metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[di­aqua­bis­(1H-imidazole-κN3)cobalt(II)]-μ-2,3,5,6-tetra­chloro­tereph­thal­ato-κ2O1:O4]

aSchool of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu Province 214122, People's Republic of China
*Correspondence e-mail: cgzheng@jiangnan.edu.cn

(Received 12 January 2012; accepted 7 February 2012; online 3 March 2012)

In the title compound, [Co(C8Cl4O4)(C3H4N2)2(H2O)2]n, the CoII ion displays a distorted octa­hedral coordination geometry with two O atoms from two monodentate tetra­chloro­terephthalate dianions, two N atoms from two imidazole mol­ecules and two O atoms from two water mol­ecules. The CoII ions are connected via the tetra­chloro­terephthalate dianions into a chain running along the crystallographic [110] direction. Adjacent chains are linked into a two-dimensional network arranged parallel to (010) by classical N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For magnetism, gas storage and electrooptic properties, see: Kumar et al. (2009[Kumar, A., Mayer-Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720-2725.]); Farha et al. (2009[Farha, O. K., Spokoyny, A. Y. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727-1731.]); Zhou et al. (2006[Zhou, Y. F., Hong, M. C. & Wu, X. T. (2006). Chem. Commun. pp. 135-143.]); Mulder et al. (2005[Mulder, F. M., Dingemans, T. J., Wagemake, M. & Kearley, G. J. (2005). Chem. Phys. 317, 113-118.]); Zhang et al. (2007[Zhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291-4295.]). For the geometric parameters of related compounds, see: Murugavel et al. (2002[Murugavel, R., Krishnamurthy, D. & Sathiyendiran, M. (2002). J. Chem. Soc. Dalton Trans. pp. 34-39.]); Rogan et al. (2006[Rogan, J., Poleti, D. & Karanović, L. (2006). Z. Anorg. Allg. Chem. 632, 133-139.]); Tong et al. (2002[Tong, M.-L., Li, W., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. E58, m186-m188.]); Zhang & Lu (2004[Zhang, Q.-Z. & Lu, C.-Z. (2004). Acta Cryst. E60, m1289-m1290.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C8Cl4O4)(C3H4N2)2(H2O)2]

  • Mr = 533.01

  • Monoclinic, C 2/c

  • a = 18.646 (4) Å

  • b = 12.068 (2) Å

  • c = 10.741 (2) Å

  • β = 120.76 (3)°

  • V = 2076.9 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 295 K

  • 0.58 × 0.52 × 0.31 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.677, Tmax = 1.000

  • 6189 measured reflections

  • 2342 independent reflections

  • 1959 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.06

  • 2342 reflections

  • 133 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯O1i 0.85 1.94 2.7681 (19) 166
O3—H3B⋯O2ii 0.85 2.01 2.696 (2) 137
N2—H2B⋯O2iii 0.86 1.96 2.803 (2) 167
Symmetry codes: (i) [-x+1, y, -z+{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The design and synthesis of coordination polymers has attracted great interest in functional solid–state materials, owing to their excellent properties in magnetism, gas storage and electrooptic materials (Kumar et al., 2009; Farha et al., 2009; Zhou et al., 2006). Herein, compared with 1,4–benzenedicarboxylic acid, tetrachloroterephthalic acid can be used to construct materials which have different properties. Computational study suggests that 1,4–benzenedicarboxylic acid with chemical modification have better adsorption property in gas storage (Mulder et al., 2005; Zhang et al., 2007).

Single–crystal X–ray structural analysis reveals that the title cobalt(II) complex in crystal built from one–dimensional linear chains running along the crystallographic direction [1 1 0]. As shown in Fig. 1, the coordination geometry around the Co(II) atom is a slightly distorted octahedron with N2O4 binding set. In the octahedron unit, two O atoms from the tetrachloroterephthalate dianions ligands and two N atoms from the imidazole molecules form the equatorial plane and the axial position is occupied by O atoms from two water molecules. The Co—O bond lengths are 2.1653 (14)Å and 2.0865 (14)Å and agree well with the reported (Murugavel et al., 2002; Rogan et al., 2006). The Co—N bond length are 2.0896 (17)Å, which are comparable with the reported values in the similar complexes (Tong et al., 2002; Zhang & Lu, 2004). In addition, the imidazole and water molecules act as donors in N—H···O and O—H···O hydrogen bonds (Table 1). Adjacent one–dimensional chains are linked into a two–dimensional network arranged along the crystallographic b axis by classical N2—H2B···O2iii and O3—H3A···O1i hydrogen bonds with the angles of 167° and 166°, respectivly. Symmetry codes: (i) -x+1, y, -z+1/2; (iii) -x+1/2, y+1/2, -z+1/2.

Related literature top

For magnetism, gas storage and electrooptic properties, see: Kumar et al. (2009); Farha et al. (2009); Zhou et al. (2006); Mulder et al. (2005); Zhang et al. (2007). For the geometric parameters of related compounds, see: Murugavel et al. (2002); Rogan et al. (2006); Tong et al. (2002); Zhang & Lu (2004).

Experimental top

All the reagents and solvents employed were commercially available. Tetrachloroterephthalic acid was purified by recrystallization. In a 15 cm long tube, a solution of sodium tetrachloroterephthalate (0.0346 g, 0.1 mmol) and imidazol (0.0068 g, 0.1 mmol) in 5 mL methanol was carefully layered on top of a bilayer solution comprised of a solution of Co(NO3)2×6H2O (0.0291 g, 0.10 mmol) in 5 mL water on the bottom and a buffer solvent of 6 mL ethyl acetate on the top at room temperature. Half a month later, pink block–shaped crystals were obtained, washed with water, and dried on air (0.0618 g, yield: 58% based on Co). Elemental analysis(%) calcd. for C14H12Cl4CoN4O6: C, 31.52; H, 2.25; N, 10.51. Found: C, 31.37; H, 2.24; N, 10.47%.

Refinement top

All the other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H, O—H and N—H distances of 0.93Å, 0.85Å and 0.86Å with Uiso(H) = 1.2(1.5)Ueq(C, O, N). All C—Cl bond lengths were restrained to 1.728–1.729 (2)Å.

Structure description top

The design and synthesis of coordination polymers has attracted great interest in functional solid–state materials, owing to their excellent properties in magnetism, gas storage and electrooptic materials (Kumar et al., 2009; Farha et al., 2009; Zhou et al., 2006). Herein, compared with 1,4–benzenedicarboxylic acid, tetrachloroterephthalic acid can be used to construct materials which have different properties. Computational study suggests that 1,4–benzenedicarboxylic acid with chemical modification have better adsorption property in gas storage (Mulder et al., 2005; Zhang et al., 2007).

Single–crystal X–ray structural analysis reveals that the title cobalt(II) complex in crystal built from one–dimensional linear chains running along the crystallographic direction [1 1 0]. As shown in Fig. 1, the coordination geometry around the Co(II) atom is a slightly distorted octahedron with N2O4 binding set. In the octahedron unit, two O atoms from the tetrachloroterephthalate dianions ligands and two N atoms from the imidazole molecules form the equatorial plane and the axial position is occupied by O atoms from two water molecules. The Co—O bond lengths are 2.1653 (14)Å and 2.0865 (14)Å and agree well with the reported (Murugavel et al., 2002; Rogan et al., 2006). The Co—N bond length are 2.0896 (17)Å, which are comparable with the reported values in the similar complexes (Tong et al., 2002; Zhang & Lu, 2004). In addition, the imidazole and water molecules act as donors in N—H···O and O—H···O hydrogen bonds (Table 1). Adjacent one–dimensional chains are linked into a two–dimensional network arranged along the crystallographic b axis by classical N2—H2B···O2iii and O3—H3A···O1i hydrogen bonds with the angles of 167° and 166°, respectivly. Symmetry codes: (i) -x+1, y, -z+1/2; (iii) -x+1/2, y+1/2, -z+1/2.

For magnetism, gas storage and electrooptic properties, see: Kumar et al. (2009); Farha et al. (2009); Zhou et al. (2006); Mulder et al. (2005); Zhang et al. (2007). For the geometric parameters of related compounds, see: Murugavel et al. (2002); Rogan et al. (2006); Tong et al. (2002); Zhang & Lu (2004).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP plot of a fragment of the title compound (with the atom numbering scheme) showing the coordination environment of Co1 atom and the one–dimensional polymeric structure. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (i) 1-x, y, 1/2-z; (ii) 1-x, 1-y, 1-z; (iii) 1/2-x, 1/2+y, 1/2-z.
catena-Poly[[diaquabis(1H-imidazole-κN3)cobalt(II)]- µ-2,3,5,6-tetrachloroterephthalato-κ2O1:O4] top
Crystal data top
[Co(C8Cl4O4)(C3H4N2)2(H2O)2]Z = 4
Mr = 533.01F(000) = 1068
Monoclinic, C2/cDx = 1.705 Mg m3
Hall symbol: -C 2ycMo Kα radiation, λ = 0.71073 Å
a = 18.646 (4) ŵ = 1.38 mm1
b = 12.068 (2) ÅT = 295 K
c = 10.741 (2) ÅBlock, pink
β = 120.76 (3)°0.58 × 0.52 × 0.31 mm
V = 2076.9 (9) Å3
Data collection top
Bruker SMART APEXII CCD
diffractometer
2342 independent reflections
Radiation source: fine-focus sealed tube1959 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
φ and ω scansθmax = 27.5°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1824
Tmin = 0.677, Tmax = 1.000k = 1215
6189 measured reflectionsl = 1311
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.041P)2 + 0.2172P]
where P = (Fo2 + 2Fc2)/3
2342 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Co(C8Cl4O4)(C3H4N2)2(H2O)2]V = 2076.9 (9) Å3
Mr = 533.01Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.646 (4) ŵ = 1.38 mm1
b = 12.068 (2) ÅT = 295 K
c = 10.741 (2) Å0.58 × 0.52 × 0.31 mm
β = 120.76 (3)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
2342 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1959 reflections with I > 2σ(I)
Tmin = 0.677, Tmax = 1.000Rint = 0.022
6189 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.06Δρmax = 0.27 e Å3
2342 reflectionsΔρmin = 0.29 e Å3
133 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.50000.50000.50000.01850 (11)
Cl10.40036 (3)0.13509 (5)0.26222 (6)0.04701 (19)
Cl20.29749 (4)0.00958 (5)0.03453 (6)0.04412 (17)
O10.40828 (7)0.41632 (11)0.30419 (12)0.0236 (3)
O20.31637 (9)0.35243 (14)0.36131 (15)0.0414 (4)
O30.58228 (8)0.50886 (12)0.42281 (15)0.0323 (4)
H3A0.57840.48770.34410.048*
H3B0.61510.56420.45200.048*
N10.44543 (10)0.65072 (14)0.40112 (17)0.0268 (4)
C10.34446 (11)0.36395 (17)0.27926 (18)0.0229 (4)
C20.29635 (11)0.30562 (17)0.13275 (19)0.0234 (4)
C30.31676 (11)0.19887 (17)0.11602 (19)0.0263 (4)
C40.27131 (11)0.14324 (17)0.0150 (2)0.0251 (4)
C50.48095 (13)0.7461 (2)0.3896 (3)0.0399 (6)
H5A0.53800.75750.43020.048*
C60.42110 (16)0.8213 (2)0.3105 (3)0.0496 (6)
H6A0.42890.89290.28730.060*
N20.34743 (11)0.77162 (18)0.27174 (19)0.0414 (5)
H2B0.29860.80040.22020.050*
C80.36442 (13)0.6702 (2)0.3279 (2)0.0365 (5)
H8A0.32420.61930.31700.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01555 (17)0.0220 (2)0.01592 (18)0.00026 (13)0.00661 (14)0.00168 (13)
Cl10.0432 (3)0.0393 (4)0.0280 (3)0.0089 (3)0.0038 (2)0.0019 (2)
Cl20.0459 (3)0.0311 (3)0.0362 (3)0.0067 (2)0.0072 (3)0.0097 (2)
O10.0224 (6)0.0281 (8)0.0176 (6)0.0059 (5)0.0083 (5)0.0036 (5)
O20.0381 (8)0.0619 (12)0.0288 (7)0.0277 (8)0.0205 (7)0.0187 (7)
O30.0289 (7)0.0455 (10)0.0293 (7)0.0142 (6)0.0197 (6)0.0163 (6)
N10.0234 (8)0.0259 (10)0.0250 (8)0.0028 (7)0.0080 (7)0.0005 (7)
C10.0210 (9)0.0259 (11)0.0168 (8)0.0047 (7)0.0061 (7)0.0045 (8)
C20.0218 (9)0.0279 (12)0.0198 (9)0.0065 (8)0.0100 (7)0.0037 (8)
C30.0218 (9)0.0300 (12)0.0197 (9)0.0023 (8)0.0052 (7)0.0000 (8)
C40.0258 (9)0.0213 (11)0.0250 (9)0.0028 (8)0.0108 (8)0.0048 (8)
C50.0316 (11)0.0337 (14)0.0441 (13)0.0009 (10)0.0118 (10)0.0090 (11)
C60.0520 (15)0.0357 (15)0.0581 (16)0.0068 (12)0.0260 (13)0.0156 (12)
N20.0379 (10)0.0451 (13)0.0390 (10)0.0214 (9)0.0179 (9)0.0111 (9)
C80.0286 (10)0.0378 (14)0.0400 (12)0.0074 (9)0.0153 (10)0.0035 (10)
Geometric parameters (Å, º) top
Co1—O32.0865 (14)N1—C51.365 (3)
Co1—O3i2.0865 (14)C1—C21.527 (2)
Co1—N12.0896 (17)C2—C31.381 (3)
Co1—N1i2.0896 (17)C2—C4ii1.393 (3)
Co1—O12.1653 (14)C3—C41.389 (3)
Co1—O1i2.1653 (14)C4—C2ii1.393 (3)
Cl1—C31.728 (2)C5—C61.350 (3)
Cl2—C41.729 (2)C5—H5A0.9300
O1—C11.250 (2)C6—N21.355 (3)
O2—C11.242 (2)C6—H6A0.9300
O3—H3A0.8500N2—C81.329 (3)
O3—H3B0.8500N2—H2B0.8600
N1—C81.319 (3)C8—H8A0.9300
O3—Co1—O3i180.0O2—C1—C2116.16 (16)
O3—Co1—N191.11 (6)O1—C1—C2116.56 (16)
O3i—Co1—N188.89 (6)C3—C2—C4ii118.49 (17)
O3—Co1—N1i88.89 (6)C3—C2—C1120.55 (16)
O3i—Co1—N1i91.11 (6)C4ii—C2—C1120.89 (18)
N1—Co1—N1i180.0C2—C3—C4121.12 (17)
O3—Co1—O190.80 (5)C2—C3—Cl1118.56 (14)
O3i—Co1—O189.20 (5)C4—C3—Cl1120.32 (16)
N1—Co1—O188.56 (6)C3—C4—C2ii120.39 (18)
N1i—Co1—O191.44 (6)C3—C4—Cl2120.67 (15)
O3—Co1—O1i89.20 (5)C2ii—C4—Cl2118.94 (14)
O3i—Co1—O1i90.80 (5)C6—C5—N1109.9 (2)
N1—Co1—O1i91.44 (6)C6—C5—H5A125.0
N1i—Co1—O1i88.56 (6)N1—C5—H5A125.0
O1—Co1—O1i180.0C5—C6—N2106.1 (2)
C1—O1—Co1129.54 (11)C5—C6—H6A126.9
Co1—O3—H3A132.4N2—C6—H6A126.9
Co1—O3—H3B115.5C8—N2—C6107.42 (19)
H3A—O3—H3B106.4C8—N2—H2B126.3
C8—N1—C5104.86 (19)C6—N2—H2B126.3
C8—N1—Co1124.72 (16)N1—C8—N2111.7 (2)
C5—N1—Co1130.35 (14)N1—C8—H8A124.2
O2—C1—O1127.27 (16)N2—C8—H8A124.2
O3—Co1—O1—C1165.06 (16)O1—C1—C2—C4ii94.6 (2)
O3i—Co1—O1—C114.94 (16)C4ii—C2—C3—C40.1 (3)
N1—Co1—O1—C1103.85 (17)C1—C2—C3—C4177.30 (18)
N1i—Co1—O1—C176.15 (17)C4ii—C2—C3—Cl1179.71 (14)
O3—Co1—N1—C8136.25 (17)C1—C2—C3—Cl12.5 (3)
O3i—Co1—N1—C843.75 (17)C2—C3—C4—C2ii0.1 (3)
O1—Co1—N1—C845.49 (17)Cl1—C3—C4—C2ii179.71 (15)
O1i—Co1—N1—C8134.51 (17)C2—C3—C4—Cl2179.99 (15)
O3—Co1—N1—C540.3 (2)Cl1—C3—C4—Cl20.1 (3)
O3i—Co1—N1—C5139.7 (2)C8—N1—C5—C60.2 (3)
O1—Co1—N1—C5131.0 (2)Co1—N1—C5—C6177.28 (17)
O1i—Co1—N1—C549.0 (2)N1—C5—C6—N20.4 (3)
Co1—O1—C1—O23.9 (3)C5—C6—N2—C80.4 (3)
Co1—O1—C1—C2174.82 (12)C5—N1—C8—N20.0 (3)
O2—C1—C2—C390.6 (2)Co1—N1—C8—N2177.26 (14)
O1—C1—C2—C388.3 (2)C6—N2—C8—N10.2 (3)
O2—C1—C2—C4ii86.5 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1iii0.851.942.7681 (19)166
O3—H3B···O2i0.852.012.696 (2)137
N2—H2B···O2iv0.861.962.803 (2)167
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+1, y, z+1/2; (iv) x+1/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C8Cl4O4)(C3H4N2)2(H2O)2]
Mr533.01
Crystal system, space groupMonoclinic, C2/c
Temperature (K)295
a, b, c (Å)18.646 (4), 12.068 (2), 10.741 (2)
β (°) 120.76 (3)
V3)2076.9 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.58 × 0.52 × 0.31
Data collection
DiffractometerBruker SMART APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.677, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
6189, 2342, 1959
Rint0.022
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.078, 1.06
No. of reflections2342
No. of parameters133
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O1i0.851.942.7681 (19)166.1
O3—H3B···O2ii0.852.012.696 (2)137.0
N2—H2B···O2iii0.861.962.803 (2)166.7
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y+1, z+1; (iii) x+1/2, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the Center of Analysis and Testing of Jiangnan University and the Research Institute of Elemento–Organic Chemistry of Suzhou University.

References

First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarha, O. K., Spokoyny, A. Y. M., Mulfort, K. L., Galli, S., Hupp, J. T. & Mirkin, C. A. (2009). Small, 5, 1727–1731.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationKumar, A., Mayer–Figge, H., Sheldrick, W. S. & Singh, N. (2009). Eur. J. Inorg. Chem. pp. 2720–2725.  Web of Science CSD CrossRef Google Scholar
First citationMulder, F. M., Dingemans, T. J., Wagemake, M. & Kearley, G. J. (2005). Chem. Phys. 317, 113–118.  Web of Science CrossRef CAS Google Scholar
First citationMurugavel, R., Krishnamurthy, D. & Sathiyendiran, M. (2002). J. Chem. Soc. Dalton Trans. pp. 34–39.  Web of Science CSD CrossRef Google Scholar
First citationRogan, J., Poleti, D. & Karanović, L. (2006). Z. Anorg. Allg. Chem. 632, 133–139.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTong, M.-L., Li, W., Chen, X.-M. & Ng, S. W. (2002). Acta Cryst. E58, m186–m188.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, Q.-Z. & Lu, C.-Z. (2004). Acta Cryst. E60, m1289–m1290.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhang, L., Wang, Q. & Liu, Y. C. (2007). J. Phys. Chem. B, 111, 4291–4295.  Web of Science CrossRef PubMed CAS Google Scholar
First citationZhou, Y. F., Hong, M. C. & Wu, X. T. (2006). Chem. Commun. pp. 135–143.  Web of Science CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds