alpaslan, G., Ağar, A. & Işık, Ş. (2010). Acta Cryst. E66, o510.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKaradağ, A. T., Atalay, Ş. & Genç, H. (2011). Acta Cryst. E67, o95.  Web of Science CrossRef IUCr Journals Google Scholar
First citationMiura, Y., Aritake, Y. & Akitsu, T. (2009). Acta Cryst. E65, o2381.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhao, L., Cao, D. & Cui, J. (2010). Acta Cryst. E66, o2204.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds