organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-(Prop-2-yn­yl)-5H-dibenzo[b,f]azepine

aHEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 26 January 2012; accepted 21 February 2012; online 17 March 2012)

The asymmetric unit of the title compound, C17H13N, contains two independent butterfly-shaped mol­ecules. The seven-membered azepine rings both adopt a boat conformation. The dihedral angles between the benzene rings in the two mol­ecules are 46.95 (11) and 52.21 (11)°.

Related literature

For the biological activities of imino­stilbene, see: Kumar & Naik (2010[Kumar, H. V. & Naik, N. (2010). Eur. J. Med. Chem. 45, 2-10.]); Balaure et al. (2009[Balaure, P. C., Costea, I., Iordache, F., Draghichi, C. & Enache, C. (2009). Rev. Roum. Chem. 54, 935-942.]); Bhatt & Patel (2005[Bhatt, P. V. & Patel, P. M. (2005). Indian J. Chem. Sect. B, 44, 2082-2086.]); Fuenfschilling et al. (2005[Fuenfschilling, P. C., Zangg, W., Beutler, U., Kaufmann, D., Lohse, O., Mutz, J.-P., Onken, U., Reber, J.-L. & Shenton, D. (2005). Org. Process Res. Dev. 9, 272-277.]); Rosowsky et al. (2004[Rosowsky, A., Fu, H., Chan, D. C. & Queener, S. F. (2004). J. Med. Chem. 47, 2475-2485.]); Brzozowski & Saczewski (2002[Brzozowski, Z. & Saczewski, F. (2002). J. Med. Chem. 45, 430-437.]); Kulkarni et al. (1991[Kulkarni, G. H., Naik, R. H., Tandel, S. K. & Rajappa, S. (1991). Tetrahedron, 47, 1249-1256.]); Arya et al. (1977[Arya, V. P., Grewal, R. S., Kaul, C. L., David, J., Shenoy, S. J. & Honkan, V. (1977). Indian J. Chem. Sect. B, 15, 148-153.]). For the crystal structures of the closely related compounds, see: Jayasankar et al. (2009[Jayasankar, A., Reddy, L. S., Bethune, S. J. & Rodriguez-Hornedo, N. (2009). Cryst. Growth Des. 9, 889-897.]); Nagaraj et al. (2005[Nagaraj, B., Yathirajan, H. S. & Lynch, D. E. (2005). Acta Cryst. E61, o1757-o1759.]); Sadashiva et al. (2005[Sadashiva, M. P., Doreswamy, B. H., Basappa, Rangappa, K. S., Sridhar, M. A. & Prasad, J. (2005). J. Chem. Crystallogr. 35, 171-175.]).

[Scheme 1]

Experimental

Crystal data
  • C17H13N

  • Mr = 231.28

  • Monoclinic, P 21 /c

  • a = 11.4406 (5) Å

  • b = 10.0256 (4) Å

  • c = 22.3155 (10) Å

  • β = 92.910 (1)°

  • V = 2556.26 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 273 K

  • 0.36 × 0.19 × 0.15 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.975, Tmax = 0.990

  • 14791 measured reflections

  • 4760 independent reflections

  • 2894 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.129

  • S = 1.02

  • 4760 reflections

  • 333 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.13 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL, PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Iminostilbene (5H-dibenzo[b,f]azepine) was found to be a valuable intermediate in medicinal chemistry. It is also a basic nucleus of many anticonvulsant drugs including carbamazepine (Balaure et al., 2009), oxazepine (Fuenfschilling et al., 2005) and imipramine (Bhatt & Patel, 2005). The structural analogue of iminostilbene showed a wide range of biological activities such as antioxidant (Kumar & Naik, 2010), antihypertensive (Arya et al., 1977), antitumor (Brzozowski & Saczewski, 2002), pesticidal (Kulkarni et al., 1991), and DHFR inhibitory activity (Rosowsky et al., 2004). The title compound was synthesized as part of our ongoing research on the synthesis of new derivatives of iminostilbene as potential anti-epileptic agents with more efficacy, low toxicity and no side effects as compared to the available drugs (Sadashiva et al., 2005).

The structure of the title compound contains two independent molecules in the asymmetric unit (Fig. 1). Each molecule is consists of two phenyl rings fused to a seven-membered azepine ring adopting a boat conformation. The overall shape of each molecule is butterfly-like. The dihedral angles between the phenyl rings are 46.95 (11) and 52.21 (11)° for C1–C5/C14, C6–C11 and C18–C22/C31, C23–C28, respectively. The bond lengths and angles are found to be similar to those observed in other structurally related compounds (Jayasankar et al., 2009; Nagaraj et al., 2005; Sadashiva et al., 2005). The crystal packing (Fig. 2) is enforced only by van der Waals forces.

Related literature top

For the biological activities of iminostilbene, see: Kumar & Naik (2010); Balaure et al. (2009); Bhatt & Patel (2005); Fuenfschilling et al. (2005); Rosowsky et al. (2004); Brzozowski & Saczewski (2002); Kulkarni et al. (1991); Arya et al. (1977). For the crystal structures of the closely related compounds, see: Jayasankar et al. (2009); Nagaraj et al. (2005); Sadashiva et al. (2005).

Experimental top

To the stirred solution of iminostilbene (0.2921 g, 1.5 mmol) in DMF (3.0 mL), propargyl bromide (0.41 ml, 4.5 mmol) and potassium carbonate (0.418 ml, 3.02 mmol) were added and refluxed for 15 h at 90°C. After completion of the reaction reaction as judged by TLC, the crude mixture was adsorbed on silica and purified by column chromatography (eluent: n-hexane:ethyl acetate, 9.5:0.5 v/v) to obtain the title compound in 77% yield. Recrystallization by slow evaporation of a methanol solution afforded yellow crystals suitable for single-crystal X-ray diffraction studies. Iminostilbene and propargyl bromide were purchased from Alfa Acer and Aldrich, respectively.

Refinement top

Aromatic, methine and methylene H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(CH). The hydrogen of the acetylene groups (C–H= 0.91 (2) and 0.92 (3) Å) were located in difference Fourier maps and refined isotropically.

Structure description top

Iminostilbene (5H-dibenzo[b,f]azepine) was found to be a valuable intermediate in medicinal chemistry. It is also a basic nucleus of many anticonvulsant drugs including carbamazepine (Balaure et al., 2009), oxazepine (Fuenfschilling et al., 2005) and imipramine (Bhatt & Patel, 2005). The structural analogue of iminostilbene showed a wide range of biological activities such as antioxidant (Kumar & Naik, 2010), antihypertensive (Arya et al., 1977), antitumor (Brzozowski & Saczewski, 2002), pesticidal (Kulkarni et al., 1991), and DHFR inhibitory activity (Rosowsky et al., 2004). The title compound was synthesized as part of our ongoing research on the synthesis of new derivatives of iminostilbene as potential anti-epileptic agents with more efficacy, low toxicity and no side effects as compared to the available drugs (Sadashiva et al., 2005).

The structure of the title compound contains two independent molecules in the asymmetric unit (Fig. 1). Each molecule is consists of two phenyl rings fused to a seven-membered azepine ring adopting a boat conformation. The overall shape of each molecule is butterfly-like. The dihedral angles between the phenyl rings are 46.95 (11) and 52.21 (11)° for C1–C5/C14, C6–C11 and C18–C22/C31, C23–C28, respectively. The bond lengths and angles are found to be similar to those observed in other structurally related compounds (Jayasankar et al., 2009; Nagaraj et al., 2005; Sadashiva et al., 2005). The crystal packing (Fig. 2) is enforced only by van der Waals forces.

For the biological activities of iminostilbene, see: Kumar & Naik (2010); Balaure et al. (2009); Bhatt & Patel (2005); Fuenfschilling et al. (2005); Rosowsky et al. (2004); Brzozowski & Saczewski (2002); Kulkarni et al. (1991); Arya et al. (1977). For the crystal structures of the closely related compounds, see: Jayasankar et al. (2009); Nagaraj et al. (2005); Sadashiva et al. (2005).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the a axis.
5-(Prop-2-ynyl)-5H-dibenzo[b,f]azepine top
Crystal data top
C17H13NF(000) = 976
Mr = 231.28Dx = 1.202 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2353 reflections
a = 11.4406 (5) Åθ = 2.5–20.5°
b = 10.0256 (4) ŵ = 0.07 mm1
c = 22.3155 (10) ÅT = 273 K
β = 92.910 (1)°Block, yellow
V = 2556.26 (19) Å30.36 × 0.19 × 0.15 mm
Z = 8
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4760 independent reflections
Radiation source: fine-focus sealed tube2894 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scanθmax = 25.5°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1313
Tmin = 0.975, Tmax = 0.990k = 1212
14791 measured reflectionsl = 2527
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0567P)2 + 0.1752P]
where P = (Fo2 + 2Fc2)/3
4760 reflections(Δ/σ)max < 0.001
333 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C17H13NV = 2556.26 (19) Å3
Mr = 231.28Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.4406 (5) ŵ = 0.07 mm1
b = 10.0256 (4) ÅT = 273 K
c = 22.3155 (10) Å0.36 × 0.19 × 0.15 mm
β = 92.910 (1)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4760 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2894 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.990Rint = 0.031
14791 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.129H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.13 e Å3
4760 reflectionsΔρmin = 0.17 e Å3
333 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35570 (12)0.40653 (14)0.17436 (6)0.0525 (4)
N20.10076 (12)0.57540 (14)0.14279 (7)0.0564 (4)
C10.3841 (3)0.1387 (3)0.06172 (12)0.0989 (9)
H1A0.35220.05560.05200.119*
C20.4688 (3)0.1918 (4)0.02656 (12)0.1181 (13)
H2A0.49350.14470.00640.142*
C30.5156 (3)0.3127 (4)0.04036 (12)0.1084 (10)
H3A0.57140.34900.01620.130*
C40.4818 (2)0.3821 (2)0.08950 (10)0.0771 (6)
H4A0.51610.46420.09880.092*
C50.39677 (17)0.33144 (19)0.12571 (8)0.0578 (5)
C60.37342 (15)0.35079 (17)0.23312 (8)0.0514 (5)
C70.44563 (17)0.4125 (2)0.27675 (9)0.0643 (5)
H7A0.49140.48480.26640.077*
C80.4501 (2)0.3673 (2)0.33551 (10)0.0757 (6)
H8A0.49800.40990.36450.091*
C90.3841 (2)0.2598 (2)0.35101 (10)0.0780 (6)
H9A0.38520.23060.39060.094*
C100.31622 (19)0.1957 (2)0.30754 (10)0.0707 (6)
H10A0.27310.12150.31810.085*
C110.30968 (16)0.23809 (18)0.24806 (9)0.0570 (5)
C120.2357 (2)0.1663 (2)0.20414 (11)0.0782 (7)
H12A0.16950.12540.21830.094*
C130.2524 (2)0.1527 (2)0.14597 (12)0.0834 (7)
H13A0.19740.10100.12440.100*
C140.3450 (2)0.2079 (2)0.11208 (9)0.0697 (6)
C150.36741 (17)0.55153 (18)0.17127 (9)0.0644 (5)
H15A0.33420.59120.20620.077*
H15B0.44980.57480.17200.077*
C160.30875 (19)0.6063 (2)0.11707 (10)0.0678 (6)
C170.2623 (2)0.6535 (3)0.07470 (13)0.0897 (8)
H17A0.224 (2)0.690 (3)0.0417 (11)0.125 (10)*
C180.2287 (2)0.8931 (2)0.08634 (13)0.0902 (8)
H18A0.29080.94940.09400.108*
C190.1591 (3)0.9229 (3)0.04040 (14)0.1062 (10)
H19A0.17340.99930.01750.127*
C200.0687 (3)0.8409 (3)0.02805 (11)0.0979 (9)
H20A0.02090.86130.00320.117*
C210.0478 (2)0.7265 (2)0.06211 (10)0.0759 (6)
H21A0.01350.67010.05330.091*
C220.11748 (17)0.69593 (18)0.10896 (9)0.0576 (5)
C230.05986 (16)0.59232 (17)0.20371 (8)0.0535 (5)
C240.04889 (18)0.5457 (2)0.22448 (10)0.0688 (6)
H24A0.09930.50920.19750.083*
C250.0833 (2)0.5525 (2)0.28392 (11)0.0818 (7)
H25A0.15620.51980.29710.098*
C260.0107 (3)0.6074 (2)0.32395 (11)0.0859 (7)
H26A0.03420.61220.36440.103*
C270.0972 (2)0.65544 (19)0.30433 (10)0.0769 (6)
H27A0.14620.69260.33190.092*
C280.13471 (17)0.64939 (17)0.24365 (9)0.0591 (5)
C290.25089 (19)0.6983 (2)0.22446 (11)0.0739 (6)
H29A0.30910.68910.25180.089*
C300.28259 (18)0.7546 (2)0.17196 (12)0.0773 (7)
H30A0.36050.78050.16670.093*
C310.20917 (18)0.78001 (19)0.12236 (10)0.0645 (6)
C320.05539 (18)0.45998 (19)0.11137 (9)0.0681 (6)
H32A0.04500.38600.13910.082*
H32B0.02030.48170.09630.082*
C330.1359 (2)0.4210 (2)0.06140 (10)0.0707 (6)
C340.2009 (3)0.3889 (3)0.02264 (13)0.0962 (8)
H34A0.252 (3)0.361 (3)0.0083 (13)0.148 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0636 (9)0.0430 (8)0.0517 (9)0.0030 (7)0.0095 (7)0.0013 (7)
N20.0611 (9)0.0493 (9)0.0591 (10)0.0075 (7)0.0062 (8)0.0061 (8)
C10.149 (3)0.0786 (17)0.0660 (17)0.0438 (17)0.0289 (17)0.0157 (14)
C20.164 (3)0.136 (3)0.0529 (17)0.089 (3)0.0006 (19)0.0074 (19)
C30.109 (2)0.149 (3)0.0688 (18)0.068 (2)0.0261 (15)0.0170 (19)
C40.0741 (14)0.0982 (16)0.0600 (14)0.0252 (13)0.0154 (12)0.0100 (13)
C50.0647 (12)0.0612 (12)0.0474 (11)0.0154 (10)0.0010 (10)0.0009 (10)
C60.0530 (10)0.0502 (10)0.0516 (11)0.0057 (9)0.0095 (9)0.0038 (9)
C70.0680 (12)0.0599 (12)0.0651 (13)0.0002 (10)0.0047 (11)0.0076 (10)
C80.0884 (16)0.0767 (15)0.0608 (14)0.0191 (13)0.0061 (12)0.0133 (12)
C90.0987 (17)0.0787 (15)0.0577 (14)0.0303 (14)0.0149 (13)0.0067 (12)
C100.0766 (14)0.0637 (13)0.0734 (15)0.0110 (11)0.0211 (12)0.0151 (11)
C110.0597 (11)0.0499 (10)0.0621 (12)0.0041 (9)0.0102 (10)0.0060 (9)
C120.0802 (15)0.0585 (12)0.0955 (18)0.0184 (11)0.0002 (14)0.0123 (12)
C130.1049 (18)0.0552 (13)0.0867 (18)0.0142 (12)0.0278 (16)0.0035 (12)
C140.0937 (16)0.0578 (12)0.0560 (13)0.0169 (12)0.0129 (12)0.0048 (11)
C150.0732 (13)0.0506 (11)0.0703 (14)0.0054 (10)0.0119 (11)0.0018 (10)
C160.0720 (13)0.0571 (12)0.0759 (15)0.0036 (11)0.0207 (12)0.0087 (11)
C170.0928 (18)0.0917 (18)0.0863 (19)0.0256 (14)0.0204 (15)0.0225 (15)
C180.0917 (18)0.0600 (14)0.114 (2)0.0077 (13)0.0405 (17)0.0088 (15)
C190.134 (3)0.0695 (17)0.109 (2)0.0161 (18)0.051 (2)0.0141 (16)
C200.124 (2)0.0891 (18)0.0779 (17)0.0395 (18)0.0167 (16)0.0164 (15)
C210.0812 (15)0.0737 (15)0.0724 (15)0.0120 (12)0.0008 (13)0.0028 (12)
C220.0572 (12)0.0541 (11)0.0604 (13)0.0046 (10)0.0070 (10)0.0053 (10)
C230.0578 (11)0.0430 (10)0.0599 (12)0.0061 (9)0.0051 (10)0.0001 (9)
C240.0649 (13)0.0697 (13)0.0716 (14)0.0026 (10)0.0015 (11)0.0085 (11)
C250.0873 (16)0.0726 (15)0.0835 (17)0.0015 (13)0.0152 (14)0.0139 (13)
C260.124 (2)0.0647 (14)0.0671 (15)0.0149 (15)0.0145 (16)0.0056 (12)
C270.1099 (19)0.0537 (12)0.0688 (15)0.0136 (13)0.0202 (14)0.0115 (11)
C280.0664 (13)0.0448 (10)0.0671 (13)0.0103 (9)0.0126 (11)0.0090 (9)
C290.0647 (14)0.0627 (13)0.0965 (18)0.0107 (11)0.0263 (13)0.0264 (13)
C300.0504 (12)0.0679 (14)0.113 (2)0.0065 (11)0.0060 (14)0.0334 (14)
C310.0581 (12)0.0525 (12)0.0811 (15)0.0037 (10)0.0157 (12)0.0121 (11)
C320.0734 (13)0.0601 (12)0.0718 (14)0.0131 (11)0.0123 (11)0.0080 (11)
C330.0866 (15)0.0601 (13)0.0671 (14)0.0002 (11)0.0198 (13)0.0117 (11)
C340.111 (2)0.0952 (19)0.0827 (19)0.0185 (16)0.0100 (17)0.0232 (15)
Geometric parameters (Å, º) top
N1—C51.420 (2)C15—H15B0.9700
N1—C61.431 (2)C16—C171.162 (3)
N1—C151.462 (2)C17—H17A0.91 (2)
N2—C231.425 (2)C18—C191.362 (4)
N2—C221.432 (2)C18—C311.401 (3)
N2—C321.462 (2)C18—H18A0.9300
C1—C21.385 (4)C19—C201.361 (4)
C1—C141.413 (3)C19—H19A0.9300
C1—H1A0.9300C20—C211.390 (3)
C2—C31.354 (4)C20—H20A0.9300
C2—H2A0.9300C21—C221.381 (3)
C3—C41.371 (3)C21—H21A0.9300
C3—H3A0.9300C22—C311.390 (3)
C4—C51.392 (3)C23—C241.387 (3)
C4—H4A0.9300C23—C281.390 (3)
C5—C141.399 (3)C24—C251.366 (3)
C6—C71.390 (2)C24—H24A0.9300
C6—C111.394 (2)C25—C261.366 (3)
C7—C81.386 (3)C25—H25A0.9300
C7—H7A0.9300C26—C271.376 (3)
C8—C91.371 (3)C26—H26A0.9300
C8—H8A0.9300C27—C281.401 (3)
C9—C101.371 (3)C27—H27A0.9300
C9—H9A0.9300C28—C291.460 (3)
C10—C111.392 (3)C29—C301.334 (3)
C10—H10A0.9300C29—H29A0.9300
C11—C121.453 (3)C30—C311.446 (3)
C12—C131.329 (3)C30—H30A0.9300
C12—H12A0.9300C32—C331.463 (3)
C13—C141.444 (3)C32—H32A0.9700
C13—H13A0.9300C32—H32B0.9700
C15—C161.460 (3)C33—C341.157 (3)
C15—H15A0.9700C34—H34A0.92 (3)
C5—N1—C6117.16 (14)H15A—C15—H15B107.9
C5—N1—C15117.16 (15)C17—C16—C15178.0 (2)
C6—N1—C15114.99 (14)C16—C17—H17A178.5 (18)
C23—N2—C22115.52 (13)C19—C18—C31121.8 (3)
C23—N2—C32116.38 (14)C19—C18—H18A119.1
C22—N2—C32117.14 (15)C31—C18—H18A119.1
C2—C1—C14121.4 (3)C20—C19—C18119.9 (3)
C2—C1—H1A119.3C20—C19—H19A120.0
C14—C1—H1A119.3C18—C19—H19A120.0
C3—C2—C1119.7 (3)C19—C20—C21120.0 (3)
C3—C2—H2A120.1C19—C20—H20A120.0
C1—C2—H2A120.1C21—C20—H20A120.0
C2—C3—C4120.8 (3)C22—C21—C20120.5 (2)
C2—C3—H3A119.6C22—C21—H21A119.8
C4—C3—H3A119.6C20—C21—H21A119.8
C3—C4—C5120.9 (3)C21—C22—C31119.9 (2)
C3—C4—H4A119.6C21—C22—N2121.30 (18)
C5—C4—H4A119.6C31—C22—N2118.7 (2)
C4—C5—C14119.8 (2)C24—C23—C28119.72 (18)
C4—C5—N1121.21 (18)C24—C23—N2121.62 (18)
C14—C5—N1118.85 (19)C28—C23—N2118.52 (16)
C7—C6—C11119.52 (17)C25—C24—C23121.2 (2)
C7—C6—N1121.33 (16)C25—C24—H24A119.4
C11—C6—N1118.96 (15)C23—C24—H24A119.4
C8—C7—C6120.6 (2)C24—C25—C26120.0 (2)
C8—C7—H7A119.7C24—C25—H25A120.0
C6—C7—H7A119.7C26—C25—H25A120.0
C9—C8—C7120.1 (2)C25—C26—C27119.9 (2)
C9—C8—H8A120.0C25—C26—H26A120.0
C7—C8—H8A120.0C27—C26—H26A120.0
C10—C9—C8119.3 (2)C26—C27—C28121.2 (2)
C10—C9—H9A120.4C26—C27—H27A119.4
C8—C9—H9A120.4C28—C27—H27A119.4
C9—C10—C11122.2 (2)C23—C28—C27117.99 (19)
C9—C10—H10A118.9C23—C28—C29122.09 (18)
C11—C10—H10A118.9C27—C28—C29119.9 (2)
C10—C11—C6118.14 (18)C30—C29—C28127.0 (2)
C10—C11—C12119.56 (19)C30—C29—H29A116.5
C6—C11—C12122.28 (18)C28—C29—H29A116.5
C13—C12—C11127.0 (2)C29—C30—C31127.2 (2)
C13—C12—H12A116.5C29—C30—H30A116.4
C11—C12—H12A116.5C31—C30—H30A116.4
C12—C13—C14128.2 (2)C22—C31—C18117.9 (2)
C12—C13—H13A115.9C22—C31—C30122.15 (19)
C14—C13—H13A115.9C18—C31—C30120.0 (2)
C5—C14—C1117.4 (2)N2—C32—C33110.60 (16)
C5—C14—C13122.65 (19)N2—C32—H32A109.5
C1—C14—C13119.9 (2)C33—C32—H32A109.5
C16—C15—N1111.94 (16)N2—C32—H32B109.5
C16—C15—H15A109.2C33—C32—H32B109.5
N1—C15—H15A109.2H32A—C32—H32B108.1
C16—C15—H15B109.2C34—C33—C32178.7 (3)
N1—C15—H15B109.2C33—C34—H34A178 (2)
C14—C1—C2—C30.1 (4)C31—C18—C19—C200.8 (4)
C1—C2—C3—C41.3 (4)C18—C19—C20—C210.3 (4)
C2—C3—C4—C51.3 (4)C19—C20—C21—C220.7 (3)
C3—C4—C5—C140.1 (3)C20—C21—C22—C310.1 (3)
C3—C4—C5—N1175.84 (18)C20—C21—C22—N2177.06 (17)
C6—N1—C5—C4118.89 (18)C23—N2—C22—C21112.72 (19)
C15—N1—C5—C424.0 (2)C32—N2—C22—C2130.2 (2)
C6—N1—C5—C1465.1 (2)C23—N2—C22—C3170.1 (2)
C15—N1—C5—C14152.05 (16)C32—N2—C22—C31146.96 (17)
C5—N1—C6—C7115.39 (19)C22—N2—C23—C24115.27 (19)
C15—N1—C6—C728.3 (2)C32—N2—C23—C2428.0 (2)
C5—N1—C6—C1169.7 (2)C22—N2—C23—C2868.9 (2)
C15—N1—C6—C11146.70 (17)C32—N2—C23—C28147.85 (17)
C11—C6—C7—C83.4 (3)C28—C23—C24—C251.2 (3)
N1—C6—C7—C8171.53 (17)N2—C23—C24—C25174.52 (17)
C6—C7—C8—C90.8 (3)C23—C24—C25—C260.8 (3)
C7—C8—C9—C101.7 (3)C24—C25—C26—C270.1 (3)
C8—C9—C10—C111.6 (3)C25—C26—C27—C280.0 (3)
C9—C10—C11—C61.0 (3)C24—C23—C28—C271.1 (3)
C9—C10—C11—C12179.7 (2)N2—C23—C28—C27174.82 (16)
C7—C6—C11—C103.4 (3)C24—C23—C28—C29179.05 (18)
N1—C6—C11—C10171.60 (16)N2—C23—C28—C293.2 (3)
C7—C6—C11—C12177.87 (18)C26—C27—C28—C230.5 (3)
N1—C6—C11—C127.1 (3)C26—C27—C28—C29178.50 (19)
C10—C11—C12—C13149.7 (2)C23—C28—C29—C3034.1 (3)
C6—C11—C12—C1331.6 (3)C27—C28—C29—C30147.9 (2)
C11—C12—C13—C141.8 (4)C28—C29—C30—C310.0 (3)
C4—C5—C14—C11.0 (3)C21—C22—C31—C181.2 (3)
N1—C5—C14—C1177.08 (16)N2—C22—C31—C18176.05 (16)
C4—C5—C14—C13176.86 (19)C21—C22—C31—C30178.21 (17)
N1—C5—C14—C130.8 (3)N2—C22—C31—C304.6 (3)
C2—C1—C14—C51.1 (3)C19—C18—C31—C221.6 (3)
C2—C1—C14—C13176.9 (2)C19—C18—C31—C30177.8 (2)
C12—C13—C14—C532.8 (3)C29—C30—C31—C2233.3 (3)
C12—C13—C14—C1149.4 (2)C29—C30—C31—C18146.1 (2)
C5—N1—C15—C1657.1 (2)C23—N2—C32—C33155.99 (17)
C6—N1—C15—C16159.25 (16)C22—N2—C32—C3361.4 (2)

Experimental details

Crystal data
Chemical formulaC17H13N
Mr231.28
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)11.4406 (5), 10.0256 (4), 22.3155 (10)
β (°) 92.910 (1)
V3)2556.26 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.36 × 0.19 × 0.15
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.975, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
14791, 4760, 2894
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.129, 1.02
No. of reflections4760
No. of parameters333
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.13, 0.17

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

 

References

First citationArya, V. P., Grewal, R. S., Kaul, C. L., David, J., Shenoy, S. J. & Honkan, V. (1977). Indian J. Chem. Sect. B, 15, 148–153.  Google Scholar
First citationBalaure, P. C., Costea, I., Iordache, F., Draghichi, C. & Enache, C. (2009). Rev. Roum. Chem. 54, 935–942.  CAS Google Scholar
First citationBhatt, P. V. & Patel, P. M. (2005). Indian J. Chem. Sect. B, 44, 2082–2086.  Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrzozowski, Z. & Saczewski, F. (2002). J. Med. Chem. 45, 430–437.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFuenfschilling, P. C., Zangg, W., Beutler, U., Kaufmann, D., Lohse, O., Mutz, J.-P., Onken, U., Reber, J.-L. & Shenton, D. (2005). Org. Process Res. Dev. 9, 272–277.  Web of Science CrossRef CAS Google Scholar
First citationJayasankar, A., Reddy, L. S., Bethune, S. J. & Rodriguez-Hornedo, N. (2009). Cryst. Growth Des. 9, 889–897.  Web of Science CSD CrossRef CAS Google Scholar
First citationKulkarni, G. H., Naik, R. H., Tandel, S. K. & Rajappa, S. (1991). Tetrahedron, 47, 1249–1256.  CrossRef CAS Google Scholar
First citationKumar, H. V. & Naik, N. (2010). Eur. J. Med. Chem. 45, 2–10.  PubMed CAS Google Scholar
First citationNagaraj, B., Yathirajan, H. S. & Lynch, D. E. (2005). Acta Cryst. E61, o1757–o1759.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationRosowsky, A., Fu, H., Chan, D. C. & Queener, S. F. (2004). J. Med. Chem. 47, 2475–2485.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSadashiva, M. P., Doreswamy, B. H., Basappa, Rangappa, K. S., Sridhar, M. A. & Prasad, J. (2005). J. Chem. Crystallogr. 35, 171–175.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds