organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino-4-(4-chloro­phen­yl)-6-(pyrrolidin-1-yl)pyridine-3,5-dicarbo­nitrile

aDepartment of Physics, Sri Ram Engineering College, Chennai 602 024, India, bDepartment of Chemistry, Pondichery University, Pondichery 605 014, India, and cDepartment of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
*Correspondence e-mail: ksethusankar@yahoo.co.in

(Received 8 February 2012; accepted 29 February 2012; online 10 March 2012)

In the title compound, C17H14ClN5, two C atoms and their attached H atoms of the pyrrolidine ring are disordered over two sets of sites with an occupancy ratio of 0.638 (10):0.362 (10). The benzene and pyridine rings are inclined to one another by 60.57 (8)°. In the crystal, the amino group forms an N—H⋯N hydrogen bond with one of the cyano groups, linking the mol­ecules into chains along [010].

Related literature

For a similar compound, see: Inglebert et al. (2011[Inglebert, S. A., Kamalraja, J., Vasuki, G. & Sethusankar, K. (2011). Acta Cryst. E67, o1972.]). For related structures, see: Chao et al. (1975[Chao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2924-2926.]); Kvick et al. (1976[Kvick, Å., Thomas, R. & Koetzle, T. F. (1976). Acta Cryst. B32, 224-231.]). For bond-length data, see: Atoji & Lipscomb (1953[Atoji, M. & Lipscomb, W. N. (1953). Acta Cryst. 6, 770-774.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354—1358.]).

[Scheme 1]

Experimental

Crystal data
  • C17H14ClN5

  • Mr = 323.77

  • Triclinic, [P \overline 1]

  • a = 7.318 (5) Å

  • b = 9.060 (5) Å

  • c = 12.011 (5) Å

  • α = 87.196 (5)°

  • β = 80.477 (5)°

  • γ = 83.795 (5)°

  • V = 780.4 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 295 K

  • 0.35 × 0.30 × 0.25 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.916, Tmax = 0.939

  • 6077 measured reflections

  • 3570 independent reflections

  • 1887 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.097

  • S = 0.85

  • 3570 reflections

  • 237 parameters

  • 11 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2B⋯N4i 0.92 (1) 2.12 (1) 2.992 (3) 160 (2)
Symmetry code: (i) x, y+1, z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Pyridine and its derivatives play an important role in hetrocyclic chemistry. Pyridine containing compounds are the new class of anti–HIV molecules, which particularly inhibit RNA dependent DNA polymerase or reverse transcriptace and thus act as non–nucleoside reverse transcriptace inhibitors. They also exhibit cytotoxic, anti–cancer, anti–tumour and anti–bacterial activity.

The pyrrolidine ring adopts a twisted conformation in both the major and minor conformers (occupancy factors of 0.638 (10)/0.362 (10) respectively). Puckering parameters (Cremer & Pople, 1975) are q2 and φ2, of 0.422 (6)Å and 273.9 (4)° for the major conformer (N5/C15/C16/C17/C18) and 0.469 (10)Å and 86.4 (6)°, respectively, for the minor conformer (N5/C15/C16'/C17'/C18).

The bond lengths of the nitrile groups attached to pyridine ring are typical (N4C11 = 1.148 (2)Å and C9N3 = 1.142 (2)Å). The nitrile groups form angles with parent C atoms: 177.1 (2)° and 174.5 (2)°. The sum angles around the atom C12 are slightly less 360° (real 358.0 (2)°) - deformed by the amino group, as seen in other aminopyridines (Chao et al., 1975; Kvick et al., 1976). This behaviour characterizes the resonance of the N2 lone pair with the aromatic ring. The effect can also be verified by the shortening of the C12—N2 bond (1.345 (2)Å) relative to a normal single C—N bond (1.483Å for C—N in methaneamine (Atoji & Lipscomb, 1953).

The amino group is planar with the pyridine ring as indicated by the torsion angle N2—C12—N1—C13 = 179.75 (16)°. The chlorine atom attached at C1 deviates by -0.0817 (3)Å from the mean plane of the phenyl ring. The title structure exhibits structural similarities with the previously reported structure (Inglebert et al., 2011).

In the crystal structure, the classical intermolecular N2—H2B···N4i hydrogen bonds link the molecules into chains along the b axis. Symmetry code: (i) x, y+1, z.

Related literature top

For a similar compound, see: Inglebert et al. (2011). For related structures, see: Chao et al. (1975); Kvick et al. (1976). For bond-length data, see: Atoji & Lipscomb (1953). For puckering parameters, see: Cremer & Pople (1975).

Experimental top

A mixture of 4–chlorobenzaldehyde (2 mmoL, 0.28 g), malononitrile (3 mmoL, 0.198 g), pyrrolidine (1.5 mmoL, 0.1 g) was stirred without any solvent at room temperature. A solid appeared immediately which has dissolved in a minimum amount (3 ml) of ethanol and the solution was refluxed until completion of the reaction (monitered by TLC). The reaction mixture was cooled. Ethanol was evaporated under reduced pressure and the residue was extracted with dicholoromethane (3×10 ml). Evaporation of solvent left the crude solid which was subjected to silica gel column chromatography [25:75 ethyl acetate/hexane] and the product was recrysallized from dichloromethane.

Refinement top

H atoms attached to C atoms were positioned geometrically and constrained to ride on their parent atoms, with C—H = 0.93Å (aromatic H) and C—H = 0.97Å (methylene H) Uiso(H) = 1.2Ueq(C). H atoms of amino group were located from difference Fourier map and refined freely.

Structure description top

Pyridine and its derivatives play an important role in hetrocyclic chemistry. Pyridine containing compounds are the new class of anti–HIV molecules, which particularly inhibit RNA dependent DNA polymerase or reverse transcriptace and thus act as non–nucleoside reverse transcriptace inhibitors. They also exhibit cytotoxic, anti–cancer, anti–tumour and anti–bacterial activity.

The pyrrolidine ring adopts a twisted conformation in both the major and minor conformers (occupancy factors of 0.638 (10)/0.362 (10) respectively). Puckering parameters (Cremer & Pople, 1975) are q2 and φ2, of 0.422 (6)Å and 273.9 (4)° for the major conformer (N5/C15/C16/C17/C18) and 0.469 (10)Å and 86.4 (6)°, respectively, for the minor conformer (N5/C15/C16'/C17'/C18).

The bond lengths of the nitrile groups attached to pyridine ring are typical (N4C11 = 1.148 (2)Å and C9N3 = 1.142 (2)Å). The nitrile groups form angles with parent C atoms: 177.1 (2)° and 174.5 (2)°. The sum angles around the atom C12 are slightly less 360° (real 358.0 (2)°) - deformed by the amino group, as seen in other aminopyridines (Chao et al., 1975; Kvick et al., 1976). This behaviour characterizes the resonance of the N2 lone pair with the aromatic ring. The effect can also be verified by the shortening of the C12—N2 bond (1.345 (2)Å) relative to a normal single C—N bond (1.483Å for C—N in methaneamine (Atoji & Lipscomb, 1953).

The amino group is planar with the pyridine ring as indicated by the torsion angle N2—C12—N1—C13 = 179.75 (16)°. The chlorine atom attached at C1 deviates by -0.0817 (3)Å from the mean plane of the phenyl ring. The title structure exhibits structural similarities with the previously reported structure (Inglebert et al., 2011).

In the crystal structure, the classical intermolecular N2—H2B···N4i hydrogen bonds link the molecules into chains along the b axis. Symmetry code: (i) x, y+1, z.

For a similar compound, see: Inglebert et al. (2011). For related structures, see: Chao et al. (1975); Kvick et al. (1976). For bond-length data, see: Atoji & Lipscomb (1953). For puckering parameters, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom numbering scheme. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as small spheres of arbitary radius. The minor occupancy disordered atoms have been omitted for clarity.
[Figure 2] Fig. 2. The packing diagram of the title compound, which shows intermolecular N2—H2B···N4i interactions (dashed lines). H atoms not involved in hydrogen bonds have been omitted for clarity.
2-Amino-4-(4-chlorophenyl)-6-(pyrrolidin-1-yl)pyridine-3,5-dicarbonitrile top
Crystal data top
C17H14ClN5Z = 2
Mr = 323.77F(000) = 336
Triclinic, P1Dx = 1.378 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.318 (5) ÅCell parameters from 3570 reflections
b = 9.060 (5) Åθ = 2.8–29.3°
c = 12.011 (5) ŵ = 0.25 mm1
α = 87.196 (5)°T = 295 K
β = 80.477 (5)°Block, colourless
γ = 83.795 (5)°0.35 × 0.30 × 0.25 mm
V = 780.4 (8) Å3
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3570 independent reflections
Radiation source: fine-focus sealed tube1887 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω and φ scansθmax = 29.3°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 99
Tmin = 0.916, Tmax = 0.939k = 1211
6077 measured reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0456P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max = 0.001
3570 reflectionsΔρmax = 0.20 e Å3
237 parametersΔρmin = 0.24 e Å3
11 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.014 (2)
Crystal data top
C17H14ClN5γ = 83.795 (5)°
Mr = 323.77V = 780.4 (8) Å3
Triclinic, P1Z = 2
a = 7.318 (5) ÅMo Kα radiation
b = 9.060 (5) ŵ = 0.25 mm1
c = 12.011 (5) ÅT = 295 K
α = 87.196 (5)°0.35 × 0.30 × 0.25 mm
β = 80.477 (5)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
3570 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1887 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.939Rint = 0.027
6077 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04211 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.20 e Å3
3570 reflectionsΔρmin = 0.24 e Å3
237 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R–factor wR and goodness of fit S are based on F2, conventional R–factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R–factors(gt) etc. and is not relevant to the choice of reflections for refinement. R–factors based on F2 are statistically about twice as large as those based on F, and R–factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7572 (3)0.0214 (2)1.33801 (16)0.0432 (5)
C20.9078 (3)0.1010 (2)1.30733 (17)0.0459 (5)
H21.00820.08661.34650.055*
C30.9092 (3)0.2024 (2)1.21800 (16)0.0390 (5)
H31.01070.25721.19770.047*
C40.7624 (2)0.22397 (19)1.15801 (14)0.0311 (4)
C50.6137 (3)0.1396 (2)1.18885 (16)0.0409 (5)
H50.51490.15101.14840.049*
C60.6108 (3)0.0393 (2)1.27858 (17)0.0486 (5)
H60.51010.01631.29900.058*
C70.7579 (2)0.34351 (18)1.06767 (15)0.0287 (4)
C80.7651 (2)0.48942 (18)1.09633 (15)0.0299 (4)
C90.7812 (3)0.5310 (2)1.20691 (18)0.0383 (5)
C100.7429 (2)0.31384 (18)0.95678 (14)0.0288 (4)
C110.7380 (3)0.1630 (2)0.93015 (15)0.0368 (5)
C120.7507 (2)0.60362 (18)1.01258 (15)0.0291 (4)
C130.7366 (2)0.43534 (19)0.87573 (15)0.0297 (4)
N50.7283 (2)0.42030 (16)0.76655 (12)0.0364 (4)
C180.7235 (3)0.5492 (2)0.68715 (16)0.0519 (6)
H18A0.84360.58840.67200.062*
H18B0.62990.62710.71770.062*
C170.6766 (10)0.4927 (6)0.5828 (4)0.0567 (15)0.638 (10)
H17A0.71990.55330.51690.068*0.638 (10)
H17B0.54370.48720.58840.068*0.638 (10)
C160.7840 (11)0.3389 (7)0.5805 (4)0.0657 (18)0.638 (10)
H16A0.91620.34460.55580.079*0.638 (10)
H16B0.73890.27470.53100.079*0.638 (10)
C17'0.7780 (18)0.4694 (13)0.5745 (7)0.068 (3)0.361 (10)
H17C0.73460.53010.51350.082*0.362 (10)
H17D0.91210.44760.55660.082*0.362 (10)
C16'0.6834 (18)0.3273 (12)0.5927 (8)0.061 (3)0.362 (10)
H16C0.73280.25560.53520.073*0.362 (10)
H16D0.54920.34530.59820.073*0.362 (10)
N10.73637 (19)0.57681 (15)0.90682 (12)0.0323 (4)
N20.7503 (2)0.74643 (18)1.03834 (16)0.0440 (4)
N30.7954 (3)0.5758 (2)1.29203 (16)0.0641 (6)
N40.7312 (3)0.04021 (19)0.91349 (15)0.0589 (5)
C150.7437 (4)0.2824 (2)0.70643 (18)0.0634 (7)
H15A0.62870.23540.72210.076*
H15B0.84510.21300.72570.076*
Cl10.74935 (9)0.10029 (6)1.45478 (5)0.0728 (2)
H2A0.759 (2)0.771 (2)1.1096 (10)0.048 (6)*
H2B0.745 (3)0.8223 (17)0.9853 (14)0.066 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0684 (14)0.0303 (11)0.0283 (11)0.0027 (10)0.0039 (10)0.0067 (9)
C20.0557 (13)0.0439 (12)0.0387 (12)0.0010 (10)0.0146 (10)0.0077 (10)
C30.0415 (11)0.0378 (11)0.0385 (12)0.0088 (9)0.0076 (9)0.0051 (9)
C40.0398 (11)0.0271 (9)0.0256 (10)0.0039 (8)0.0034 (8)0.0015 (8)
C50.0487 (12)0.0400 (11)0.0370 (12)0.0138 (9)0.0116 (9)0.0056 (9)
C60.0612 (13)0.0420 (12)0.0434 (13)0.0218 (10)0.0029 (11)0.0084 (10)
C70.0281 (9)0.0274 (10)0.0307 (10)0.0048 (7)0.0050 (8)0.0030 (8)
C80.0330 (10)0.0300 (10)0.0270 (10)0.0056 (8)0.0044 (8)0.0009 (8)
C90.0478 (12)0.0321 (11)0.0352 (12)0.0076 (9)0.0064 (9)0.0022 (9)
C100.0337 (10)0.0251 (9)0.0274 (10)0.0044 (8)0.0041 (8)0.0000 (8)
C110.0504 (12)0.0305 (11)0.0285 (11)0.0044 (9)0.0044 (9)0.0035 (8)
C120.0288 (10)0.0254 (10)0.0329 (11)0.0023 (8)0.0047 (8)0.0007 (8)
C130.0306 (10)0.0300 (10)0.0287 (11)0.0034 (8)0.0054 (8)0.0006 (8)
N50.0507 (10)0.0339 (9)0.0257 (9)0.0057 (7)0.0090 (7)0.0005 (7)
C180.0719 (15)0.0521 (13)0.0318 (12)0.0033 (11)0.0136 (11)0.0086 (10)
C170.059 (3)0.083 (3)0.031 (2)0.018 (3)0.015 (3)0.0128 (19)
C160.108 (5)0.064 (3)0.029 (2)0.019 (4)0.011 (3)0.007 (2)
C17'0.076 (8)0.093 (8)0.041 (5)0.027 (7)0.019 (5)0.014 (4)
C16'0.073 (7)0.071 (6)0.038 (4)0.009 (5)0.006 (5)0.008 (4)
N10.0412 (9)0.0268 (8)0.0297 (9)0.0040 (7)0.0089 (7)0.0027 (7)
N20.0700 (12)0.0262 (9)0.0384 (11)0.0060 (8)0.0158 (9)0.0027 (8)
N30.0930 (15)0.0639 (13)0.0390 (12)0.0137 (11)0.0146 (11)0.0101 (10)
N40.0976 (15)0.0308 (10)0.0480 (12)0.0093 (10)0.0091 (10)0.0003 (9)
C150.1068 (19)0.0471 (14)0.0404 (14)0.0073 (13)0.0214 (13)0.0100 (11)
Cl10.1163 (6)0.0539 (4)0.0454 (4)0.0100 (3)0.0114 (3)0.0240 (3)
Geometric parameters (Å, º) top
C1—C21.372 (3)C13—N11.352 (2)
C1—C61.374 (3)N5—C151.458 (3)
C1—Cl11.7385 (19)N5—C181.472 (2)
C2—C31.377 (3)C18—C171.481 (5)
C2—H20.9300C18—C17'1.538 (8)
C3—C41.382 (2)C18—H18A0.9700
C3—H30.9300C18—H18B0.9700
C4—C51.388 (2)C17—C161.523 (7)
C4—C71.497 (2)C17—H17A0.9700
C5—C61.374 (3)C17—H17B0.9700
C5—H50.9300C16—C151.564 (5)
C6—H60.9300C16—H16A0.9700
C7—C81.391 (2)C16—H16B0.9700
C7—C101.396 (2)C17'—C16'1.517 (9)
C8—C121.415 (2)C17'—H17C0.9700
C8—C91.425 (3)C17'—H17D0.9700
C9—N31.143 (2)C16'—C151.527 (8)
C10—C111.424 (3)C16'—H16C0.9700
C10—C131.435 (2)C16'—H16D0.9700
C11—N41.147 (2)N2—H2A0.907 (9)
C12—N11.328 (2)N2—H2B0.916 (9)
C12—N21.345 (2)C15—H15A0.9700
C13—N51.337 (2)C15—H15B0.9700
C2—C1—C6120.58 (18)C17'—C18—H18A87.7
C2—C1—Cl1119.71 (16)N5—C18—H18B110.6
C6—C1—Cl1119.71 (16)C17—C18—H18B110.6
C1—C2—C3119.43 (18)C17'—C18—H18B136.3
C1—C2—H2120.3H18A—C18—H18B108.8
C3—C2—H2120.3C18—C17—C16100.5 (4)
C2—C3—C4121.07 (18)C18—C17—H17A111.7
C2—C3—H3119.5C16—C17—H17A111.7
C4—C3—H3119.5C18—C17—H17B111.7
C3—C4—C5118.45 (17)C16—C17—H17B111.7
C3—C4—C7120.55 (16)H17A—C17—H17B109.4
C5—C4—C7120.84 (16)C17—C16—C15103.0 (4)
C6—C5—C4120.70 (18)C17—C16—H16A111.2
C6—C5—H5119.7C15—C16—H16A111.2
C4—C5—H5119.7C17—C16—H16B111.2
C1—C6—C5119.75 (19)C15—C16—H16B111.2
C1—C6—H6120.1H16A—C16—H16B109.1
C5—C6—H6120.1C16'—C17'—C18105.0 (7)
C8—C7—C10119.14 (16)C16'—C17'—H17C110.7
C8—C7—C4118.54 (16)C18—C17'—H17C110.7
C10—C7—C4122.30 (16)C16'—C17'—H17D110.7
C7—C8—C12118.67 (16)C18—C17'—H17D110.7
C7—C8—C9123.41 (16)H17C—C17'—H17D108.8
C12—C8—C9117.90 (16)C17'—C16'—C1596.3 (7)
N3—C9—C8174.5 (2)C17'—C16'—H16C112.5
C7—C10—C11117.62 (15)C15—C16'—H16C112.5
C7—C10—C13118.72 (15)C17'—C16'—H16D112.5
C11—C10—C13123.66 (16)C15—C16'—H16D112.5
N4—C11—C10177.1 (2)H16C—C16'—H16D110.0
N1—C12—N2117.00 (16)C12—N1—C13119.72 (15)
N1—C12—C8122.72 (16)C12—N2—H2A120.3 (12)
N2—C12—C8120.28 (17)C12—N2—H2B122.1 (13)
N5—C13—N1114.88 (15)H2A—N2—H2B117.5 (18)
N5—C13—C10124.18 (16)N5—C15—C16'105.3 (5)
N1—C13—C10120.93 (16)N5—C15—C16101.7 (3)
C13—N5—C15127.41 (16)C16'—C15—C1627.8 (3)
C13—N5—C18121.73 (15)N5—C15—H15A111.4
C15—N5—C18110.50 (16)C16'—C15—H15A84.8
N5—C18—C17105.5 (3)C16—C15—H15A111.4
N5—C18—C17'99.8 (5)N5—C15—H15B111.4
C17—C18—C17'28.3 (4)C16'—C15—H15B131.2
N5—C18—H18A110.6C16—C15—H15B111.4
C17—C18—H18A110.6H15A—C15—H15B109.3
C6—C1—C2—C31.8 (3)C7—C10—C13—N13.1 (2)
Cl1—C1—C2—C3176.95 (15)C11—C10—C13—N1178.08 (16)
C1—C2—C3—C40.8 (3)N1—C13—N5—C15173.81 (18)
C2—C3—C4—C50.8 (3)C10—C13—N5—C157.1 (3)
C2—C3—C4—C7174.70 (17)N1—C13—N5—C181.3 (2)
C3—C4—C5—C61.4 (3)C10—C13—N5—C18179.57 (17)
C7—C4—C5—C6174.06 (17)C13—N5—C18—C17168.9 (3)
C2—C1—C6—C51.2 (3)C15—N5—C18—C1717.4 (4)
Cl1—C1—C6—C5177.55 (15)C13—N5—C18—C17'162.6 (5)
C4—C5—C6—C10.5 (3)C15—N5—C18—C17'11.1 (5)
C3—C4—C7—C857.7 (2)N5—C18—C17—C1637.2 (6)
C5—C4—C7—C8117.6 (2)C17'—C18—C17—C1644.7 (9)
C3—C4—C7—C10123.59 (19)C18—C17—C16—C1543.0 (8)
C5—C4—C7—C1061.0 (2)N5—C18—C17'—C16'37.4 (11)
C10—C7—C8—C122.1 (2)C17—C18—C17'—C16'67.1 (10)
C4—C7—C8—C12176.63 (16)C18—C17'—C16'—C1547.4 (13)
C10—C7—C8—C9179.69 (16)N2—C12—N1—C13179.75 (15)
C4—C7—C8—C91.6 (3)C8—C12—N1—C130.5 (2)
C8—C7—C10—C11179.32 (16)N5—C13—N1—C12177.73 (15)
C4—C7—C10—C112.0 (2)C10—C13—N1—C123.1 (2)
C8—C7—C10—C130.4 (2)C13—N5—C15—C16'168.2 (5)
C4—C7—C10—C13179.06 (16)C18—N5—C15—C16'18.6 (5)
C7—C8—C12—N12.2 (2)C13—N5—C15—C16163.4 (3)
C9—C8—C12—N1179.51 (16)C18—N5—C15—C169.8 (4)
C7—C8—C12—N2177.60 (17)C17'—C16'—C15—N539.5 (11)
C9—C8—C12—N20.7 (2)C17'—C16'—C15—C1646.5 (9)
C7—C10—C13—N5177.84 (15)C17—C16—C15—N532.6 (7)
C11—C10—C13—N51.0 (3)C17—C16—C15—C16'68.1 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N4i0.92 (1)2.12 (1)2.992 (3)160 (2)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H14ClN5
Mr323.77
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)7.318 (5), 9.060 (5), 12.011 (5)
α, β, γ (°)87.196 (5), 80.477 (5), 83.795 (5)
V3)780.4 (8)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.35 × 0.30 × 0.25
Data collection
DiffractometerBruker Kappa APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.916, 0.939
No. of measured, independent and
observed [I > 2σ(I)] reflections
6077, 3570, 1887
Rint0.027
(sin θ/λ)max1)0.689
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.097, 0.85
No. of reflections3570
No. of parameters237
No. of restraints11
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.24

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2B···N4i0.916 (9)2.115 (12)2.992 (3)160.0 (18)
Symmetry code: (i) x, y+1, z.
 

Acknowledgements

The authors thank the SAIF, IIT, Chennai, India, for the data collection. SAIB and KS also thank Dr V. Murugan, Head of of the Physics Department, RKM Vivekananda College, Chennai, India, for providing computational facilities to carry out this research work.

References

First citationAtoji, M. & Lipscomb, W. N. (1953). Acta Cryst. 6, 770–774.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChao, M., Schemp, E. & Rosenstein, R. D. (1975). Acta Cryst. B31, 2924–2926.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354—1358.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationInglebert, S. A., Kamalraja, J., Vasuki, G. & Sethusankar, K. (2011). Acta Cryst. E67, o1972.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKvick, Å., Thomas, R. & Koetzle, T. F. (1976). Acta Cryst. B32, 224–231.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds