organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[1-(1-Phenyl­eth­yl)imidazolidin-2-yl­­idene]malono­nitrile

aCollege of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
*Correspondence e-mail: qknhs@yahoo.com.cn

(Received 18 February 2012; accepted 12 March 2012; online 28 March 2012)

In the title compound, C14H14N4, the imidazolidine moiety is nearly planar, having an N—C—N—C torsion angle of 4.43 (3)°. The crystal structure is characterized by classical N—H⋯N hydrogen bonds, which form inversion dimers.

Related literature

For the biological activity of compounds containing a 2-(imidazolidin-2-ylidene)malononitrile group, see: Hense et al. (2002[Hense, A., Fischer, A. & Gesing, E. R. (2002). WO Patent 2002096872.]). For a related structure, see: Feng et al. (2008[Feng, X.-Z., Yan, F.-F. & Li, Z.-P. (2008). Acta Cryst. E64, o1120.]). For the synthesis of the title compound, see: Jeschke et al. (2002[Jeschke, P., Beck, M. E. & Kraemer, W. (2002). German Patent 10119423.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14N4

  • Mr = 238.29

  • Triclinic, [P \overline 1]

  • a = 6.6446 (13) Å

  • b = 8.0106 (16) Å

  • c = 12.847 (3) Å

  • α = 90.51 (3)°

  • β = 101.85 (3)°

  • γ = 107.76 (3)°

  • V = 635.5 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.46 × 0.41 × 0.11 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.965, Tmax = 0.992

  • 6293 measured reflections

  • 2898 independent reflections

  • 2112 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.145

  • S = 1.15

  • 2898 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N4i 0.86 2.27 3.032 (2) 148
Symmetry code: (i) -x+2, -y, -z+2.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Recently, imidazolidin is an important kind of group in organic chemistry. Compounds containing the 2-(imidazolidin-2-ylidene)malononitrile group have attracted much interest because compounds containing a imidazole ring system are well known as efficient insecticide in pesticides, and have good plant-growth regulatory activity for a wide variety of crops (Hense, et al., 2002). We report herein the crystal structure of title compound.

In title molecule (Fig. 1), the bond lengths and angles of the imidazolidin rings are in agreement with those in previous reports (Feng et al., 2008). The imidazolidin moiety has a small torsion angle N1–C11–N2–C10 = 4.43 (3)° which is nearly closed to a plane. The main plane of imidazolidin ring and the benzene ring make a dihedral angle of 87.18 (2)°. The crystal structure is characterized by N2–H2A···N4i classical intermolecular hydrogen bonds and centosymmetrical dimers with using these. H-bonds parameters: N2–H2A = 0.86Å, H2A···N4i = 2.27Å, N2···N4i = 3.032 (2)Å and angle N2–H2A···N4i = 147.6°. Symmetry code: (i) -x+2, -y, -z+2.

Related literature top

For the biological activity of thiazole componds, see: Hense et al. (2002). Fora related structure, see: Feng et al. (2008). For the synthesis of the title compound, see: Jeschke et al. (2002).

Experimental top

The title compound was prepared according Jeschke et al., 2002. Single crystals suitable for X-ray measurement were obtained by recrystallization from the mixture of acetone and methanol at room temperature.

Refinement top

H atoms were placed in calculated positions, with C–H = 0.93-0.98Å and N–H = 0.86Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C,N) for other.

Structure description top

Recently, imidazolidin is an important kind of group in organic chemistry. Compounds containing the 2-(imidazolidin-2-ylidene)malononitrile group have attracted much interest because compounds containing a imidazole ring system are well known as efficient insecticide in pesticides, and have good plant-growth regulatory activity for a wide variety of crops (Hense, et al., 2002). We report herein the crystal structure of title compound.

In title molecule (Fig. 1), the bond lengths and angles of the imidazolidin rings are in agreement with those in previous reports (Feng et al., 2008). The imidazolidin moiety has a small torsion angle N1–C11–N2–C10 = 4.43 (3)° which is nearly closed to a plane. The main plane of imidazolidin ring and the benzene ring make a dihedral angle of 87.18 (2)°. The crystal structure is characterized by N2–H2A···N4i classical intermolecular hydrogen bonds and centosymmetrical dimers with using these. H-bonds parameters: N2–H2A = 0.86Å, H2A···N4i = 2.27Å, N2···N4i = 3.032 (2)Å and angle N2–H2A···N4i = 147.6°. Symmetry code: (i) -x+2, -y, -z+2.

For the biological activity of thiazole componds, see: Hense et al. (2002). Fora related structure, see: Feng et al. (2008). For the synthesis of the title compound, see: Jeschke et al. (2002).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
2-[1-(1-Phenylethyl)imidazolidin-2-ylidene]propanedinitrile top
Crystal data top
C14H14N4Z = 2
Mr = 238.29F(000) = 252
Triclinic, P1Dx = 1.245 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6446 (13) ÅCell parameters from 4704 reflections
b = 8.0106 (16) Åθ = 6.1–55.0°
c = 12.847 (3) ŵ = 0.08 mm1
α = 90.51 (3)°T = 295 K
β = 101.85 (3)°Block, colourless
γ = 107.76 (3)°0.46 × 0.41 × 0.11 mm
V = 635.5 (3) Å3
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2898 independent reflections
Radiation source: Rotating Anode2112 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
h = 88
Tmin = 0.965, Tmax = 0.992k = 1010
6293 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.145 w = 1/[σ2(Fo2) + (0.063P)2 + 0.0913P]
where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2898 reflectionsΔρmax = 0.21 e Å3
164 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.210 (17)
Crystal data top
C14H14N4γ = 107.76 (3)°
Mr = 238.29V = 635.5 (3) Å3
Triclinic, P1Z = 2
a = 6.6446 (13) ÅMo Kα radiation
b = 8.0106 (16) ŵ = 0.08 mm1
c = 12.847 (3) ÅT = 295 K
α = 90.51 (3)°0.46 × 0.41 × 0.11 mm
β = 101.85 (3)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2898 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2112 reflections with I > 2σ(I)
Tmin = 0.965, Tmax = 0.992Rint = 0.019
6293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.15Δρmax = 0.21 e Å3
2898 reflectionsΔρmin = 0.19 e Å3
164 parameters
Special details top

Geometry. All s.u.'s (except the s.u.' in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.43363 (19)0.16514 (14)0.79468 (10)0.0520 (3)
N20.72640 (19)0.19909 (15)0.91821 (10)0.0536 (3)
H2A0.81960.17120.96590.064*
N30.1806 (3)0.35508 (19)0.77933 (15)0.0898 (6)
N40.8269 (3)0.20051 (18)0.96591 (14)0.0808 (5)
C10.4326 (3)0.1738 (3)0.56429 (16)0.0782 (5)
H1A0.53530.12510.59980.094*
C20.4528 (5)0.2430 (4)0.4674 (2)0.1102 (9)
H2B0.56920.24060.43840.132*
C30.3038 (7)0.3147 (3)0.41400 (19)0.1218 (12)
H3A0.31660.35910.34820.146*
C40.1366 (5)0.3208 (3)0.45755 (19)0.1070 (9)
H4A0.03600.37160.42190.128*
C50.1144 (3)0.2526 (2)0.55405 (15)0.0762 (5)
H5A0.00130.25780.58280.091*
C60.2612 (2)0.17651 (18)0.60873 (12)0.0535 (4)
C70.2351 (2)0.09009 (18)0.71185 (12)0.0521 (4)
H7A0.21860.03450.69840.063*
C80.0397 (3)0.0987 (3)0.75267 (16)0.0819 (6)
H8A0.03580.04100.81770.123*
H8B0.08990.04110.70030.123*
H8C0.04950.21940.76580.123*
C90.5134 (3)0.35393 (18)0.82776 (14)0.0637 (4)
H9A0.41980.38610.86760.076*
H9B0.52360.42370.76660.076*
C100.7356 (3)0.3781 (2)0.89770 (15)0.0652 (5)
H10A0.84960.43240.86060.078*
H10B0.75820.44870.96330.078*
C110.5563 (2)0.08185 (16)0.85453 (10)0.0427 (3)
C120.5237 (2)0.10079 (17)0.85565 (11)0.0463 (3)
C130.3310 (3)0.23639 (18)0.81102 (13)0.0571 (4)
C140.6899 (2)0.15619 (17)0.91645 (12)0.0544 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0518 (7)0.0364 (6)0.0600 (7)0.0146 (5)0.0060 (5)0.0044 (5)
N20.0505 (7)0.0411 (6)0.0607 (7)0.0139 (5)0.0058 (5)0.0029 (5)
N30.0747 (10)0.0488 (8)0.1153 (13)0.0034 (7)0.0228 (9)0.0179 (8)
N40.0751 (10)0.0476 (7)0.1022 (11)0.0227 (7)0.0245 (8)0.0060 (7)
C10.0797 (12)0.0727 (11)0.0818 (12)0.0196 (10)0.0231 (10)0.0037 (9)
C20.138 (2)0.0916 (17)0.0893 (16)0.0008 (16)0.0555 (16)0.0052 (14)
C30.193 (3)0.0721 (14)0.0601 (12)0.0100 (18)0.0169 (18)0.0092 (11)
C40.146 (2)0.0751 (14)0.0712 (13)0.0233 (14)0.0239 (15)0.0214 (11)
C50.0804 (12)0.0661 (10)0.0737 (11)0.0273 (9)0.0090 (9)0.0156 (9)
C60.0550 (8)0.0407 (7)0.0575 (8)0.0128 (6)0.0004 (6)0.0030 (6)
C70.0453 (7)0.0438 (7)0.0607 (8)0.0137 (6)0.0025 (6)0.0071 (6)
C80.0537 (10)0.1076 (16)0.0791 (12)0.0189 (10)0.0124 (8)0.0145 (11)
C90.0651 (10)0.0386 (7)0.0789 (10)0.0170 (7)0.0038 (8)0.0042 (7)
C100.0620 (9)0.0405 (7)0.0816 (11)0.0122 (7)0.0036 (8)0.0037 (7)
C110.0420 (6)0.0404 (6)0.0454 (7)0.0135 (5)0.0080 (5)0.0068 (5)
C120.0472 (7)0.0380 (6)0.0505 (7)0.0140 (5)0.0028 (5)0.0086 (5)
C130.0573 (9)0.0399 (7)0.0659 (9)0.0141 (6)0.0029 (7)0.0128 (6)
C140.0563 (8)0.0363 (7)0.0627 (9)0.0132 (6)0.0024 (7)0.0064 (6)
Geometric parameters (Å, º) top
N1—C111.3356 (16)C5—C61.381 (2)
N1—C91.4682 (18)C5—H5A0.9300
N1—C71.4702 (18)C6—C71.517 (2)
N2—C111.3371 (18)C7—C81.516 (2)
N2—C101.4452 (19)C7—H7A0.9800
N2—H2A0.8600C8—H8A0.9600
N3—C131.147 (2)C8—H8B0.9600
N4—C141.1496 (19)C8—H8C0.9600
C1—C61.380 (3)C9—C101.517 (2)
C1—C21.382 (3)C9—H9A0.9700
C1—H1A0.9300C9—H9B0.9700
C2—C31.362 (4)C10—H10A0.9700
C2—H2B0.9300C10—H10B0.9700
C3—C41.355 (4)C11—C121.4129 (18)
C3—H3A0.9300C12—C141.4062 (19)
C4—C51.377 (3)C12—C131.410 (2)
C4—H4A0.9300
C11—N1—C9110.32 (12)C8—C7—H7A107.2
C11—N1—C7128.66 (11)C6—C7—H7A107.2
C9—N1—C7120.86 (11)C7—C8—H8A109.5
C11—N2—C10112.21 (12)C7—C8—H8B109.5
C11—N2—H2A123.9H8A—C8—H8B109.5
C10—N2—H2A123.9C7—C8—H8C109.5
C6—C1—C2120.6 (2)H8A—C8—H8C109.5
C6—C1—H1A119.7H8B—C8—H8C109.5
C2—C1—H1A119.7N1—C9—C10103.10 (12)
C3—C2—C1120.6 (3)N1—C9—H9A111.1
C3—C2—H2B119.7C10—C9—H9A111.1
C1—C2—H2B119.7N1—C9—H9B111.1
C4—C3—C2119.5 (2)C10—C9—H9B111.1
C4—C3—H3A120.3H9A—C9—H9B109.1
C2—C3—H3A120.3N2—C10—C9102.14 (12)
C3—C4—C5120.6 (2)N2—C10—H10A111.3
C3—C4—H4A119.7C9—C10—H10A111.3
C5—C4—H4A119.7N2—C10—H10B111.3
C4—C5—C6121.0 (2)C9—C10—H10B111.3
C4—C5—H5A119.5H10A—C10—H10B109.2
C6—C5—H5A119.5N1—C11—N2109.74 (11)
C1—C6—C5117.79 (17)N1—C11—C12128.42 (12)
C1—C6—C7119.56 (14)N2—C11—C12121.84 (12)
C5—C6—C7122.59 (16)C14—C12—C13115.29 (12)
N1—C7—C8110.06 (13)C14—C12—C11117.82 (12)
N1—C7—C6109.75 (12)C13—C12—C11126.52 (12)
C8—C7—C6115.10 (13)N3—C13—C12174.86 (15)
N1—C7—H7A107.2N4—C14—C12179.51 (18)
C6—C1—C2—C30.1 (3)C5—C6—C7—C82.0 (2)
C1—C2—C3—C41.2 (4)C11—N1—C9—C1013.82 (18)
C2—C3—C4—C51.1 (4)C7—N1—C9—C10170.38 (14)
C3—C4—C5—C60.0 (3)C11—N2—C10—C912.63 (19)
C2—C1—C6—C51.0 (3)N1—C9—C10—N215.03 (18)
C2—C1—C6—C7176.36 (17)C9—N1—C11—N26.47 (17)
C4—C5—C6—C11.0 (3)C7—N1—C11—N2178.16 (14)
C4—C5—C6—C7176.22 (17)C9—N1—C11—C12173.57 (15)
C11—N1—C7—C8106.76 (18)C7—N1—C11—C121.8 (2)
C9—N1—C7—C868.19 (19)C10—N2—C11—N14.43 (18)
C11—N1—C7—C6125.59 (15)C10—N2—C11—C12175.54 (14)
C9—N1—C7—C659.46 (18)N1—C11—C12—C14172.25 (14)
C1—C6—C7—N156.03 (18)N2—C11—C12—C147.7 (2)
C5—C6—C7—N1126.78 (16)N1—C11—C12—C1315.1 (2)
C1—C6—C7—C8179.18 (16)N2—C11—C12—C13164.94 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.862.273.032 (2)148
Symmetry code: (i) x+2, y, z+2.

Experimental details

Crystal data
Chemical formulaC14H14N4
Mr238.29
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.6446 (13), 8.0106 (16), 12.847 (3)
α, β, γ (°)90.51 (3), 101.85 (3), 107.76 (3)
V3)635.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.46 × 0.41 × 0.11
Data collection
DiffractometerRigaku R-AXIS RAPID IP
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.965, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
6293, 2898, 2112
Rint0.019
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.145, 1.15
No. of reflections2898
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.19

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···N4i0.862.273.032 (2)147.6
Symmetry code: (i) x+2, y, z+2.
 

References

First citationFeng, X.-Z., Yan, F.-F. & Li, Z.-P. (2008). Acta Cryst. E64, o1120.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHense, A., Fischer, A. & Gesing, E. R. (2002). WO Patent 2002096872.  Google Scholar
First citationJeschke, P., Beck, M. E. & Kraemer, W. (2002). German Patent 10119423.  Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds