organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(2-Hy­dr­oxy­eth­yl)-3-phenyl­thio­urea

aChemistry and Environmental Science Division, School of Science & The Environment, Manchester Metropolitan University, M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, University of Leicester, Leicester, England, and dSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr

(Received 3 March 2012; accepted 19 March 2012; online 24 March 2012)

The title compound, C9H12N2OS, was obtained unexpectedly in a multicomponent reaction of an equimolar ratio of phenyl isothio­cyanate, malononitrile and amino­ethanol. The –C(H2)–N(H)–(C=S)–N(H)– methyl­thio­urea–methane group is almost normal to the phenyl ring, with a dihedral angle of 71.13 (9)°. The N—C—C—O torsion angle is 72.8 (2)°. In the crystal, mol­ecules are connected by N—H⋯O, O—H⋯S and N—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the biological activity of thio­ureas, see: Kilcigil & Altanlar (2006[Kilcigil, G. A. & Altanlar, N. (2006). Turk. J. Chem. 30, 223-228.]); Struga et al. (2007[Struga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796-799.]); Desai et al. (2007[Desai, A. D., Mahajan, D. H. & Chikhalia, K. H. (2007). Indian J. Chem. Sect. B, 46, 1169-1173.]); Patel et al. (2007[Patel, R. B., Chikhalia, K. H., Pannecouque, C. & Clercq, E. D. (2007). J. Braz. Chem. Soc. 18, 312-321.]); Arslan et al. (2006[Arslan, H., Florke, U., Kulcu, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429-440.]); Katritzky & Gordeev (1991[Katritzky, A. R. & Gordeev, M. F. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2199-2203.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N2OS

  • Mr = 196.28

  • Tetragonal, I 41 /a

  • a = 26.170 (4) Å

  • c = 5.7775 (16) Å

  • V = 3956.8 (16) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 150 K

  • 0.27 × 0.09 × 0.08 mm

Data collection
  • Bruker APEX 2K CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.926, Tmax = 0.977

  • 15367 measured reflections

  • 2056 independent reflections

  • 1540 reflections with I > 2σ(I)

  • Rint = 0.095

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.110

  • S = 0.98

  • 2056 reflections

  • 119 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.54 3.3676 (18) 163
O1—H1B⋯S1ii 0.82 2.40 3.2137 (18) 169
N2—H2A⋯O1iii 0.86 2.15 2.875 (2) 142
Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, y, z-1; (iii) [y+{\script{1\over 4}}, -x+{\script{3\over 4}}, -z-{\script{1\over 4}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Substituted thioureas are important organic compounds prompting the interest of chemists due to their broad spectrum of biological activities such as anti-HIV, antiviral, HDL-elevating, antibacterial, analgesic properties (Kilcigil & Altanlar, 2006; Struga et al., 2007; Desai et al., 2007; Patel et al., 2007) and acting as fungicides (Arslan et al., 2006). Industrially, thioureas act as corrosion inhibitors, antioxidant, and are polymer components (Katritzky & Gordeev, 1991). The title compound has been obtained as an unexpected product from our multicomponent reaction techniques of phenylisothiocyanate, malononitrile and amino ethanol under conventional heat.

In the title compound I (Fig. 1), the methylthiourea-methane group (–C8(H2)–N2(H)–(C7S1)–N1(H)–) makes a dihedral angle of 71.13 (9)° with the C1-C6 phenyl ring. The N2–C8–C9–O1 torsion angle is 72.8 (2)°. The bond lengths and angles in I are in the normal range (Allen et al., 1987).

Intramolecular C8–H8A···S1 contact help to stabilize the molecular conformation of I, generating a C(5) loop (Bernstein et al., 1995; Etter et al., 1990). The crystal packing is stabilized by N–H···O, O–H···S and N–H···O intermolecular hydrogen bonds, forming a three-dimensional network (Table 1, Fig. 2).

Related literature top

For the biological activity of thioureas, see: Kilcigil & Altanlar (2006); Struga et al. (2007); Desai et al. (2007); Patel et al. (2007); Arslan et al. (2006); Katritzky & Gordeev (1991). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The 1-(2-hydroxyethyl)-3-phenylthiourea has been formed as an unexpected product from a multicomponent reaction of an equimolar ratio of phenylisothiocyanate, malononitrile and amino ethanol. The reaction mixture was heated at 374 K in dioxane (30 ml) for 3 h, then cooled at room temperature to afford a solid precipitate. The product was filtered off, washed with cold ethanol and recrystallized from ethanol. Colourless needles in a spiky shape have been isolated on slow evaporation of a diluted ethanol of the product (yield 39%, m.p. 393 K).

Refinement top

All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93Å for aromatic, C–H = 0.97Å for methylene, O–H = 0.82Å for hydroxyl and N–H = 0.86Å for amine H atoms, and with Uiso(H) = 1.2(1.5)Ueq(C,N,O).

Structure description top

Substituted thioureas are important organic compounds prompting the interest of chemists due to their broad spectrum of biological activities such as anti-HIV, antiviral, HDL-elevating, antibacterial, analgesic properties (Kilcigil & Altanlar, 2006; Struga et al., 2007; Desai et al., 2007; Patel et al., 2007) and acting as fungicides (Arslan et al., 2006). Industrially, thioureas act as corrosion inhibitors, antioxidant, and are polymer components (Katritzky & Gordeev, 1991). The title compound has been obtained as an unexpected product from our multicomponent reaction techniques of phenylisothiocyanate, malononitrile and amino ethanol under conventional heat.

In the title compound I (Fig. 1), the methylthiourea-methane group (–C8(H2)–N2(H)–(C7S1)–N1(H)–) makes a dihedral angle of 71.13 (9)° with the C1-C6 phenyl ring. The N2–C8–C9–O1 torsion angle is 72.8 (2)°. The bond lengths and angles in I are in the normal range (Allen et al., 1987).

Intramolecular C8–H8A···S1 contact help to stabilize the molecular conformation of I, generating a C(5) loop (Bernstein et al., 1995; Etter et al., 1990). The crystal packing is stabilized by N–H···O, O–H···S and N–H···O intermolecular hydrogen bonds, forming a three-dimensional network (Table 1, Fig. 2).

For the biological activity of thioureas, see: Kilcigil & Altanlar (2006); Struga et al. (2007); Desai et al. (2007); Patel et al. (2007); Arslan et al. (2006); Katritzky & Gordeev (1991). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of I, showing the labelling of the non-H atoms. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
[Figure 2] Fig. 2. View of the crystal packing and hydrogen bonding of I down the a axis. H atoms not involved in hydrogen bonds have been omitted for clarity.
1-(2-Hydroxyethyl)-3-phenylthiourea top
Crystal data top
C9H12N2OSDx = 1.318 Mg m3
Mr = 196.28Melting point: 393 K
Tetragonal, I41/aMo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 4adCell parameters from 800 reflections
a = 26.170 (4) Åθ = 3.5–28.2°
c = 5.7775 (16) ŵ = 0.29 mm1
V = 3956.8 (16) Å3T = 150 K
Z = 16Needle, colourless
F(000) = 16640.27 × 0.09 × 0.08 mm
Data collection top
Bruker APEX 2K CCD
diffractometer
2056 independent reflections
Radiation source: fine-focus sealed tube1540 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.095
φ and ω scansθmax = 26.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 3232
Tmin = 0.926, Tmax = 0.977k = 3232
15367 measured reflectionsl = 77
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H-atom parameters constrained
S = 0.98 w = 1/[σ2(Fo2) + (0.0501P)2]
where P = (Fo2 + 2Fc2)/3
2056 reflections(Δ/σ)max = 0.001
119 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C9H12N2OSZ = 16
Mr = 196.28Mo Kα radiation
Tetragonal, I41/aµ = 0.29 mm1
a = 26.170 (4) ÅT = 150 K
c = 5.7775 (16) Å0.27 × 0.09 × 0.08 mm
V = 3956.8 (16) Å3
Data collection top
Bruker APEX 2K CCD
diffractometer
2056 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1540 reflections with I > 2σ(I)
Tmin = 0.926, Tmax = 0.977Rint = 0.095
15367 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.110H-atom parameters constrained
S = 0.98Δρmax = 0.31 e Å3
2056 reflectionsΔρmin = 0.24 e Å3
119 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All s.u.'s are estimated from the variances of the (full) variance-covariance matrix. The cell s.u.'s are taken into account in the estimation of distances, angles and torsion angles.

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.53773 (2)0.07294 (2)0.52460 (10)0.0281 (2)
O10.56205 (6)0.17228 (6)0.1675 (3)0.0322 (5)
N10.45696 (7)0.04810 (6)0.2790 (3)0.0269 (6)
N20.49000 (6)0.12770 (6)0.1987 (3)0.0215 (5)
C10.41711 (9)0.01902 (9)0.0757 (4)0.0352 (8)
C20.37649 (9)0.01894 (10)0.2287 (4)0.0416 (9)
C30.33488 (9)0.04979 (9)0.1906 (4)0.0365 (8)
C40.33371 (9)0.08094 (10)0.0010 (4)0.0394 (9)
C50.37390 (9)0.08096 (9)0.1544 (4)0.0346 (8)
C60.41558 (8)0.05020 (8)0.1157 (4)0.0237 (7)
C70.49204 (8)0.08449 (8)0.3204 (4)0.0216 (7)
C80.52638 (8)0.16964 (8)0.2207 (4)0.0231 (7)
C90.57332 (8)0.16375 (9)0.0697 (4)0.0282 (7)
H10.445300.001900.102000.0420*
H1A0.459600.020500.359000.0320*
H1B0.554200.145100.228900.0480*
H20.377400.002100.358200.0500*
H2A0.465500.131100.100500.0260*
H30.307600.049500.293600.0440*
H40.305800.102200.023700.0470*
H50.372700.101700.284900.0410*
H8A0.537100.172100.381000.0280*
H8B0.509300.201300.180600.0280*
H9A0.599200.187900.119500.0340*
H9B0.587000.129600.088400.0340*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0314 (3)0.0206 (3)0.0322 (3)0.0001 (2)0.0121 (3)0.0010 (2)
O10.0448 (10)0.0284 (9)0.0234 (9)0.0100 (8)0.0032 (8)0.0016 (7)
N10.0285 (10)0.0191 (9)0.0332 (11)0.0045 (8)0.0107 (8)0.0074 (8)
N20.0214 (9)0.0219 (9)0.0211 (10)0.0023 (7)0.0036 (7)0.0015 (7)
C10.0253 (12)0.0417 (15)0.0385 (14)0.0047 (11)0.0008 (11)0.0120 (12)
C20.0388 (15)0.0516 (16)0.0343 (15)0.0003 (12)0.0058 (12)0.0151 (12)
C30.0292 (13)0.0402 (15)0.0402 (15)0.0034 (11)0.0118 (11)0.0027 (12)
C40.0291 (13)0.0384 (14)0.0508 (17)0.0090 (11)0.0089 (12)0.0073 (12)
C50.0362 (14)0.0298 (13)0.0377 (15)0.0049 (11)0.0063 (11)0.0102 (11)
C60.0233 (11)0.0201 (11)0.0278 (12)0.0053 (9)0.0038 (9)0.0052 (9)
C70.0233 (11)0.0191 (11)0.0223 (12)0.0014 (9)0.0007 (9)0.0033 (9)
C80.0291 (12)0.0188 (11)0.0214 (12)0.0039 (9)0.0015 (9)0.0001 (9)
C90.0267 (12)0.0325 (13)0.0255 (13)0.0068 (10)0.0002 (10)0.0011 (10)
Geometric parameters (Å, º) top
S1—C71.707 (2)C4—C51.383 (3)
O1—C91.420 (3)C5—C61.374 (3)
O1—H1B0.8200C8—C91.515 (3)
N1—C61.437 (3)C1—H10.9300
N1—C71.344 (3)C2—H20.9300
N2—C71.333 (3)C3—H30.9300
N2—C81.459 (3)C4—H40.9300
N1—H1A0.8600C5—H50.9300
N2—H2A0.8600C8—H8A0.9700
C1—C21.383 (3)C8—H8B0.9700
C1—C61.375 (3)C9—H9A0.9700
C2—C31.373 (3)C9—H9B0.9700
C3—C41.366 (3)
C9—O1—H1B109.00C2—C1—H1120.00
C6—N1—C7127.18 (17)C6—C1—H1120.00
C7—N2—C8124.50 (17)C1—C2—H2120.00
C6—N1—H1A116.00C3—C2—H2120.00
C7—N1—H1A116.00C2—C3—H3120.00
C8—N2—H2A118.00C4—C3—H3120.00
C7—N2—H2A118.00C3—C4—H4120.00
C2—C1—C6119.5 (2)C5—C4—H4120.00
C1—C2—C3120.4 (2)C4—C5—H5120.00
C2—C3—C4119.8 (2)C6—C5—H5120.00
C3—C4—C5120.3 (2)N2—C8—H8A109.00
C4—C5—C6119.9 (2)N2—C8—H8B109.00
N1—C6—C1118.90 (19)C9—C8—H8A109.00
C1—C6—C5120.1 (2)C9—C8—H8B109.00
N1—C6—C5120.9 (2)H8A—C8—H8B108.00
S1—C7—N1118.42 (16)O1—C9—H9A109.00
N1—C7—N2118.68 (19)O1—C9—H9B109.00
S1—C7—N2122.89 (16)C8—C9—H9A109.00
N2—C8—C9113.75 (18)C8—C9—H9B109.00
O1—C9—C8111.81 (17)H9A—C9—H9B108.00
C6—N1—C7—S1179.93 (17)C2—C1—C6—N1177.1 (2)
C7—N1—C6—C1111.2 (3)C2—C1—C6—C50.1 (3)
C7—N1—C6—C571.9 (3)C1—C2—C3—C40.3 (4)
C6—N1—C7—N20.8 (3)C2—C3—C4—C51.0 (4)
C7—N2—C8—C986.7 (3)C3—C4—C5—C61.2 (4)
C8—N2—C7—S11.1 (3)C4—C5—C6—N1177.6 (2)
C8—N2—C7—N1178.12 (19)C4—C5—C6—C10.7 (3)
C6—C1—C2—C30.1 (4)N2—C8—C9—O172.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.543.3676 (18)163
O1—H1B···S1ii0.822.403.2137 (18)169
N2—H2A···O1iii0.862.152.875 (2)142
C8—H8A···S10.972.723.094 (2)103
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) y+1/4, x+3/4, z1/4.

Experimental details

Crystal data
Chemical formulaC9H12N2OS
Mr196.28
Crystal system, space groupTetragonal, I41/a
Temperature (K)150
a, c (Å)26.170 (4), 5.7775 (16)
V3)3956.8 (16)
Z16
Radiation typeMo Kα
µ (mm1)0.29
Crystal size (mm)0.27 × 0.09 × 0.08
Data collection
DiffractometerBruker APEX 2K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.926, 0.977
No. of measured, independent and
observed [I > 2σ(I)] reflections
15367, 2056, 1540
Rint0.095
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.110, 0.98
No. of reflections2056
No. of parameters119
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.543.3676 (18)163
O1—H1B···S1ii0.822.403.2137 (18)169
N2—H2A···O1iii0.862.152.875 (2)142
C8—H8A···S10.972.723.094 (2)103
Symmetry codes: (i) x+1, y, z+1; (ii) x, y, z1; (iii) y+1/4, x+3/4, z1/4.
 

Acknowledgements

The Higher Education Authority in Egypt is acknowledged for their financial support of this research project. We also thank Manchester Metropolitan University for supporting this study.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArslan, H., Florke, U., Kulcu, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429–440.  CAS Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDesai, A. D., Mahajan, D. H. & Chikhalia, K. H. (2007). Indian J. Chem. Sect. B, 46, 1169–1173.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKatritzky, A. R. & Gordeev, M. F. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2199–2203.  CrossRef Web of Science Google Scholar
First citationKilcigil, G. A. & Altanlar, N. (2006). Turk. J. Chem. 30, 223–228.  Google Scholar
First citationPatel, R. B., Chikhalia, K. H., Pannecouque, C. & Clercq, E. D. (2007). J. Braz. Chem. Soc. 18, 312–321.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStruga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796–799.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds