metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[(tri­aqua­zinc)-μ-furan-2,5-di­carboxyl­ato-κ3O2:O2,O2′]

aSchool of Chemical Engineering, Changchun University of Technology, Changchun 130012, People's Republic of China
*Correspondence e-mail: fly012345@sohu.com

(Received 13 March 2012; accepted 21 March 2012; online 31 March 2012)

In the crystal structure of the title compound, [Zn(C6H2O5)(H2O)3]n, an infinite chain is formed along [001] by linking of the Zn(H2O)3 entities with one carboxyl­ate group of the furan-2,5-dicarboxyl­ate ligand. Adjacent chains are linked by Owater—H⋯O hydrogen-bonding inter­actions. The Zn(H2O)3O3 polyhedron displays a distorted octa­hedral geometry with one weak Zn—Ocarboxyl­ate coordination [2.433 (8) A°] and two water mol­ecules located in axial positions. Except for one of the axial water molecules and two adjacent H atoms, the other atoms (including H atoms) possess site symmetry m.

Related literature

For background to materials with metal-organic framework structures, see: Chui et al. (1999[Chui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148-1150.]); Corma et al. (2010[Corma, A., Garcia, H., Xamena, F. X. L. I. (2010). Chem. Rev. 110, 4606-4655.]); Ferey (2008[Ferey, G. (2008). Chem. Soc. Rev. 37, 191-214.]); Li et al. (1999[Li, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276-279.]); Ma et al. (2009[Ma, L., Abney, C. & Lin, W. (2009). Chem. Soc. Rev. 38, 1248-1256.]); Murray et al. (2009[Murray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294-1314.]); Tranchemontagne et al. (2009[Tranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257-1283.]).

[Scheme 1]

Experimental

Crystal data
  • [Zn(C6H2O5)(H2O)3]

  • Mr = 273.51

  • Orthorhombic, P n m a

  • a = 7.3677 (15) Å

  • b = 8.1353 (16) Å

  • c = 15.107 (3) Å

  • V = 905.5 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.74 mm−1

  • T = 293 K

  • 0.42 × 0.36 × 0.23 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.33, Tmax = 0.54

  • 8443 measured reflections

  • 1121 independent reflections

  • 1029 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.083

  • wR(F2) = 0.224

  • S = 1.11

  • 1121 reflections

  • 98 parameters

  • 87 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 2.22 e Å−3

  • Δρmin = −1.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1A⋯O5i 0.82 (3) 2.08 (8) 2.809 (10) 147 (14)
O1W—H1B⋯O4ii 0.83 (3) 2.16 (5) 2.957 (11) 163 (12)
O2W—H2A⋯O4iii 0.82 (3) 1.83 (4) 2.648 (14) 168 (14)
O2W—H2B⋯O1iv 0.82 (3) 1.67 (3) 2.491 (11) 177 (15)
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) [-x+{\script{3\over 2}}, -y+2, z-{\script{1\over 2}}]; (iii) [x-{\script{1\over 2}}, y, -z+{\script{1\over 2}}]; (iv) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002)[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 2000[Brandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

During past decades, many efforts have been made to construct MOF materials due to their potential applications including gas absorption and reaction catalysis (Ma, et al., 2009; Murray, et al., 2009; Corma, et al., 2010). Much attention has been focused on MOFs based on a phenyl ring with carboxylate groups (Chui, et al., 1999; Li, et al., 1999; Ferey, 2008; Tranchemontagne, et al., 2009). However, 5-membered rings with carboxylate groups as described here are rarely studied. Recently, we utilized furan-2,5-dicarboxyl acid as a ligand for MOF construction. In this work, a novel chainlike compound, [Zn.(C6O5H2).3H2O]n (I), was synthesized.

The asymmetric unit of (I) is comprised of one Zn(II) cation, one furan-2,5-dicarboxylate anion and three H2O molecules (Fig.1). The Zn cation is coordinated by three carboxylate O atoms and three water molecules of which two are at the axial positions generating a distorted octahedron. Carboxylate oxygen O2 of (Zn—Ocarboxylate = 2.433 (8) Å) is very weakly ligated to the Zn cation. If this interaction is excluded the Zn displays triganol bipyramid geometry but the chain property is retained. Only the O2 carboxyl of the furan-2,5-dicarboxylate is involved in the formation of the infinite chain. The carboxyl has an µ2:η1,η2 bonding mode.

The infinite chain of Zn cations linked by one carboxylate of furan-2,5-dicarboxylate is shown in (Fig.2). The adjacent chains are held together by H-bonding interactions of Owater—H···O (Fig.3).

Related literature top

For background to materials with metal-organic framework structures, see: Chui et al. (1999); Corma et al. (2010); Ferey (2008); Li et al. (1999); Ma et al. (2009); Murray et al. (2009); Tranchemontagne et al. (2009).

Experimental top

(I) was synthesized under solvothermal condition. In a typical preparation, furan-2,5-dicarboxyl acid (0.312 g, 2.0 mmol) and Zn(NO3)2.6H2O (0.592 g, 2.0 mmol) were dissolved in a mixture of EtOH (2.9 ml, 50 mmol) and DMF (3.9 ml, 50m mol) with stirring. Then, the clear solution with molar ratio of 1 (furan-2,5-dicarboxyl acid): 1 (Zn(NO3)2.6H2O): 25 (EtOH): 25 (DMF) was tranferred into a 23 ml autoclave and heated at 393 K for 24hrs. After naturally cooling to room temperature, colorless blocks were collected by filtration as a single phase.

Refinement top

Water H atoms were located in a difference Fourier map and were refined with O—H = 0.82 (2) Å, H···H = 1.37 (2) Å and Uiso(H) = 1.2Ueq(O). The carbon H-atoms were placed in calculated positions (C—H = 0.93 Å) and were included in the refinement in the riding-model approximation, with Uiso(H) = 1.2Ueq(C).

Structure description top

During past decades, many efforts have been made to construct MOF materials due to their potential applications including gas absorption and reaction catalysis (Ma, et al., 2009; Murray, et al., 2009; Corma, et al., 2010). Much attention has been focused on MOFs based on a phenyl ring with carboxylate groups (Chui, et al., 1999; Li, et al., 1999; Ferey, 2008; Tranchemontagne, et al., 2009). However, 5-membered rings with carboxylate groups as described here are rarely studied. Recently, we utilized furan-2,5-dicarboxyl acid as a ligand for MOF construction. In this work, a novel chainlike compound, [Zn.(C6O5H2).3H2O]n (I), was synthesized.

The asymmetric unit of (I) is comprised of one Zn(II) cation, one furan-2,5-dicarboxylate anion and three H2O molecules (Fig.1). The Zn cation is coordinated by three carboxylate O atoms and three water molecules of which two are at the axial positions generating a distorted octahedron. Carboxylate oxygen O2 of (Zn—Ocarboxylate = 2.433 (8) Å) is very weakly ligated to the Zn cation. If this interaction is excluded the Zn displays triganol bipyramid geometry but the chain property is retained. Only the O2 carboxyl of the furan-2,5-dicarboxylate is involved in the formation of the infinite chain. The carboxyl has an µ2:η1,η2 bonding mode.

The infinite chain of Zn cations linked by one carboxylate of furan-2,5-dicarboxylate is shown in (Fig.2). The adjacent chains are held together by H-bonding interactions of Owater—H···O (Fig.3).

For background to materials with metal-organic framework structures, see: Chui et al. (1999); Corma et al. (2010); Ferey (2008); Li et al. (1999); Ma et al. (2009); Murray et al. (2009); Tranchemontagne et al. (2009).

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2000); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The unit cell of (I), showing the atomic labelling scheme and displacement ellipsoids at the 50% probability level. [Symmetry codes: (i) -0.5 + x, y, 0.5 - z; (ii) x, 1.5 - y, z.]
[Figure 2] Fig. 2. The stick plot of (I), displaying the infinite chain along [001] direction formed by linking the Zn with carboxyl of furan-2,5-dicarboxylate.
[Figure 3] Fig. 3. The ball-stick packing diagram of (I). The adjacent chains are holded together by the H-bonding interactions.
catena-Poly[(triaquazinc)-µ-furan-2,5-dicarboxylato- κ3O2:O2,O2'] top
Crystal data top
[Zn(C6H2O5)(H2O)3]F(000) = 552
Mr = 273.51Dx = 2.006 Mg m3
Orthorhombic, PnmaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2nCell parameters from 1000 reflections
a = 7.3677 (15) Åθ = 2.8–30.2°
b = 8.1353 (16) ŵ = 2.74 mm1
c = 15.107 (3) ÅT = 293 K
V = 905.5 (3) Å3Block, colorless
Z = 40.42 × 0.36 × 0.23 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1121 independent reflections
Radiation source: fine-focus sealed tube1029 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 10.00 pixels mm-1θmax = 30.2°, θmin = 2.8°
ω scansh = 1010
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
k = 99
Tmin = 0.33, Tmax = 0.54l = 1916
8443 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.224H atoms treated by a mixture of independent and constrained refinement
S = 1.11 w = 1/[σ2(Fo2) + (0.119P)2 + 7.3441P]
where P = (Fo2 + 2Fc2)/3
1121 reflections(Δ/σ)max < 0.001
98 parametersΔρmax = 2.22 e Å3
87 restraintsΔρmin = 1.90 e Å3
Crystal data top
[Zn(C6H2O5)(H2O)3]V = 905.5 (3) Å3
Mr = 273.51Z = 4
Orthorhombic, PnmaMo Kα radiation
a = 7.3677 (15) ŵ = 2.74 mm1
b = 8.1353 (16) ÅT = 293 K
c = 15.107 (3) Å0.42 × 0.36 × 0.23 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
1121 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
1029 reflections with I > 2σ(I)
Tmin = 0.33, Tmax = 0.54Rint = 0.027
8443 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.08387 restraints
wR(F2) = 0.224H atoms treated by a mixture of independent and constrained refinement
S = 1.11Δρmax = 2.22 e Å3
1121 reflectionsΔρmin = 1.90 e Å3
98 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.33412 (15)0.75000.19775 (8)0.0399 (6)
O10.3238 (10)0.75000.3352 (6)0.042 (2)
O20.5848 (11)0.75000.3026 (5)0.043 (2)
O40.9702 (12)0.75000.5701 (7)0.077 (3)
O50.8412 (10)0.75000.6964 (5)0.053 (3)
C10.4723 (12)0.75000.3584 (7)0.038 (3)
O30.6726 (9)0.75000.4770 (5)0.0339 (17)
C20.5127 (13)0.75000.4532 (7)0.033 (2)
C30.4138 (16)0.75000.5251 (8)0.044 (3)
H30.28750.75000.52570.053*
C40.5222 (16)0.75000.6006 (8)0.051 (3)
H40.49080.75000.66030.062*
C50.6686 (10)0.75000.5654 (6)0.035 (2)
C60.8312 (12)0.75000.6104 (7)0.037 (3)
O1W0.3316 (10)1.0258 (13)0.1901 (6)0.066 (2)
H1A0.313 (18)1.075 (12)0.237 (5)0.079*
H1B0.405 (14)1.075 (12)0.158 (6)0.079*
O2W0.5094 (11)0.75000.1041 (6)0.052 (2)
H2A0.513 (19)0.75000.0495 (18)0.063*
H2B0.612 (9)0.75000.126 (8)0.063*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0127 (6)0.0881 (13)0.0189 (7)0.0000.0014 (4)0.000
O10.021 (3)0.076 (5)0.030 (4)0.0000.004 (3)0.000
O20.020 (3)0.080 (5)0.030 (3)0.0000.000 (3)0.000
O40.044 (5)0.141 (8)0.046 (5)0.0000.002 (4)0.000
O50.022 (4)0.119 (10)0.017 (4)0.0000.005 (3)0.000
C10.015 (4)0.075 (7)0.024 (4)0.0000.002 (3)0.000
O30.018 (3)0.060 (4)0.023 (3)0.0000.003 (2)0.000
C20.014 (3)0.063 (7)0.023 (4)0.0000.001 (3)0.000
C30.031 (4)0.069 (6)0.034 (4)0.0000.000 (4)0.000
C40.027 (5)0.101 (9)0.027 (5)0.0000.000 (4)0.000
C50.024 (4)0.058 (6)0.021 (4)0.0000.001 (3)0.000
C60.023 (4)0.065 (7)0.022 (5)0.0000.001 (3)0.000
O1W0.042 (4)0.083 (5)0.072 (5)0.001 (3)0.032 (3)0.009 (4)
O2W0.020 (3)0.109 (6)0.028 (4)0.0000.003 (3)0.000
Geometric parameters (Å, º) top
Zn1—O2i1.837 (8)O3—C21.232 (11)
Zn1—O2W1.916 (8)O3—C51.335 (12)
Zn1—O12.079 (9)C2—C31.308 (16)
Zn1—O1Wii2.247 (10)C3—C41.392 (17)
Zn1—O1W2.247 (10)C3—H30.9300
Zn1—O22.433 (8)C4—C51.203 (15)
O1—C11.149 (12)C4—H40.9300
O2—C11.182 (13)C5—C61.377 (9)
O2—Zn1iii1.837 (8)O1W—H1A0.82 (3)
O4—C61.191 (14)O1W—H1B0.83 (3)
O5—C61.301 (12)O2W—H2A0.82 (3)
C1—C21.464 (14)O2W—H2B0.82 (3)
O2i—Zn1—O2W132.2 (4)C2—O3—C5105.7 (8)
O2i—Zn1—O188.1 (3)O3—C2—C3106.9 (10)
O2W—Zn1—O1139.7 (3)O3—C2—C1118.7 (9)
O2i—Zn1—O1Wii89.52 (19)C3—C2—C1134.4 (10)
O2W—Zn1—O1Wii88.14 (17)C2—C3—C4111.1 (11)
O1—Zn1—O1Wii92.9 (2)C2—C3—H3124.4
O2i—Zn1—O1W89.52 (19)C4—C3—H3124.4
O2W—Zn1—O1W88.14 (17)C5—C4—C398.7 (10)
O1—Zn1—O1W92.9 (2)C5—C4—H4130.6
O1Wii—Zn1—O1W174.0 (5)C3—C4—H4130.6
O2i—Zn1—O2139.54 (17)C4—C5—O3117.5 (9)
O2W—Zn1—O288.2 (3)C4—C5—C6124.2 (10)
O1—Zn1—O251.5 (3)O3—C5—C6118.3 (8)
O1Wii—Zn1—O292.3 (2)O4—C6—O5117.4 (9)
O1W—Zn1—O292.3 (2)O4—C6—C5119.7 (10)
C1—O1—Zn1105.6 (7)O5—C6—C5122.8 (9)
C1—O2—Zn1iii134.7 (8)Zn1—O1W—H1A116 (8)
C1—O2—Zn186.1 (6)Zn1—O1W—H1B120 (8)
Zn1iii—O2—Zn1139.2 (4)H1A—O1W—H1B112 (5)
O1—C1—O2116.8 (11)Zn1—O2W—H2A139 (10)
O1—C1—C2119.4 (10)Zn1—O2W—H2B109 (10)
O2—C1—C2123.8 (9)H2A—O2W—H2B112 (13)
O2i—Zn1—O1—C1180.000 (1)Zn1iii—O2—C1—C20.000 (3)
O2W—Zn1—O1—C10.000 (2)Zn1—O2—C1—C2180.000 (2)
O1Wii—Zn1—O1—C190.58 (19)C5—O3—C2—C30.000 (3)
O1W—Zn1—O1—C190.58 (19)C5—O3—C2—C1180.000 (2)
O2—Zn1—O1—C10.000 (1)O1—C1—C2—O3180.000 (2)
O2i—Zn1—O2—C10.000 (1)O2—C1—C2—O30.000 (3)
O2W—Zn1—O2—C1180.000 (1)O1—C1—C2—C30.000 (4)
O1—Zn1—O2—C10.000 (1)O2—C1—C2—C3180.000 (3)
O1Wii—Zn1—O2—C191.93 (17)O3—C2—C3—C40.000 (3)
O1W—Zn1—O2—C191.93 (17)C1—C2—C3—C4180.000 (3)
O2i—Zn1—O2—Zn1iii180.0C2—C3—C4—C50.000 (3)
O2W—Zn1—O2—Zn1iii0.0C3—C4—C5—O30.000 (3)
O1—Zn1—O2—Zn1iii180.0C3—C4—C5—C6180.000 (3)
O1Wii—Zn1—O2—Zn1iii88.07 (17)C2—O3—C5—C40.000 (3)
O1W—Zn1—O2—Zn1iii88.07 (17)C2—O3—C5—C6180.000 (2)
Zn1—O1—C1—O20.000 (2)C4—C5—C6—O4180.000 (3)
Zn1—O1—C1—C2180.000 (2)O3—C5—C6—O40.000 (3)
Zn1iii—O2—C1—O1180.000 (1)C4—C5—C6—O50.000 (4)
Zn1—O2—C1—O10.000 (1)O3—C5—C6—O5180.000 (2)
Symmetry codes: (i) x1/2, y, z+1/2; (ii) x, y+3/2, z; (iii) x+1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5iv0.82 (3)2.08 (8)2.809 (10)147 (14)
O1W—H1B···O4v0.83 (3)2.16 (5)2.957 (11)163 (12)
O2W—H2A···O4i0.82 (3)1.83 (4)2.648 (14)168 (14)
O2W—H2B···O1iii0.82 (3)1.67 (3)2.491 (11)177 (15)
Symmetry codes: (i) x1/2, y, z+1/2; (iii) x+1/2, y, z+1/2; (iv) x+1, y+2, z+1; (v) x+3/2, y+2, z1/2.

Experimental details

Crystal data
Chemical formula[Zn(C6H2O5)(H2O)3]
Mr273.51
Crystal system, space groupOrthorhombic, Pnma
Temperature (K)293
a, b, c (Å)7.3677 (15), 8.1353 (16), 15.107 (3)
V3)905.5 (3)
Z4
Radiation typeMo Kα
µ (mm1)2.74
Crystal size (mm)0.42 × 0.36 × 0.23
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.33, 0.54
No. of measured, independent and
observed [I > 2σ(I)] reflections
8443, 1121, 1029
Rint0.027
(sin θ/λ)max1)0.707
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.083, 0.224, 1.11
No. of reflections1121
No. of parameters98
No. of restraints87
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)2.22, 1.90

Computer programs: PROCESS-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1A···O5i0.82 (3)2.08 (8)2.809 (10)147 (14)
O1W—H1B···O4ii0.83 (3)2.16 (5)2.957 (11)163 (12)
O2W—H2A···O4iii0.82 (3)1.83 (4)2.648 (14)168 (14)
O2W—H2B···O1iv0.82 (3)1.67 (3)2.491 (11)177 (15)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+3/2, y+2, z1/2; (iii) x1/2, y, z+1/2; (iv) x+1/2, y, z+1/2.
 

Acknowledgements

This project was sponsored by the Scientific Research Foundation for the Returned Overseas Team, Chinese Education Ministry.

References

First citationBrandenburg, K. (2000). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChui, S. S. Y., Lo, S. M. F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationCorma, A., Garcia, H., Xamena, F. X. L. I. (2010). Chem. Rev. 110, 4606–4655.  Web of Science CrossRef CAS PubMed Google Scholar
First citationFerey, G. (2008). Chem. Soc. Rev. 37, 191–214.  Web of Science PubMed CAS Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationLi, H., Eddaoudi, M., O'Keeffe, M. & Yaghi, O. M. (1999). Nature (London), 402, 276–279.  CAS Google Scholar
First citationMa, L., Abney, C. & Lin, W. (2009). Chem. Soc. Rev. 38, 1248–1256.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMurray, L. J., Dinca, M. & Long, J. R. (2009). Chem. Soc. Rev. 38, 1294–1314.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTranchemontagne, D. J., Mendoza-Cortes, J. L., O'Keeffe, M. & Yaghi, O. M. (2009). Chem. Soc. Rev. 38, 1257–1283.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds