organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cinnarizinium 3,5-di­nitro­salicylate

aUniversity of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and bNelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa
*Correspondence e-mail: richard.betz@webmail.co.za

(Received 6 February 2012; accepted 16 March 2012; online 24 March 2012)

The title compound [systematic name: 4-diphenyl­methyl-1-(3-phenylprop-2-en-1-yl)-piperazin-1-ium 2-carb­oxy-4,6-dinitro­pheno­late], C26H29N2+·C7H3N2O7, is the dinitro­salicylate salt of a tertiary amine. Deprotonation of the carb­oxy­lic acid group occurred on the phenolic hy­droxy group. The diaza­cyclo­hexane ring adopts a chair conformation. Intra­molecular O—H⋯O and inter­molecular C—H⋯O and N—H⋯O hydrogen bonds are observed. The N—H⋯O hydrogen bonds are bifurcated at the H atom and connect the cinnarizinium and 3,5-dinitro­salicylate ions together. Inter­molecular C—H⋯O hydrogen bonds connect the components into layers perpendicular to the crystallographic a axis.

Related literature

For pharmaceutical background to cinnarizine, see: Barrett & Zolov (1960[Barrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454-457.]). For related structures, see: Bertolasi et al. (1980[Bertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975-1977.]); Smith et al. (2001[Smith, G., Bott, R. C. & Wermuth, U. D. (2001). Acta Cryst. E57, o640-o642.]); Jasinski et al. (2011[Jasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500-o501.]). For puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]); Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C26H29N2+·C7H3N2O7

  • Mr = 596.63

  • Monoclinic, P 21 /c

  • a = 14.5648 (3) Å

  • b = 12.9374 (3) Å

  • c = 16.1619 (3) Å

  • β = 103.900 (1)°

  • V = 2956.22 (11) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 200 K

  • 0.51 × 0.26 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.932, Tmax = 1.000

  • 29552 measured reflections

  • 7344 independent reflections

  • 6023 reflections with I > 2σ(I)

  • Rint = 0.015

Refinement
  • R[F2 > 2σ(F2)] = 0.051

  • wR(F2) = 0.148

  • S = 1.03

  • 7344 reflections

  • 401 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.35 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H71⋯O1i 0.89 (2) 1.99 (2) 2.8105 (18) 153.5 (17)
N1—H71⋯O2i 0.89 (2) 2.36 (2) 3.037 (2) 132.4 (16)
O7—H7⋯O1 0.84 1.75 2.507 (2) 149
C3—H3A⋯O6ii 0.99 2.40 3.341 (2) 160
C32—H32⋯O5 0.95 2.52 3.453 (2) 166
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2010[Bruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Cinnarizine is an antihistamine which is mainly used for the control of nausea and vomiting due to motion sickness. A clinical evaluation of cinnarizine in various allergic disorders is published (Barrett & Zolov, 1960). The crystal structures of some related compounds such as cyclizine hydrochloride (Bertolasi et al., 1980), guanidinium 3,5-dinitrosalicylate (Smith et al., 2001) and cinnarizine dipicrate (Jasinski et al., 2011) have been reported.

Deprotonation occurred at the phenolic hydroxy group while the carboxyl group remains in its protonated state. Protonation occurred on the nitrogen atom bearing the vinylic substituent. The 1,4-diazacyclohexane moiety adopts a 4C1 (N2CN1) conformation (Cremer & Pople, 1975). The least-squares planes defined by the carbon atoms of the aromatic moieties on the diphenylmethyl substituent enclose an angle of 66.06 (8)° and intersect with the plane defined by the phenyl group bonded to the vinylic substituent at angles of 16.76 (9)° and 72.01 (9)°, respectively. The least-squares planes defined by the individual phenyl groups of the cation enclose angles of 37.54 (9)°, 53.70 (8)° and 79.26 (8)° with the corresponding plane of the carboxylic acid (Fig. 1).

In the crystal, intramolecular O—H···O and intermolecular C—H···O and N—H···O hydrogen bonds in are observed. The N–H···O hydrogen bonds are bifurcated at H7. A graphical representation in terms of donor and acceptor atoms for a selection of these contacts is given in Figure 2. In terms of graph-set analysis, (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonds is S(6)DD on the unary level while the C–H···O contacts necessitate a DD descriptor on the same level. The C–H···O hydrogen bonds connect the components together into layers perpendicular to the crystallographic a axis (Fig. 2). The shortest intercentroid distance between two aromatic systems was measured at 4.2848 (11) Å and is apparent between the phenyl group conjugated to the vinylic system and the aromatic ring of the dinitrosalicylate anion.

Related literature top

For pharmaceutical background to cinnarizine, see: Barrett & Zolov (1960). For related structures, see: Bertolasi et al. (1980); Smith et al. (2001); Jasinski et al. (2011). For puckering analysis, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Experimental top

Cinnarizine (3.68 g, 0.01 mol) and 3,5-dinitrosalicylic acid (2.28 g, 0.01 mol) were dissolved in hot acetone and stirred over a heating magnetic stirrer for few minutes (330 K). The resulting solution was allowed to cool slowly at room temperature. The salt formed was filtered and dried in a vaccum desiccator over phosphorous pentoxide. The compound was recrystallized from a mixture of DMSO and acetonitrile (v:v = 1:1) by slow evaporation (m.p.: 383 K).

Refinement top

Carbon-bound H atoms were placed in calculated positions (C—H 0.95 Å for vinylic and aromatic C atoms, C—H 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2Ueq(C). The nitrogen-bound H atom was located on a difference Fourier map and their coordinates as well as isotropic displacement parameters were refined freely.

Structure description top

Cinnarizine is an antihistamine which is mainly used for the control of nausea and vomiting due to motion sickness. A clinical evaluation of cinnarizine in various allergic disorders is published (Barrett & Zolov, 1960). The crystal structures of some related compounds such as cyclizine hydrochloride (Bertolasi et al., 1980), guanidinium 3,5-dinitrosalicylate (Smith et al., 2001) and cinnarizine dipicrate (Jasinski et al., 2011) have been reported.

Deprotonation occurred at the phenolic hydroxy group while the carboxyl group remains in its protonated state. Protonation occurred on the nitrogen atom bearing the vinylic substituent. The 1,4-diazacyclohexane moiety adopts a 4C1 (N2CN1) conformation (Cremer & Pople, 1975). The least-squares planes defined by the carbon atoms of the aromatic moieties on the diphenylmethyl substituent enclose an angle of 66.06 (8)° and intersect with the plane defined by the phenyl group bonded to the vinylic substituent at angles of 16.76 (9)° and 72.01 (9)°, respectively. The least-squares planes defined by the individual phenyl groups of the cation enclose angles of 37.54 (9)°, 53.70 (8)° and 79.26 (8)° with the corresponding plane of the carboxylic acid (Fig. 1).

In the crystal, intramolecular O—H···O and intermolecular C—H···O and N—H···O hydrogen bonds in are observed. The N–H···O hydrogen bonds are bifurcated at H7. A graphical representation in terms of donor and acceptor atoms for a selection of these contacts is given in Figure 2. In terms of graph-set analysis, (Etter et al., 1990; Bernstein et al., 1995), the descriptor for the hydrogen bonds is S(6)DD on the unary level while the C–H···O contacts necessitate a DD descriptor on the same level. The C–H···O hydrogen bonds connect the components together into layers perpendicular to the crystallographic a axis (Fig. 2). The shortest intercentroid distance between two aromatic systems was measured at 4.2848 (11) Å and is apparent between the phenyl group conjugated to the vinylic system and the aromatic ring of the dinitrosalicylate anion.

For pharmaceutical background to cinnarizine, see: Barrett & Zolov (1960). For related structures, see: Bertolasi et al. (1980); Smith et al. (2001); Jasinski et al. (2011). For puckering analysis, see: Cremer & Pople (1975). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT (Bruker, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and anisotropic displacement ellipsoids (drawn at 50% probability level).
[Figure 2] Fig. 2. Intermolecular contacts, viewed approximately along [1 1 1]. For clarity, only a selection of intra- and intermolecular contacts is depicted. Yellow dashed lines denote intramolecular hydrogen bonds, blue dashed lines denote intermolecular hydrogen bonds and green dashed lines indicate C–H···O contacts. Symmetry operators: i -x + 1, -y + 1, -z + 1; ii -x + 1, y + 1/2, -z + 1/2.
4-diphenylmethyl-1-(3-phenylprop-2-en-1-yl)piperazin-1-ium 2-carboxy-4,6-dinitrophenolate top
Crystal data top
C26H29N2+·C7H3N2O7F(000) = 1256
Mr = 596.63Dx = 1.341 Mg m3
Monoclinic, P21/cMelting point: 383 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.5648 (3) ÅCell parameters from 9909 reflections
b = 12.9374 (3) Åθ = 2.3–28.3°
c = 16.1619 (3) ŵ = 0.10 mm1
β = 103.900 (1)°T = 200 K
V = 2956.22 (11) Å3Block, yellow
Z = 40.51 × 0.26 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
7344 independent reflections
Radiation source: fine-focus sealed tube6023 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
φ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1919
Tmin = 0.932, Tmax = 1.000k = 1717
29552 measured reflectionsl = 2115
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.070P)2 + 1.6929P]
where P = (Fo2 + 2Fc2)/3
7344 reflections(Δ/σ)max < 0.001
401 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C26H29N2+·C7H3N2O7V = 2956.22 (11) Å3
Mr = 596.63Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.5648 (3) ŵ = 0.10 mm1
b = 12.9374 (3) ÅT = 200 K
c = 16.1619 (3) Å0.51 × 0.26 × 0.17 mm
β = 103.900 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
7344 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
6023 reflections with I > 2σ(I)
Tmin = 0.932, Tmax = 1.000Rint = 0.015
29552 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0510 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.85 e Å3
7344 reflectionsΔρmin = 0.35 e Å3
401 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.25623 (8)0.71175 (10)0.31330 (8)0.0251 (2)
H710.2998 (14)0.6749 (15)0.3494 (13)0.034 (5)*
N20.10014 (8)0.56688 (9)0.26578 (7)0.0238 (2)
C10.29863 (11)0.95171 (13)0.41663 (10)0.0338 (3)
H1A0.24590.98120.37740.041*
C20.33475 (11)0.86690 (12)0.39167 (10)0.0326 (3)
H20.38690.83550.43010.039*
C30.29836 (12)0.81760 (12)0.30658 (10)0.0341 (3)
H3A0.35080.81100.27770.041*
H3B0.24950.86280.27110.041*
C40.17100 (10)0.71680 (12)0.34936 (10)0.0287 (3)
H4A0.12310.76290.31380.034*
H4B0.18890.74590.40770.034*
C50.12940 (10)0.61023 (12)0.35209 (9)0.0279 (3)
H5A0.17700.56440.38830.034*
H5B0.07410.61430.37750.034*
C60.18554 (10)0.55568 (12)0.23334 (9)0.0267 (3)
H6A0.16860.52360.17610.032*
H6B0.23100.50950.27160.032*
C70.23147 (11)0.65942 (12)0.22794 (9)0.0285 (3)
H7A0.28950.64970.20720.034*
H7B0.18770.70390.18660.034*
C80.05330 (9)0.46543 (11)0.26749 (9)0.0234 (3)
H80.09990.41780.30430.028*
C110.33137 (12)1.00538 (12)0.49873 (10)0.0328 (3)
C120.41578 (13)0.97939 (14)0.55689 (11)0.0393 (4)
H120.45490.92650.54320.047*
C130.44279 (15)1.03042 (18)0.63443 (12)0.0502 (5)
H130.49981.01150.67390.060*
C140.38744 (17)1.10827 (18)0.65452 (13)0.0555 (5)
H140.40681.14350.70740.067*
C150.30396 (16)1.13519 (17)0.59790 (14)0.0521 (5)
H150.26571.18870.61190.062*
C160.27599 (13)1.08397 (14)0.52044 (12)0.0407 (4)
H160.21841.10270.48170.049*
C210.03163 (10)0.47510 (11)0.30648 (9)0.0246 (3)
C220.04283 (11)0.40380 (12)0.36751 (10)0.0323 (3)
H220.00300.35090.38490.039*
C230.12068 (13)0.40914 (14)0.40346 (11)0.0397 (4)
H230.12750.36010.44540.048*
C240.18792 (12)0.48540 (14)0.37840 (12)0.0388 (4)
H240.24140.48850.40240.047*
C250.17702 (11)0.55719 (13)0.31830 (11)0.0352 (3)
H250.22310.60990.30110.042*
C260.09910 (10)0.55295 (12)0.28272 (10)0.0294 (3)
H260.09180.60330.24200.035*
C310.02530 (10)0.41884 (11)0.17808 (9)0.0251 (3)
C320.06680 (12)0.32722 (12)0.16047 (11)0.0337 (3)
H320.11220.29370.20440.040*
C330.04250 (13)0.28413 (13)0.07907 (12)0.0394 (4)
H330.07190.22200.06760.047*
C340.02374 (13)0.33119 (14)0.01544 (11)0.0386 (4)
H340.04000.30190.04010.046*
C350.06687 (13)0.42141 (15)0.03242 (10)0.0390 (4)
H350.11380.45320.01120.047*
C360.04164 (11)0.46560 (13)0.11309 (10)0.0322 (3)
H360.07050.52840.12390.039*
O10.63343 (8)0.37345 (10)0.53526 (8)0.0398 (3)
O20.58174 (10)0.44031 (15)0.67150 (9)0.0619 (4)
O30.43582 (10)0.48104 (13)0.65686 (9)0.0557 (4)
O40.19460 (9)0.32142 (13)0.44738 (11)0.0578 (4)
O50.22771 (11)0.24235 (14)0.34093 (10)0.0635 (4)
O60.54743 (11)0.23538 (12)0.30218 (9)0.0525 (4)
O70.66612 (10)0.28953 (12)0.40548 (10)0.0517 (4)
H70.67360.30610.45690.078*
N30.49860 (10)0.43821 (12)0.63196 (9)0.0388 (3)
N40.25126 (10)0.29137 (13)0.40744 (10)0.0436 (4)
C90.57578 (13)0.27360 (14)0.37134 (12)0.0402 (4)
C410.54463 (10)0.35631 (12)0.50730 (10)0.0305 (3)
C420.50991 (11)0.30575 (12)0.42633 (10)0.0321 (3)
C430.41582 (12)0.28489 (13)0.39505 (10)0.0332 (3)
H430.39510.25010.34210.040*
C440.35102 (11)0.31446 (12)0.44044 (10)0.0318 (3)
C450.37853 (11)0.36483 (12)0.51759 (10)0.0310 (3)
H450.33290.38560.54760.037*
C460.47329 (11)0.38454 (12)0.55055 (10)0.0297 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0223 (6)0.0289 (6)0.0240 (6)0.0037 (5)0.0053 (5)0.0023 (5)
N20.0211 (5)0.0270 (6)0.0237 (5)0.0032 (4)0.0064 (4)0.0032 (4)
C10.0304 (7)0.0359 (8)0.0317 (8)0.0039 (6)0.0011 (6)0.0002 (6)
C20.0314 (7)0.0309 (7)0.0331 (8)0.0073 (6)0.0030 (6)0.0005 (6)
C30.0400 (8)0.0311 (8)0.0322 (8)0.0112 (6)0.0105 (6)0.0016 (6)
C40.0231 (6)0.0334 (7)0.0307 (7)0.0026 (5)0.0087 (6)0.0078 (6)
C50.0251 (7)0.0345 (7)0.0254 (7)0.0053 (6)0.0083 (5)0.0053 (6)
C60.0240 (6)0.0307 (7)0.0272 (7)0.0035 (5)0.0095 (5)0.0048 (5)
C70.0287 (7)0.0342 (7)0.0235 (6)0.0061 (6)0.0080 (5)0.0042 (6)
C80.0205 (6)0.0252 (6)0.0246 (6)0.0003 (5)0.0058 (5)0.0008 (5)
C110.0354 (8)0.0313 (7)0.0310 (7)0.0078 (6)0.0064 (6)0.0001 (6)
C120.0396 (9)0.0414 (9)0.0344 (8)0.0059 (7)0.0040 (7)0.0005 (7)
C130.0517 (11)0.0614 (12)0.0325 (9)0.0141 (9)0.0000 (8)0.0007 (8)
C140.0685 (14)0.0629 (13)0.0365 (9)0.0230 (11)0.0154 (9)0.0156 (9)
C150.0600 (12)0.0464 (11)0.0552 (12)0.0103 (9)0.0244 (10)0.0147 (9)
C160.0402 (9)0.0359 (8)0.0456 (9)0.0052 (7)0.0095 (7)0.0041 (7)
C210.0217 (6)0.0264 (6)0.0253 (6)0.0019 (5)0.0052 (5)0.0023 (5)
C220.0320 (7)0.0331 (8)0.0340 (8)0.0033 (6)0.0120 (6)0.0052 (6)
C230.0436 (9)0.0399 (9)0.0423 (9)0.0008 (7)0.0236 (8)0.0059 (7)
C240.0347 (8)0.0390 (9)0.0497 (10)0.0022 (7)0.0241 (7)0.0077 (7)
C250.0279 (7)0.0339 (8)0.0446 (9)0.0044 (6)0.0105 (6)0.0057 (7)
C260.0281 (7)0.0280 (7)0.0325 (7)0.0014 (6)0.0084 (6)0.0003 (6)
C310.0231 (6)0.0258 (6)0.0279 (7)0.0047 (5)0.0089 (5)0.0018 (5)
C320.0337 (8)0.0301 (7)0.0373 (8)0.0019 (6)0.0084 (6)0.0025 (6)
C330.0452 (9)0.0304 (8)0.0451 (9)0.0014 (7)0.0156 (8)0.0096 (7)
C340.0467 (9)0.0383 (9)0.0322 (8)0.0107 (7)0.0122 (7)0.0100 (7)
C350.0401 (9)0.0457 (9)0.0285 (8)0.0005 (7)0.0031 (7)0.0022 (7)
C360.0321 (7)0.0341 (8)0.0300 (7)0.0026 (6)0.0066 (6)0.0019 (6)
O10.0252 (5)0.0475 (7)0.0449 (7)0.0019 (5)0.0047 (5)0.0070 (5)
O20.0369 (7)0.0965 (13)0.0456 (8)0.0019 (7)0.0034 (6)0.0231 (8)
O30.0473 (8)0.0700 (10)0.0462 (8)0.0148 (7)0.0041 (6)0.0177 (7)
O40.0247 (6)0.0743 (10)0.0719 (10)0.0057 (6)0.0065 (6)0.0004 (8)
O50.0467 (8)0.0779 (11)0.0535 (9)0.0096 (8)0.0122 (7)0.0138 (8)
O60.0609 (9)0.0615 (9)0.0405 (7)0.0067 (7)0.0230 (7)0.0021 (6)
O70.0400 (7)0.0633 (9)0.0579 (8)0.0010 (6)0.0236 (6)0.0020 (7)
N30.0367 (7)0.0409 (8)0.0361 (7)0.0042 (6)0.0037 (6)0.0025 (6)
N40.0309 (7)0.0474 (9)0.0452 (8)0.0006 (6)0.0051 (6)0.0038 (7)
C90.0398 (9)0.0360 (8)0.0489 (10)0.0046 (7)0.0188 (8)0.0090 (7)
C410.0246 (7)0.0280 (7)0.0373 (8)0.0023 (5)0.0045 (6)0.0099 (6)
C420.0336 (8)0.0300 (7)0.0354 (8)0.0049 (6)0.0135 (6)0.0076 (6)
C430.0378 (8)0.0321 (8)0.0287 (7)0.0010 (6)0.0059 (6)0.0027 (6)
C440.0245 (7)0.0338 (8)0.0338 (8)0.0008 (6)0.0003 (6)0.0030 (6)
C450.0261 (7)0.0327 (7)0.0341 (8)0.0058 (6)0.0069 (6)0.0022 (6)
C460.0292 (7)0.0287 (7)0.0286 (7)0.0025 (6)0.0018 (6)0.0018 (6)
Geometric parameters (Å, º) top
N1—C41.4940 (18)C22—C231.395 (2)
N1—C71.5009 (18)C22—H220.9500
N1—C31.5151 (19)C23—C241.381 (3)
N1—H710.89 (2)C23—H230.9500
N2—C61.4683 (17)C24—C251.380 (3)
N2—C51.4685 (17)C24—H240.9500
N2—C81.4826 (17)C25—C261.391 (2)
C1—C21.321 (2)C25—H250.9500
C1—C111.472 (2)C26—H260.9500
C1—H1A0.9500C31—C361.388 (2)
C2—C31.493 (2)C31—C321.391 (2)
C2—H20.9500C32—C331.394 (2)
C3—H3A0.9900C32—H320.9500
C3—H3B0.9900C33—C341.372 (3)
C4—C51.511 (2)C33—H330.9500
C4—H4A0.9900C34—C351.384 (3)
C4—H4B0.9900C34—H340.9500
C5—H5A0.9900C35—C361.390 (2)
C5—H5B0.9900C35—H350.9500
C6—C71.511 (2)C36—H360.9500
C6—H6A0.9900O1—C411.2826 (19)
C6—H6B0.9900O2—N31.226 (2)
C7—H7A0.9900O3—N31.217 (2)
C7—H7B0.9900O4—N41.227 (2)
C8—C211.5224 (18)O5—N41.224 (2)
C8—C311.5279 (19)O6—C91.201 (2)
C8—H81.0000O7—C91.315 (2)
C11—C161.394 (2)O7—H70.8399
C11—C121.397 (2)N3—C461.455 (2)
C12—C131.387 (3)N4—C441.453 (2)
C12—H120.9500C9—C421.514 (2)
C13—C141.377 (3)C41—C461.432 (2)
C13—H130.9500C41—C421.442 (2)
C14—C151.379 (3)C42—C431.369 (2)
C14—H140.9500C43—C441.381 (2)
C15—C161.388 (3)C43—H430.9500
C15—H150.9500C44—C451.378 (2)
C16—H160.9500C45—C461.379 (2)
C21—C221.388 (2)C45—H450.9500
C21—C261.395 (2)
C4—N1—C7109.85 (11)C15—C16—H16119.6
C4—N1—C3112.16 (12)C11—C16—H16119.6
C7—N1—C3110.73 (11)C22—C21—C26118.69 (13)
C4—N1—H71107.2 (12)C22—C21—C8119.03 (13)
C7—N1—H71109.6 (12)C26—C21—C8122.28 (13)
C3—N1—H71107.1 (13)C21—C22—C23120.60 (15)
C6—N2—C5107.43 (11)C21—C22—H22119.7
C6—N2—C8110.63 (11)C23—C22—H22119.7
C5—N2—C8110.50 (11)C24—C23—C22120.24 (15)
C2—C1—C11126.91 (15)C24—C23—H23119.9
C2—C1—H1A116.5C22—C23—H23119.9
C11—C1—H1A116.5C25—C24—C23119.60 (14)
C1—C2—C3123.84 (15)C25—C24—H24120.2
C1—C2—H2118.1C23—C24—H24120.2
C3—C2—H2118.1C24—C25—C26120.50 (15)
C2—C3—N1112.36 (12)C24—C25—H25119.8
C2—C3—H3A109.1C26—C25—H25119.8
N1—C3—H3A109.1C25—C26—C21120.35 (14)
C2—C3—H3B109.1C25—C26—H26119.8
N1—C3—H3B109.1C21—C26—H26119.8
H3A—C3—H3B107.9C36—C31—C32118.51 (14)
N1—C4—C5110.38 (12)C36—C31—C8121.53 (13)
N1—C4—H4A109.6C32—C31—C8119.96 (13)
C5—C4—H4A109.6C31—C32—C33120.64 (15)
N1—C4—H4B109.6C31—C32—H32119.7
C5—C4—H4B109.6C33—C32—H32119.7
H4A—C4—H4B108.1C34—C33—C32120.22 (16)
N2—C5—C4110.34 (12)C34—C33—H33119.9
N2—C5—H5A109.6C32—C33—H33119.9
C4—C5—H5A109.6C33—C34—C35119.77 (15)
N2—C5—H5B109.6C33—C34—H34120.1
C4—C5—H5B109.6C35—C34—H34120.1
H5A—C5—H5B108.1C34—C35—C36120.18 (16)
N2—C6—C7110.95 (12)C34—C35—H35119.9
N2—C6—H6A109.4C36—C35—H35119.9
C7—C6—H6A109.4C31—C36—C35120.65 (15)
N2—C6—H6B109.4C31—C36—H36119.7
C7—C6—H6B109.4C35—C36—H36119.7
H6A—C6—H6B108.0C9—O7—H7109.5
N1—C7—C6111.07 (11)O3—N3—O2122.94 (16)
N1—C7—H7A109.4O3—N3—C46117.98 (14)
C6—C7—H7A109.4O2—N3—C46119.07 (14)
N1—C7—H7B109.4O5—N4—O4122.97 (16)
C6—C7—H7B109.4O5—N4—C44118.25 (16)
H7A—C7—H7B108.0O4—N4—C44118.78 (15)
N2—C8—C21110.99 (11)O6—C9—O7122.73 (17)
N2—C8—C31110.55 (11)O6—C9—C42122.32 (17)
C21—C8—C31111.42 (11)O7—C9—C42114.95 (16)
N2—C8—H8107.9O1—C41—C46124.92 (15)
C21—C8—H8107.9O1—C41—C42120.16 (15)
C31—C8—H8107.9C46—C41—C42114.92 (13)
C16—C11—C12118.36 (16)C43—C42—C41121.77 (14)
C16—C11—C1119.29 (15)C43—C42—C9116.64 (15)
C12—C11—C1122.35 (16)C41—C42—C9121.59 (15)
C13—C12—C11120.39 (18)C42—C43—C44120.03 (15)
C13—C12—H12119.8C42—C43—H43120.0
C11—C12—H12119.8C44—C43—H43120.0
C14—C13—C12120.41 (19)C45—C44—C43121.62 (14)
C14—C13—H13119.8C45—C44—N4118.47 (15)
C12—C13—H13119.8C43—C44—N4119.91 (15)
C13—C14—C15120.06 (18)C44—C45—C46118.90 (14)
C13—C14—H14120.0C44—C45—H45120.5
C15—C14—H14120.0C46—C45—H45120.5
C14—C15—C16119.9 (2)C45—C46—C41122.74 (14)
C14—C15—H15120.0C45—C46—N3116.77 (14)
C16—C15—H15120.0C41—C46—N3120.48 (14)
C15—C16—C11120.85 (18)
C11—C1—C2—C3179.12 (15)N2—C8—C31—C3664.73 (17)
C1—C2—C3—N1114.54 (17)C21—C8—C31—C3659.19 (17)
C4—N1—C3—C263.88 (17)N2—C8—C31—C32115.63 (14)
C7—N1—C3—C2173.02 (13)C21—C8—C31—C32120.45 (14)
C7—N1—C4—C554.46 (16)C36—C31—C32—C330.8 (2)
C3—N1—C4—C5178.06 (12)C8—C31—C32—C33179.55 (14)
C6—N2—C5—C463.12 (15)C31—C32—C33—C340.8 (3)
C8—N2—C5—C4176.12 (11)C32—C33—C34—C350.4 (3)
N1—C4—C5—N260.74 (15)C33—C34—C35—C361.5 (3)
C5—N2—C6—C761.67 (15)C32—C31—C36—C350.3 (2)
C8—N2—C6—C7177.64 (11)C8—C31—C36—C35179.31 (14)
C4—N1—C7—C653.14 (16)C34—C35—C36—C311.5 (3)
C3—N1—C7—C6177.57 (12)O1—C41—C42—C43179.06 (15)
N2—C6—C7—N157.82 (16)C46—C41—C42—C431.4 (2)
C6—N2—C8—C21176.26 (11)O1—C41—C42—C91.3 (2)
C5—N2—C8—C2157.42 (14)C46—C41—C42—C9178.26 (14)
C6—N2—C8—C3159.58 (14)O6—C9—C42—C432.9 (2)
C5—N2—C8—C31178.42 (11)O7—C9—C42—C43176.34 (15)
C2—C1—C11—C16169.51 (17)O6—C9—C42—C41176.79 (16)
C2—C1—C11—C129.5 (3)O7—C9—C42—C414.0 (2)
C16—C11—C12—C130.5 (3)C41—C42—C43—C441.4 (2)
C1—C11—C12—C13178.46 (16)C9—C42—C43—C44178.21 (14)
C11—C12—C13—C140.9 (3)C42—C43—C44—C450.2 (2)
C12—C13—C14—C150.8 (3)C42—C43—C44—N4179.44 (15)
C13—C14—C15—C160.3 (3)O5—N4—C44—C45176.60 (17)
C14—C15—C16—C110.1 (3)O4—N4—C44—C453.2 (2)
C12—C11—C16—C150.0 (3)O5—N4—C44—C432.7 (2)
C1—C11—C16—C15179.02 (17)O4—N4—C44—C43177.57 (16)
N2—C8—C21—C22133.38 (14)C43—C44—C45—C461.0 (2)
C31—C8—C21—C22102.95 (15)N4—C44—C45—C46178.23 (14)
N2—C8—C21—C2646.96 (17)C44—C45—C46—C411.0 (2)
C31—C8—C21—C2676.71 (17)C44—C45—C46—N3179.78 (14)
C26—C21—C22—C230.8 (2)O1—C41—C46—C45179.67 (15)
C8—C21—C22—C23178.82 (15)C42—C41—C46—C450.1 (2)
C21—C22—C23—C240.3 (3)O1—C41—C46—N31.0 (2)
C22—C23—C24—C250.8 (3)C42—C41—C46—N3178.57 (13)
C23—C24—C25—C260.2 (3)O3—N3—C46—C4515.1 (2)
C24—C25—C26—C210.9 (2)O2—N3—C46—C45166.34 (17)
C22—C21—C26—C251.4 (2)O3—N3—C46—C41163.64 (16)
C8—C21—C26—C25178.21 (14)O2—N3—C46—C4114.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O1i0.89 (2)1.99 (2)2.8105 (18)153.5 (17)
N1—H71···O2i0.89 (2)2.36 (2)3.037 (2)132.4 (16)
O7—H7···O10.841.752.507 (2)149
C3—H3A···O6ii0.992.403.341 (2)160
C32—H32···O50.952.523.453 (2)166
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC26H29N2+·C7H3N2O7
Mr596.63
Crystal system, space groupMonoclinic, P21/c
Temperature (K)200
a, b, c (Å)14.5648 (3), 12.9374 (3), 16.1619 (3)
β (°) 103.900 (1)
V3)2956.22 (11)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.51 × 0.26 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.932, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
29552, 7344, 6023
Rint0.015
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.051, 0.148, 1.03
No. of reflections7344
No. of parameters401
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.35

Computer programs: APEX2 (Bruker, 2010), SAINT (Bruker, 2010), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H71···O1i0.89 (2)1.99 (2)2.8105 (18)153.5 (17)
N1—H71···O2i0.89 (2)2.36 (2)3.037 (2)132.4 (16)
O7—H7···O10.841.752.507 (2)149.0
C3—H3A···O6ii0.992.403.341 (2)159.5
C32—H32···O50.952.523.453 (2)166.3
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+1/2, z+1/2.
 

Acknowledgements

ASD thanks University of Mysore for research facilities

References

First citationBarrett, R. J. & Zolov, B. (1960). J. Maine Med. Assoc. 51, 454–457.  PubMed Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBertolasi, V., Borea, P. A., Gilli, G. & Sacerdoti, M. (1980). Acta Cryst. B36, 1975–1977.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationBruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2010). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJasinski, J. P., Butcher, R. J., Siddegowda, M. S., Yathirajan, H. S. & Chidan Kumar, C. S. (2011). Acta Cryst. E67, o500–o501.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith, G., Bott, R. C. & Wermuth, U. D. (2001). Acta Cryst. E57, o640–o642.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds