organic compounds
1-(2-Hydroxyethyl)-3-phenylthiourea
aChemistry and Environmental Science Division, School of Science & The Environment, Manchester Metropolitan University, M1 5GD, England, bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, cDepartment of Chemistry, University of Leicester, Leicester, England, and dSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, M1 5GD, England
*Correspondence e-mail: akkurt@erciyes.edu.tr
The title compound, C9H12N2OS, was obtained unexpectedly in a multicomponent reaction of an equimolar ratio of phenyl isothiocyanate, malononitrile and aminoethanol. The –C(H2)–N(H)–(C=S)–N(H)– methylthiourea–methane group is almost normal to the phenyl ring, with a dihedral angle of 71.13 (9)°. The N—C—C—O torsion angle is 72.8 (2)°. In the crystal, molecules are connected by N—H⋯O, O—H⋯S and N—H⋯O hydrogen bonds, forming a three-dimensional network.
Related literature
For the biological activity of thioureas, see: Kilcigil & Altanlar (2006); Struga et al. (2007); Desai et al. (2007); Patel et al. (2007); Arslan et al. (2006); Katritzky & Gordeev (1991). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).
Experimental
Crystal data
|
Refinement
|
Data collection: APEX2 (Bruker, 2005); cell SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.
Supporting information
10.1107/S160053681201183X/rk2342sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053681201183X/rk2342Isup2.hkl
Supporting information file. DOI: 10.1107/S160053681201183X/rk2342Isup3.cml
The 1-(2-hydroxyethyl)-3-phenylthiourea has been formed as an unexpected product from a multicomponent reaction of an equimolar ratio of phenylisothiocyanate, malononitrile and amino ethanol. The reaction mixture was heated at 374 K in dioxane (30 ml) for 3 h, then cooled at room temperature to afford a solid precipitate. The product was filtered off, washed with cold ethanol and recrystallized from ethanol. Colourless needles in a spiky shape have been isolated on slow evaporation of a diluted ethanol of the product (yield 39%, m.p. 393 K).
All H atoms were positioned geometrically and refined using a riding model with C–H = 0.93Å for aromatic, C–H = 0.97Å for methylene, O–H = 0.82Å for hydroxyl and N–H = 0.86Å for amine H atoms, and with Uiso(H) = 1.2(1.5)Ueq(C,N,O).
Substituted thioureas are important organic compounds prompting the interest of chemists due to their broad spectrum of biological activities such as anti-HIV, antiviral, HDL-elevating, antibacterial, analgesic properties (Kilcigil & Altanlar, 2006; Struga et al., 2007; Desai et al., 2007; Patel et al., 2007) and acting as fungicides (Arslan et al., 2006). Industrially, thioureas act as corrosion inhibitors, antioxidant, and are polymer components (Katritzky & Gordeev, 1991). The title compound has been obtained as an unexpected product from our multicomponent reaction techniques of phenylisothiocyanate, malononitrile and amino ethanol under conventional heat.
In the title compound I (Fig. 1), the methylthiourea-methane group (–C8(H2)–N2(H)–(C7═S1)–N1(H)–) makes a dihedral angle of 71.13 (9)° with the C1-C6 phenyl ring. The N2–C8–C9–O1 torsion angle is 72.8 (2)°. The bond lengths and angles in I are in the normal range (Allen et al., 1987).
Intramolecular C8–H8A···S1 contact help to stabilize the
of I, generating a C(5) loop (Bernstein et al., 1995; Etter et al., 1990). The crystal packing is stabilized by N–H···O, O–H···S and N–H···O intermolecular hydrogen bonds, forming a three-dimensional network (Table 1, Fig. 2).For the biological activity of thioureas, see: Kilcigil & Altanlar (2006); Struga et al. (2007); Desai et al. (2007); Patel et al. (2007); Arslan et al. (2006); Katritzky & Gordeev (1991). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995); Etter et al. (1990).
Data collection: APEX2 (Bruker, 2005); cell
SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).C9H12N2OS | Dx = 1.318 Mg m−3 |
Mr = 196.28 | Melting point: 393 K |
Tetragonal, I41/a | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -I 4ad | Cell parameters from 800 reflections |
a = 26.170 (4) Å | θ = 3.5–28.2° |
c = 5.7775 (16) Å | µ = 0.29 mm−1 |
V = 3956.8 (16) Å3 | T = 150 K |
Z = 16 | Needle, colourless |
F(000) = 1664 | 0.27 × 0.09 × 0.08 mm |
Bruker APEX 2K CCD diffractometer | 2056 independent reflections |
Radiation source: fine-focus sealed tube | 1540 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.095 |
φ and ω scans | θmax = 26.5°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −32→32 |
Tmin = 0.926, Tmax = 0.977 | k = −32→32 |
15367 measured reflections | l = −7→7 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.048 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 0.98 | w = 1/[σ2(Fo2) + (0.0501P)2] where P = (Fo2 + 2Fc2)/3 |
2056 reflections | (Δ/σ)max = 0.001 |
119 parameters | Δρmax = 0.31 e Å−3 |
0 restraints | Δρmin = −0.24 e Å−3 |
C9H12N2OS | Z = 16 |
Mr = 196.28 | Mo Kα radiation |
Tetragonal, I41/a | µ = 0.29 mm−1 |
a = 26.170 (4) Å | T = 150 K |
c = 5.7775 (16) Å | 0.27 × 0.09 × 0.08 mm |
V = 3956.8 (16) Å3 |
Bruker APEX 2K CCD diffractometer | 2056 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 1540 reflections with I > 2σ(I) |
Tmin = 0.926, Tmax = 0.977 | Rint = 0.095 |
15367 measured reflections |
R[F2 > 2σ(F2)] = 0.048 | 0 restraints |
wR(F2) = 0.110 | H-atom parameters constrained |
S = 0.98 | Δρmax = 0.31 e Å−3 |
2056 reflections | Δρmin = −0.24 e Å−3 |
119 parameters |
Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All s.u.'s are estimated from the variances of the (full) variance-covariance matrix. The cell s.u.'s are taken into account in the estimation of distances, angles and torsion angles. |
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating R-factor etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.53773 (2) | 0.07294 (2) | 0.52460 (10) | 0.0281 (2) | |
O1 | 0.56205 (6) | 0.17228 (6) | −0.1675 (3) | 0.0322 (5) | |
N1 | 0.45696 (7) | 0.04810 (6) | 0.2790 (3) | 0.0269 (6) | |
N2 | 0.49000 (6) | 0.12770 (6) | 0.1987 (3) | 0.0215 (5) | |
C1 | 0.41711 (9) | 0.01902 (9) | −0.0757 (4) | 0.0352 (8) | |
C2 | 0.37649 (9) | 0.01894 (10) | −0.2287 (4) | 0.0416 (9) | |
C3 | 0.33488 (9) | 0.04979 (9) | −0.1906 (4) | 0.0365 (8) | |
C4 | 0.33371 (9) | 0.08094 (10) | −0.0010 (4) | 0.0394 (9) | |
C5 | 0.37390 (9) | 0.08096 (9) | 0.1544 (4) | 0.0346 (8) | |
C6 | 0.41558 (8) | 0.05020 (8) | 0.1157 (4) | 0.0237 (7) | |
C7 | 0.49204 (8) | 0.08449 (8) | 0.3204 (4) | 0.0216 (7) | |
C8 | 0.52638 (8) | 0.16964 (8) | 0.2207 (4) | 0.0231 (7) | |
C9 | 0.57332 (8) | 0.16375 (9) | 0.0697 (4) | 0.0282 (7) | |
H1 | 0.44530 | −0.00190 | −0.10200 | 0.0420* | |
H1A | 0.45960 | 0.02050 | 0.35900 | 0.0320* | |
H1B | 0.55420 | 0.14510 | −0.22890 | 0.0480* | |
H2 | 0.37740 | −0.00210 | −0.35820 | 0.0500* | |
H2A | 0.46550 | 0.13110 | 0.10050 | 0.0260* | |
H3 | 0.30760 | 0.04950 | −0.29360 | 0.0440* | |
H4 | 0.30580 | 0.10220 | 0.02370 | 0.0470* | |
H5 | 0.37270 | 0.10170 | 0.28490 | 0.0410* | |
H8A | 0.53710 | 0.17210 | 0.38100 | 0.0280* | |
H8B | 0.50930 | 0.20130 | 0.18060 | 0.0280* | |
H9A | 0.59920 | 0.18790 | 0.11950 | 0.0340* | |
H9B | 0.58700 | 0.12960 | 0.08840 | 0.0340* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0314 (3) | 0.0206 (3) | 0.0322 (3) | −0.0001 (2) | −0.0121 (3) | 0.0010 (2) |
O1 | 0.0448 (10) | 0.0284 (9) | 0.0234 (9) | −0.0100 (8) | 0.0032 (8) | −0.0016 (7) |
N1 | 0.0285 (10) | 0.0191 (9) | 0.0332 (11) | −0.0045 (8) | −0.0107 (8) | 0.0074 (8) |
N2 | 0.0214 (9) | 0.0219 (9) | 0.0211 (10) | −0.0023 (7) | −0.0036 (7) | 0.0015 (7) |
C1 | 0.0253 (12) | 0.0417 (15) | 0.0385 (14) | 0.0047 (11) | −0.0008 (11) | −0.0120 (12) |
C2 | 0.0388 (15) | 0.0516 (16) | 0.0343 (15) | 0.0003 (12) | −0.0058 (12) | −0.0151 (12) |
C3 | 0.0292 (13) | 0.0402 (15) | 0.0402 (15) | −0.0034 (11) | −0.0118 (11) | 0.0027 (12) |
C4 | 0.0291 (13) | 0.0384 (14) | 0.0508 (17) | 0.0090 (11) | −0.0089 (12) | −0.0073 (12) |
C5 | 0.0362 (14) | 0.0298 (13) | 0.0377 (15) | 0.0049 (11) | −0.0063 (11) | −0.0102 (11) |
C6 | 0.0233 (11) | 0.0201 (11) | 0.0278 (12) | −0.0053 (9) | −0.0038 (9) | 0.0052 (9) |
C7 | 0.0233 (11) | 0.0191 (11) | 0.0223 (12) | 0.0014 (9) | 0.0007 (9) | −0.0033 (9) |
C8 | 0.0291 (12) | 0.0188 (11) | 0.0214 (12) | −0.0039 (9) | −0.0015 (9) | −0.0001 (9) |
C9 | 0.0267 (12) | 0.0325 (13) | 0.0255 (13) | −0.0068 (10) | −0.0002 (10) | −0.0011 (10) |
S1—C7 | 1.707 (2) | C4—C5 | 1.383 (3) |
O1—C9 | 1.420 (3) | C5—C6 | 1.374 (3) |
O1—H1B | 0.8200 | C8—C9 | 1.515 (3) |
N1—C6 | 1.437 (3) | C1—H1 | 0.9300 |
N1—C7 | 1.344 (3) | C2—H2 | 0.9300 |
N2—C7 | 1.333 (3) | C3—H3 | 0.9300 |
N2—C8 | 1.459 (3) | C4—H4 | 0.9300 |
N1—H1A | 0.8600 | C5—H5 | 0.9300 |
N2—H2A | 0.8600 | C8—H8A | 0.9700 |
C1—C2 | 1.383 (3) | C8—H8B | 0.9700 |
C1—C6 | 1.375 (3) | C9—H9A | 0.9700 |
C2—C3 | 1.373 (3) | C9—H9B | 0.9700 |
C3—C4 | 1.366 (3) | ||
C9—O1—H1B | 109.00 | C2—C1—H1 | 120.00 |
C6—N1—C7 | 127.18 (17) | C6—C1—H1 | 120.00 |
C7—N2—C8 | 124.50 (17) | C1—C2—H2 | 120.00 |
C6—N1—H1A | 116.00 | C3—C2—H2 | 120.00 |
C7—N1—H1A | 116.00 | C2—C3—H3 | 120.00 |
C8—N2—H2A | 118.00 | C4—C3—H3 | 120.00 |
C7—N2—H2A | 118.00 | C3—C4—H4 | 120.00 |
C2—C1—C6 | 119.5 (2) | C5—C4—H4 | 120.00 |
C1—C2—C3 | 120.4 (2) | C4—C5—H5 | 120.00 |
C2—C3—C4 | 119.8 (2) | C6—C5—H5 | 120.00 |
C3—C4—C5 | 120.3 (2) | N2—C8—H8A | 109.00 |
C4—C5—C6 | 119.9 (2) | N2—C8—H8B | 109.00 |
N1—C6—C1 | 118.90 (19) | C9—C8—H8A | 109.00 |
C1—C6—C5 | 120.1 (2) | C9—C8—H8B | 109.00 |
N1—C6—C5 | 120.9 (2) | H8A—C8—H8B | 108.00 |
S1—C7—N1 | 118.42 (16) | O1—C9—H9A | 109.00 |
N1—C7—N2 | 118.68 (19) | O1—C9—H9B | 109.00 |
S1—C7—N2 | 122.89 (16) | C8—C9—H9A | 109.00 |
N2—C8—C9 | 113.75 (18) | C8—C9—H9B | 109.00 |
O1—C9—C8 | 111.81 (17) | H9A—C9—H9B | 108.00 |
C6—N1—C7—S1 | 179.93 (17) | C2—C1—C6—N1 | 177.1 (2) |
C7—N1—C6—C1 | 111.2 (3) | C2—C1—C6—C5 | 0.1 (3) |
C7—N1—C6—C5 | −71.9 (3) | C1—C2—C3—C4 | 0.3 (4) |
C6—N1—C7—N2 | −0.8 (3) | C2—C3—C4—C5 | −1.0 (4) |
C7—N2—C8—C9 | 86.7 (3) | C3—C4—C5—C6 | 1.2 (4) |
C8—N2—C7—S1 | 1.1 (3) | C4—C5—C6—N1 | −177.6 (2) |
C8—N2—C7—N1 | −178.12 (19) | C4—C5—C6—C1 | −0.7 (3) |
C6—C1—C2—C3 | 0.1 (4) | N2—C8—C9—O1 | 72.8 (2) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.86 | 2.54 | 3.3676 (18) | 163 |
O1—H1B···S1ii | 0.82 | 2.40 | 3.2137 (18) | 169 |
N2—H2A···O1iii | 0.86 | 2.15 | 2.875 (2) | 142 |
C8—H8A···S1 | 0.97 | 2.72 | 3.094 (2) | 103 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) y+1/4, −x+3/4, −z−1/4. |
Experimental details
Crystal data | |
Chemical formula | C9H12N2OS |
Mr | 196.28 |
Crystal system, space group | Tetragonal, I41/a |
Temperature (K) | 150 |
a, c (Å) | 26.170 (4), 5.7775 (16) |
V (Å3) | 3956.8 (16) |
Z | 16 |
Radiation type | Mo Kα |
µ (mm−1) | 0.29 |
Crystal size (mm) | 0.27 × 0.09 × 0.08 |
Data collection | |
Diffractometer | Bruker APEX 2K CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.926, 0.977 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 15367, 2056, 1540 |
Rint | 0.095 |
(sin θ/λ)max (Å−1) | 0.628 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.048, 0.110, 0.98 |
No. of reflections | 2056 |
No. of parameters | 119 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.31, −0.24 |
Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···S1i | 0.86 | 2.54 | 3.3676 (18) | 163 |
O1—H1B···S1ii | 0.82 | 2.40 | 3.2137 (18) | 169 |
N2—H2A···O1iii | 0.86 | 2.15 | 2.875 (2) | 142 |
C8—H8A···S1 | 0.97 | 2.72 | 3.094 (2) | 103 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) x, y, z−1; (iii) y+1/4, −x+3/4, −z−1/4. |
Acknowledgements
The Higher Education Authority in Egypt is acknowledged for their financial support of this research project. We also thank Manchester Metropolitan University for supporting this study.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CSD CrossRef Web of Science Google Scholar
Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119. Web of Science CrossRef CAS IUCr Journals Google Scholar
Arslan, H., Florke, U., Kulcu, N. & Kayhan, E. (2006). Turk. J. Chem. 30, 429–440. CAS Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N. L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Desai, A. D., Mahajan, D. H. & Chikhalia, K. H. (2007). Indian J. Chem. Sect. B, 46, 1169–1173. Google Scholar
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. CrossRef CAS Web of Science IUCr Journals Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838. CrossRef CAS IUCr Journals Google Scholar
Katritzky, A. R. & Gordeev, M. F. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 2199–2203. CrossRef Web of Science Google Scholar
Kilcigil, G. A. & Altanlar, N. (2006). Turk. J. Chem. 30, 223–228. Google Scholar
Patel, R. B., Chikhalia, K. H., Pannecouque, C. & Clercq, E. D. (2007). J. Braz. Chem. Soc. 18, 312–321. CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Struga, M., Kossakowski, J., Kedzierska, E., Fidecka, S. & Stefanska, J. (2007). Chem. Pharm. Bull. 55, 796–799. Web of Science CrossRef PubMed CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Substituted thioureas are important organic compounds prompting the interest of chemists due to their broad spectrum of biological activities such as anti-HIV, antiviral, HDL-elevating, antibacterial, analgesic properties (Kilcigil & Altanlar, 2006; Struga et al., 2007; Desai et al., 2007; Patel et al., 2007) and acting as fungicides (Arslan et al., 2006). Industrially, thioureas act as corrosion inhibitors, antioxidant, and are polymer components (Katritzky & Gordeev, 1991). The title compound has been obtained as an unexpected product from our multicomponent reaction techniques of phenylisothiocyanate, malononitrile and amino ethanol under conventional heat.
In the title compound I (Fig. 1), the methylthiourea-methane group (–C8(H2)–N2(H)–(C7═S1)–N1(H)–) makes a dihedral angle of 71.13 (9)° with the C1-C6 phenyl ring. The N2–C8–C9–O1 torsion angle is 72.8 (2)°. The bond lengths and angles in I are in the normal range (Allen et al., 1987).
Intramolecular C8–H8A···S1 contact help to stabilize the molecular conformation of I, generating a C(5) loop (Bernstein et al., 1995; Etter et al., 1990). The crystal packing is stabilized by N–H···O, O–H···S and N–H···O intermolecular hydrogen bonds, forming a three-dimensional network (Table 1, Fig. 2).