organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-(4-Bromo­but­yl)-9H-carbazole

aLaboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: zhouch@swu.edu.cn

(Received 7 March 2012; accepted 13 March 2012; online 17 March 2012)

In the title compound, C16H16BrN, the bromo­butyl group lies on one side of the carbazole ring plane and has a zigzag shape. The dihedral angle between the two benzene rings is 0.55°. In the crystal, mol­ecules are connected by van der Waals inter­actions.

Related literature

For charge-transport properties and π-conjugated systems in carbazoles, see: Zhang et al. (2010a[Zhang, F.-F., Zhou, C.-H. & Yan, J.-P. (2010a). Chin. J. Org. Chem. 30, 783-796.]). For the bioactivity of carbazole derivatives, see: Yan et al. (2011[Yan, J.-P., Zhou, C.-H., Ji, Q.-G. & Geng, R.-X. (2011). Int. J. Pharm. Res. 38, 118-122.]). For the synthesis of the title compound, see: Zhang et al. (2010b[Zhang, F.-F., Gan, L.-L. & Zhou, C.-H. (2010b). Bioorg. Med. Chem. Lett. 20, 1881-1884.]).

[Scheme 1]

Experimental

Crystal data
  • C16H16BrN

  • Mr = 302.20

  • Orthorhombic, P b c a

  • a = 7.696 (3) Å

  • b = 22.658 (8) Å

  • c = 16.030 (6) Å

  • V = 2795.3 (18) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.92 mm−1

  • T = 296 K

  • 0.35 × 0.33 × 0.32 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.428, Tmax = 0.455

  • 13981 measured reflections

  • 2460 independent reflections

  • 1252 reflections with I > 2σ(I)

  • Rint = 0.094

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 0.97

  • 2460 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Carbazole and its derivatives as an important type of aromatic compounds are being actively investigated for their special structural characteristics with desirable electronic charge-transport properties and π-conjugated system (Zhang et al., 2010a). Large amount of bioactive carbazole derivatives have been reported to exert diverse biological activities such as antitumor, antimicrobial, antihistaminic, antioxidative, anti-inflammatory ones and so on (Yan et al., 2011). Our interest is to develop novel carbazole compounds as medicinal agents. Herein, the molecular structure of the title compound, I, is reported.

The X-ray analysis of I shows that the carbon C4 and carbazole moiety (N1/C5–C16) belong to the same plane. The bromobutyl moiety lies in the same side of the carbon plane.

Related literature top

For charge-transport properties and π-conjugated systems in carbazoles, see: Zhang et al. (2010a). For the bioactivity of carbazole derivatives, see: Yan et al. (2011). For the synthesis of the title compound, see: Zhang et al. (2010b).

Experimental top

The title compound was synthesized according to the procedure of Zhang et al. (2010b). Single crystals were grown by slow evaporation of a solution of I in CHCl3 at room temperature.

Refinement top

H atoms were placed at calculated positions with C—H = 0.93Å (aromatic) and 0.97Å (methylene). The Uiso(H) = 1.2Ueq(C).

Structure description top

Carbazole and its derivatives as an important type of aromatic compounds are being actively investigated for their special structural characteristics with desirable electronic charge-transport properties and π-conjugated system (Zhang et al., 2010a). Large amount of bioactive carbazole derivatives have been reported to exert diverse biological activities such as antitumor, antimicrobial, antihistaminic, antioxidative, anti-inflammatory ones and so on (Yan et al., 2011). Our interest is to develop novel carbazole compounds as medicinal agents. Herein, the molecular structure of the title compound, I, is reported.

The X-ray analysis of I shows that the carbon C4 and carbazole moiety (N1/C5–C16) belong to the same plane. The bromobutyl moiety lies in the same side of the carbon plane.

For charge-transport properties and π-conjugated systems in carbazoles, see: Zhang et al. (2010a). For the bioactivity of carbazole derivatives, see: Yan et al. (2011). For the synthesis of the title compound, see: Zhang et al. (2010b).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of I, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
9-(4-Bromobutyl)-9H-carbazole top
Crystal data top
C16H16BrNF(000) = 1232
Mr = 302.20Dx = 1.436 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 1683 reflections
a = 7.696 (3) Åθ = 2.2–20.5°
b = 22.658 (8) ŵ = 2.92 mm1
c = 16.030 (6) ÅT = 296 K
V = 2795.3 (18) Å3Block, colourless
Z = 80.35 × 0.33 × 0.32 mm
Data collection top
Bruker SMART CCD
diffractometer
2460 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.094
φ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.428, Tmax = 0.455k = 2623
13981 measured reflectionsl = 1918
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0728P)2]
where P = (Fo2 + 2Fc2)/3
2460 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C16H16BrNV = 2795.3 (18) Å3
Mr = 302.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 7.696 (3) ŵ = 2.92 mm1
b = 22.658 (8) ÅT = 296 K
c = 16.030 (6) Å0.35 × 0.33 × 0.32 mm
Data collection top
Bruker SMART CCD
diffractometer
2460 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1252 reflections with I > 2σ(I)
Tmin = 0.428, Tmax = 0.455Rint = 0.094
13981 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 0.97Δρmax = 0.35 e Å3
2460 reflectionsΔρmin = 0.42 e Å3
163 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.17750 (8)0.51102 (3)0.14901 (4)0.0961 (4)
N10.4563 (4)0.63416 (15)0.0682 (2)0.0503 (9)
C10.9838 (6)0.5506 (2)0.0916 (3)0.0804 (16)
H1A1.02140.56400.03710.097*
H1B0.88870.52300.08400.097*
C20.9256 (7)0.6005 (2)0.1406 (3)0.0728 (15)
H2A1.02160.62750.14950.087*
H2B0.88530.58690.19460.087*
C30.7738 (6)0.6334 (2)0.0939 (3)0.0710 (16)
H3A0.76600.67360.11430.085*
H3B0.79950.63490.03470.085*
C40.6020 (6)0.60279 (19)0.1069 (3)0.0589 (12)
H4A0.60860.56330.08370.071*
H4B0.58040.59910.16620.071*
C50.3858 (6)0.6217 (2)0.0087 (3)0.0534 (12)
C60.4334 (8)0.5788 (2)0.0656 (3)0.0744 (15)
H60.52490.55310.05490.089*
C70.3397 (11)0.5757 (3)0.1393 (4)0.107 (2)
H70.36920.54750.17910.128*
C80.2017 (10)0.6140 (4)0.1546 (4)0.106 (3)
H80.14030.61070.20440.127*
C90.1550 (7)0.6562 (3)0.0986 (4)0.0820 (17)
H90.06260.68150.10950.098*
C100.2482 (6)0.6607 (2)0.0248 (3)0.0546 (12)
C110.2370 (5)0.6987 (2)0.0468 (3)0.0517 (12)
C120.1309 (6)0.7458 (2)0.0690 (4)0.0684 (15)
H120.04380.75870.03310.082*
C130.1557 (7)0.7729 (3)0.1436 (4)0.0810 (17)
H130.08520.80460.15840.097*
C140.2847 (7)0.7542 (2)0.1985 (4)0.0744 (16)
H140.29900.77340.24930.089*
C150.3906 (6)0.7079 (2)0.1782 (3)0.0576 (12)
H150.47620.69520.21500.069*
C160.3682 (5)0.68078 (19)0.1028 (3)0.0462 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0657 (4)0.1089 (6)0.1138 (6)0.0220 (3)0.0026 (3)0.0376 (4)
N10.046 (2)0.051 (2)0.054 (3)0.0042 (18)0.0053 (18)0.0027 (19)
C10.068 (4)0.086 (4)0.087 (4)0.003 (3)0.000 (3)0.013 (3)
C20.062 (3)0.089 (4)0.068 (4)0.010 (3)0.001 (3)0.007 (3)
C30.049 (3)0.070 (3)0.094 (5)0.004 (2)0.000 (3)0.017 (3)
C40.046 (3)0.059 (3)0.072 (3)0.006 (2)0.002 (3)0.011 (3)
C50.055 (3)0.047 (3)0.058 (3)0.011 (2)0.008 (3)0.006 (3)
C60.101 (4)0.060 (3)0.062 (4)0.010 (3)0.003 (3)0.004 (3)
C70.171 (8)0.082 (5)0.067 (5)0.049 (5)0.010 (5)0.003 (4)
C80.151 (7)0.095 (5)0.072 (5)0.050 (5)0.043 (5)0.022 (4)
C90.090 (4)0.085 (4)0.071 (4)0.030 (3)0.028 (4)0.031 (4)
C100.050 (3)0.060 (3)0.054 (4)0.014 (2)0.003 (2)0.015 (3)
C110.036 (2)0.056 (3)0.063 (4)0.002 (2)0.003 (2)0.024 (3)
C120.053 (3)0.074 (4)0.079 (4)0.011 (3)0.007 (3)0.028 (3)
C130.075 (4)0.071 (4)0.097 (5)0.020 (3)0.030 (4)0.013 (4)
C140.087 (4)0.077 (4)0.060 (4)0.007 (3)0.018 (3)0.004 (3)
C150.056 (3)0.067 (3)0.050 (3)0.003 (3)0.003 (2)0.009 (3)
C160.043 (3)0.049 (3)0.046 (3)0.002 (2)0.006 (2)0.010 (2)
Geometric parameters (Å, º) top
Br1—C11.968 (5)C6—H60.9300
N1—C161.372 (5)C7—C81.394 (10)
N1—C51.377 (5)C7—H70.9300
N1—C41.465 (5)C8—C91.361 (9)
C1—C21.447 (7)C8—H80.9300
C1—H1A0.9700C9—C101.386 (7)
C1—H1B0.9700C9—H90.9300
C2—C31.575 (6)C10—C111.437 (7)
C2—H2A0.9700C11—C121.391 (7)
C2—H2B0.9700C11—C161.411 (6)
C3—C41.507 (6)C12—C131.358 (7)
C3—H3A0.9700C12—H120.9300
C3—H3B0.9700C13—C141.392 (8)
C4—H4A0.9700C13—H130.9300
C4—H4B0.9700C14—C151.367 (6)
C5—C61.382 (6)C14—H140.9300
C5—C101.403 (6)C15—C161.368 (6)
C6—C71.386 (8)C15—H150.9300
C16—N1—C5108.9 (4)C7—C6—H6121.3
C16—N1—C4125.6 (4)C6—C7—C8121.0 (7)
C5—N1—C4125.5 (4)C6—C7—H7119.5
C2—C1—Br1109.7 (4)C8—C7—H7119.5
C2—C1—H1A109.7C9—C8—C7121.5 (6)
Br1—C1—H1A109.7C9—C8—H8119.2
C2—C1—H1B109.7C7—C8—H8119.2
Br1—C1—H1B109.7C8—C9—C10118.5 (6)
H1A—C1—H1B108.2C8—C9—H9120.7
C1—C2—C3110.0 (4)C10—C9—H9120.7
C1—C2—H2A109.7C9—C10—C5120.1 (5)
C3—C2—H2A109.7C9—C10—C11133.9 (5)
C1—C2—H2B109.7C5—C10—C11106.0 (4)
C3—C2—H2B109.7C12—C11—C16118.5 (5)
H2A—C2—H2B108.2C12—C11—C10134.4 (5)
C4—C3—C2111.6 (4)C16—C11—C10107.1 (4)
C4—C3—H3A109.3C13—C12—C11119.4 (5)
C2—C3—H3A109.3C13—C12—H12120.3
C4—C3—H3B109.3C11—C12—H12120.3
C2—C3—H3B109.3C12—C13—C14121.3 (5)
H3A—C3—H3B108.0C12—C13—H13119.4
N1—C4—C3113.0 (4)C14—C13—H13119.4
N1—C4—H4A109.0C15—C14—C13120.6 (5)
C3—C4—H4A109.0C15—C14—H14119.7
N1—C4—H4B109.0C13—C14—H14119.7
C3—C4—H4B109.0C14—C15—C16118.6 (4)
H4A—C4—H4B107.8C14—C15—H15120.7
N1—C5—C6129.1 (5)C16—C15—H15120.7
N1—C5—C10109.5 (4)C15—C16—N1129.8 (4)
C6—C5—C10121.4 (5)C15—C16—C11121.6 (4)
C5—C6—C7117.4 (6)N1—C16—C11108.5 (4)
C5—C6—H6121.3
Br1—C1—C2—C3178.5 (3)C9—C10—C11—C121.1 (9)
C1—C2—C3—C480.9 (5)C5—C10—C11—C12179.6 (5)
C16—N1—C4—C383.0 (5)C9—C10—C11—C16179.2 (5)
C5—N1—C4—C396.9 (5)C5—C10—C11—C160.1 (5)
C2—C3—C4—N1176.7 (4)C16—C11—C12—C130.3 (7)
C16—N1—C5—C6179.6 (4)C10—C11—C12—C13180.0 (5)
C4—N1—C5—C60.3 (7)C11—C12—C13—C140.3 (8)
C16—N1—C5—C100.2 (5)C12—C13—C14—C150.2 (8)
C4—N1—C5—C10179.8 (4)C13—C14—C15—C160.6 (7)
N1—C5—C6—C7180.0 (5)C14—C15—C16—N1179.9 (4)
C10—C5—C6—C70.2 (7)C14—C15—C16—C111.2 (6)
C5—C6—C7—C80.6 (8)C5—N1—C16—C15179.2 (4)
C6—C7—C8—C90.6 (10)C4—N1—C16—C150.9 (7)
C7—C8—C9—C100.1 (9)C5—N1—C16—C110.2 (4)
C8—C9—C10—C50.9 (7)C4—N1—C16—C11179.9 (3)
C8—C9—C10—C11179.9 (5)C12—C11—C16—C151.1 (6)
N1—C5—C10—C9179.2 (4)C10—C11—C16—C15179.1 (4)
C6—C5—C10—C90.9 (7)C12—C11—C16—N1179.8 (3)
N1—C5—C10—C110.2 (5)C10—C11—C16—N10.0 (5)
C6—C5—C10—C11179.6 (4)

Experimental details

Crystal data
Chemical formulaC16H16BrN
Mr302.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)7.696 (3), 22.658 (8), 16.030 (6)
V3)2795.3 (18)
Z8
Radiation typeMo Kα
µ (mm1)2.92
Crystal size (mm)0.35 × 0.33 × 0.32
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.428, 0.455
No. of measured, independent and
observed [I > 2σ(I)] reflections
13981, 2460, 1252
Rint0.094
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 0.97
No. of reflections2460
No. of parameters163
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.42

Computer programs: SMART (Bruker, 2001), SAINT-Plus (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (No. 21172181), the Key Program of the Natural Science Foundation of Chongqing (CSTC2012jjB10020), the Specialized Research Fund for the Doctoral Program of Higher Education of China (SRFDP 20110182110007) and the Research Funds for the Central Universities (XDJK2012B026).

References

First citationBruker (2001). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, J.-P., Zhou, C.-H., Ji, Q.-G. & Geng, R.-X. (2011). Int. J. Pharm. Res. 38, 118–122.  CAS Google Scholar
First citationZhang, F.-F., Gan, L.-L. & Zhou, C.-H. (2010b). Bioorg. Med. Chem. Lett. 20, 1881–1884.  Web of Science CrossRef CAS PubMed Google Scholar
First citationZhang, F.-F., Zhou, C.-H. & Yan, J.-P. (2010a). Chin. J. Org. Chem. 30, 783–796.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds