metal-organic compounds
Bis(μ-nitrito-κ2O:O)bis[bis(1-methyl-1H-imidazole-κN3)(nitrito-κO)copper(II)]
aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com
In the binuclear title compound, [Cu2(NO2)4(C4H6N2)4], centrosymmetrically related complex molecules are linked via weak Cu—O interactions, forming dimeric units. The CuII atom displays an elongated square-pyramidal CuN2O3 coordination geometry with a slight tetrahedral distortion of the basal plane [maximum deviation = 0.249 (2) Å]. The dihedral angle formed by the imidazole rings is 26.20 (10)°.
Related literature
The structure of the title compound was determined as part of our ongoing study of potential ferroelectric phase change materials. For general background to ferroelectric compounds with metal-organic framework structures, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010). For a related structure, see: Costes et al. (1995).
Experimental
Crystal data
|
Data collection: CrystalClear (Rigaku, 2005); cell CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536812009804/rz2715sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536812009804/rz2715Isup2.hkl
An aqueous solution of 1-methylimidazole (2.0 g, 25 mmol) and H2SO4 (12.5 mmol) was treated with CuSO4 (250 g, 12.5 mmol). After the mixture was stirred for a few minutes, Ba(NO2)2 (6.18 g, 25 mmol) was added to give a blue solution. Slow evaporation of the solution following removal of the precipitated BaSO4 yielded blue crystals after a few days. M. p. 319–329 K.
All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H = 0.93–0.96 Å, and with Uiso(H) = 1.2 Uiso(C) or 1.5 Uiso(C) for methy H atoms.
As part of our ongoing study of potential ferroelectric phase change materials we have determined the structures of several copper complexes and examined the changes in their dielectric constants with temperature, which is the usual method for detecting such behaviour (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the
of the title compound indicates the onset of a ferroelectric phase change over the range 80–298 K.As show in Fig. 1, the copper ion adopts an elongated square pyramidal geometry with a slight tetrahedral distortion in the basal plane (maximum deviation 0.249 (2) Å for atom N4) which is primarily associated with the coordination of the nitrite ions (O2—Cu1—O3 = 167.15 (8)°). As observed in a related compound (Costes et al., 1995), this geometry displaces atom O2 from the ideal coordination plane towards the centrosymmetrically related Cu1i copper atom [symmetry code: (i) 1-x, 1-y, -z] resulting in an O2—Cu1 distance of 2.578 (5) Å. While this distance is considerably longer than those in basal plane (Cu1—O2 and Cu1—O3 are 2.0221 (19) and 2.0085 (19) Å, respectively), the direction of the displacement of atom O2 and the orientations of the two nitrite ligands which place both atoms O1 and O3 on the opposite side of the coordination plane, suggest that there is a weak association of one complex molecule with its centrosymmetrically related. The dihedral angle formed by the trans-arranged imidazole rings is 26.20 (10)°. The crystal packing (Fig. 2) is governed only by van der Waals interactions.
The structure of the title compound was determined part of our ongoing study of potential ferroelectric phase change materials. For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010). For a related structure, see: Costes et al. (1995).
Data collection: CrystalClear (Rigaku, 2005); cell
CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Cu2(NO2)4(C4H6N2)4] | Z = 1 |
Mr = 639.55 | F(000) = 326 |
Triclinic, P1 | Dx = 1.670 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 7.8281 (16) Å | Cell parameters from 2900 reflections |
b = 8.4873 (17) Å | θ = 2.3–27.5° |
c = 10.054 (2) Å | µ = 1.74 mm−1 |
α = 80.35 (3)° | T = 293 K |
β = 77.72 (3)° | Prism, blue |
γ = 79.46 (3)° | 0.29 × 0.23 × 0.20 mm |
V = 635.9 (2) Å3 |
Rigaku SCXmini diffractometer | 2465 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.035 |
Graphite monochromator | θmax = 27.5°, θmin = 3.0° |
ω scans | h = −10→10 |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | k = −11→11 |
Tmin = 0.625, Tmax = 0.706 | l = −13→13 |
6578 measured reflections | 2 standard reflections every 150 reflections |
2900 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0423P)2 + 0.1143P] where P = (Fo2 + 2Fc2)/3 |
2900 reflections | (Δ/σ)max = 0.001 |
174 parameters | Δρmax = 0.40 e Å−3 |
0 restraints | Δρmin = −0.29 e Å−3 |
[Cu2(NO2)4(C4H6N2)4] | γ = 79.46 (3)° |
Mr = 639.55 | V = 635.9 (2) Å3 |
Triclinic, P1 | Z = 1 |
a = 7.8281 (16) Å | Mo Kα radiation |
b = 8.4873 (17) Å | µ = 1.74 mm−1 |
c = 10.054 (2) Å | T = 293 K |
α = 80.35 (3)° | 0.29 × 0.23 × 0.20 mm |
β = 77.72 (3)° |
Rigaku SCXmini diffractometer | 2465 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) | Rint = 0.035 |
Tmin = 0.625, Tmax = 0.706 | 2 standard reflections every 150 reflections |
6578 measured reflections | intensity decay: none |
2900 independent reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.091 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.40 e Å−3 |
2900 reflections | Δρmin = −0.29 e Å−3 |
174 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.7413 (4) | 0.2449 (4) | 0.4825 (3) | 0.0549 (8) | |
H1A | 0.7735 | 0.1313 | 0.4761 | 0.082* | |
H1B | 0.7220 | 0.2619 | 0.5769 | 0.082* | |
H1C | 0.8349 | 0.3012 | 0.4302 | 0.082* | |
C2 | 0.5675 (3) | 0.4011 (3) | 0.3090 (3) | 0.0365 (6) | |
H2 | 0.6629 | 0.4389 | 0.2480 | 0.044* | |
C3 | 0.3061 (4) | 0.3554 (4) | 0.4028 (3) | 0.0496 (8) | |
H3 | 0.1847 | 0.3553 | 0.4178 | 0.059* | |
C4 | 0.4134 (4) | 0.2788 (4) | 0.4889 (3) | 0.0520 (8) | |
H4 | 0.3803 | 0.2185 | 0.5738 | 0.062* | |
C5 | −0.1244 (4) | 0.9207 (4) | −0.2032 (3) | 0.0490 (8) | |
H5A | −0.2148 | 0.8597 | −0.1523 | 0.074* | |
H5B | −0.0952 | 0.8978 | −0.2964 | 0.074* | |
H5C | −0.1667 | 1.0341 | −0.2020 | 0.074* | |
C6 | 0.0619 (3) | 0.7480 (3) | −0.0451 (3) | 0.0341 (6) | |
H6 | −0.0165 | 0.6746 | −0.0090 | 0.041* | |
C7 | 0.2892 (4) | 0.8716 (3) | −0.0865 (3) | 0.0384 (6) | |
H7 | 0.3984 | 0.8980 | −0.0837 | 0.046* | |
C8 | 0.1763 (4) | 0.9545 (3) | −0.1664 (3) | 0.0411 (6) | |
H8 | 0.1925 | 1.0480 | −0.2277 | 0.049* | |
N1 | 0.6145 (3) | 0.7315 (3) | 0.0924 (3) | 0.0485 (6) | |
N3 | 0.5793 (3) | 0.3061 (3) | 0.4283 (2) | 0.0376 (5) | |
N2 | −0.0346 (3) | 0.5775 (3) | 0.2749 (3) | 0.0495 (7) | |
N4 | 0.4024 (3) | 0.4338 (3) | 0.2893 (2) | 0.0334 (5) | |
N5 | 0.2167 (3) | 0.7405 (2) | −0.0090 (2) | 0.0314 (5) | |
N6 | 0.0336 (3) | 0.8755 (3) | −0.1406 (2) | 0.0355 (5) | |
O1 | 0.5052 (3) | 0.7955 (3) | 0.1808 (2) | 0.0541 (5) | |
O2 | 0.5618 (2) | 0.6202 (2) | 0.04605 (19) | 0.0402 (4) | |
O3 | 0.0807 (3) | 0.4952 (2) | 0.1912 (2) | 0.0422 (5) | |
O4 | 0.0182 (3) | 0.6897 (3) | 0.3082 (2) | 0.0542 (6) | |
Cu1 | 0.31394 (4) | 0.57713 (4) | 0.13253 (3) | 0.02903 (12) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0475 (18) | 0.067 (2) | 0.0476 (18) | 0.0037 (15) | −0.0230 (15) | 0.0039 (16) |
C2 | 0.0324 (13) | 0.0429 (16) | 0.0316 (14) | −0.0020 (11) | −0.0056 (11) | −0.0021 (11) |
C3 | 0.0389 (15) | 0.063 (2) | 0.0424 (17) | −0.0159 (14) | −0.0080 (13) | 0.0158 (14) |
C4 | 0.0492 (18) | 0.066 (2) | 0.0363 (16) | −0.0152 (15) | −0.0087 (14) | 0.0143 (14) |
C5 | 0.0434 (16) | 0.0549 (19) | 0.0458 (17) | 0.0069 (14) | −0.0183 (14) | −0.0016 (14) |
C6 | 0.0320 (13) | 0.0338 (14) | 0.0361 (14) | −0.0022 (10) | −0.0103 (11) | −0.0019 (11) |
C7 | 0.0386 (14) | 0.0354 (15) | 0.0410 (15) | −0.0103 (11) | −0.0087 (12) | 0.0016 (12) |
C8 | 0.0473 (16) | 0.0341 (15) | 0.0391 (15) | −0.0068 (12) | −0.0096 (13) | 0.0051 (12) |
N1 | 0.0425 (14) | 0.0497 (16) | 0.0550 (16) | −0.0166 (12) | −0.0174 (12) | 0.0094 (13) |
N3 | 0.0383 (12) | 0.0435 (13) | 0.0294 (11) | −0.0013 (10) | −0.0103 (10) | −0.0004 (9) |
N2 | 0.0326 (13) | 0.0622 (18) | 0.0475 (15) | −0.0074 (12) | −0.0065 (11) | 0.0092 (13) |
N4 | 0.0328 (11) | 0.0378 (12) | 0.0275 (11) | −0.0043 (9) | −0.0053 (9) | −0.0007 (9) |
N5 | 0.0299 (11) | 0.0318 (11) | 0.0313 (11) | −0.0036 (9) | −0.0056 (9) | −0.0023 (9) |
N6 | 0.0368 (12) | 0.0352 (12) | 0.0324 (11) | 0.0020 (9) | −0.0093 (9) | −0.0032 (9) |
O1 | 0.0652 (14) | 0.0489 (13) | 0.0529 (13) | −0.0133 (11) | −0.0137 (11) | −0.0116 (10) |
O2 | 0.0361 (10) | 0.0439 (11) | 0.0383 (10) | −0.0065 (8) | −0.0062 (8) | 0.0008 (8) |
O3 | 0.0395 (10) | 0.0432 (11) | 0.0450 (11) | −0.0135 (9) | −0.0125 (9) | 0.0041 (9) |
O4 | 0.0547 (13) | 0.0539 (14) | 0.0501 (13) | −0.0016 (11) | −0.0062 (10) | −0.0076 (11) |
Cu1 | 0.02605 (17) | 0.03196 (19) | 0.02820 (18) | −0.00537 (12) | −0.00609 (12) | 0.00075 (12) |
C1—N3 | 1.460 (4) | C6—N5 | 1.325 (3) |
C1—H1A | 0.9600 | C6—N6 | 1.341 (3) |
C1—H1B | 0.9600 | C6—H6 | 0.9300 |
C1—H1C | 0.9600 | C7—C8 | 1.344 (4) |
C2—N4 | 1.321 (3) | C7—N5 | 1.385 (3) |
C2—N3 | 1.339 (3) | C7—H7 | 0.9300 |
C2—H2 | 0.9300 | C8—N6 | 1.363 (3) |
C3—C4 | 1.341 (4) | C8—H8 | 0.9300 |
C3—N4 | 1.370 (3) | N1—O1 | 1.219 (3) |
C3—H3 | 0.9300 | N1—O2 | 1.286 (3) |
C4—N3 | 1.356 (4) | N2—O4 | 1.225 (3) |
C4—H4 | 0.9300 | N2—O3 | 1.286 (3) |
C5—N6 | 1.466 (3) | N4—Cu1 | 1.989 (2) |
C5—H5A | 0.9600 | N5—Cu1 | 1.985 (2) |
C5—H5B | 0.9600 | O2—Cu1 | 2.0221 (19) |
C5—H5C | 0.9600 | O3—Cu1 | 2.0085 (19) |
N3—C1—H1A | 109.5 | N5—C7—H7 | 125.5 |
N3—C1—H1B | 109.5 | C7—C8—N6 | 107.0 (2) |
H1A—C1—H1B | 109.5 | C7—C8—H8 | 126.5 |
N3—C1—H1C | 109.5 | N6—C8—H8 | 126.5 |
H1A—C1—H1C | 109.5 | O1—N1—O2 | 114.3 (2) |
H1B—C1—H1C | 109.5 | C2—N3—C4 | 107.2 (2) |
N4—C2—N3 | 111.1 (2) | C2—N3—C1 | 126.1 (2) |
N4—C2—H2 | 124.4 | C4—N3—C1 | 126.8 (2) |
N3—C2—H2 | 124.4 | O4—N2—O3 | 114.5 (2) |
C4—C3—N4 | 109.7 (3) | C2—N4—C3 | 105.2 (2) |
C4—C3—H3 | 125.2 | C2—N4—Cu1 | 126.73 (18) |
N4—C3—H3 | 125.2 | C3—N4—Cu1 | 127.94 (19) |
C3—C4—N3 | 106.8 (2) | C6—N5—C7 | 105.6 (2) |
C3—C4—H4 | 126.6 | C6—N5—Cu1 | 125.75 (18) |
N3—C4—H4 | 126.6 | C7—N5—Cu1 | 128.63 (18) |
N6—C5—H5A | 109.5 | C6—N6—C8 | 107.5 (2) |
N6—C5—H5B | 109.5 | C6—N6—C5 | 125.5 (2) |
H5A—C5—H5B | 109.5 | C8—N6—C5 | 127.0 (2) |
N6—C5—H5C | 109.5 | N1—O2—Cu1 | 115.28 (17) |
H5A—C5—H5C | 109.5 | N2—O3—Cu1 | 114.51 (17) |
H5B—C5—H5C | 109.5 | N5—Cu1—N4 | 173.10 (8) |
N5—C6—N6 | 110.9 (2) | N5—Cu1—O3 | 90.30 (8) |
N5—C6—H6 | 124.6 | N4—Cu1—O3 | 89.99 (9) |
N6—C6—H6 | 124.6 | N5—Cu1—O2 | 90.40 (8) |
C8—C7—N5 | 109.1 (2) | N4—Cu1—O2 | 90.85 (8) |
C8—C7—H7 | 125.5 | O3—Cu1—O2 | 167.15 (8) |
N4—C3—C4—N3 | −1.2 (4) | C7—C8—N6—C5 | 179.9 (3) |
N5—C7—C8—N6 | −0.5 (3) | O1—N1—O2—Cu1 | −0.8 (3) |
N4—C2—N3—C4 | −0.9 (3) | O4—N2—O3—Cu1 | −1.9 (3) |
N4—C2—N3—C1 | 179.4 (3) | C6—N5—Cu1—O3 | −9.1 (2) |
C3—C4—N3—C2 | 1.3 (3) | C7—N5—Cu1—O3 | 168.4 (2) |
C3—C4—N3—C1 | −179.0 (3) | C6—N5—Cu1—O2 | 158.1 (2) |
N3—C2—N4—C3 | 0.2 (3) | C7—N5—Cu1—O2 | −24.4 (2) |
N3—C2—N4—Cu1 | 177.04 (17) | C2—N4—Cu1—O3 | 168.7 (2) |
C4—C3—N4—C2 | 0.7 (4) | C3—N4—Cu1—O3 | −15.1 (3) |
C4—C3—N4—Cu1 | −176.2 (2) | C2—N4—Cu1—O2 | 1.6 (2) |
N6—C6—N5—C7 | 0.1 (3) | C3—N4—Cu1—O2 | 177.7 (2) |
N6—C6—N5—Cu1 | 178.14 (16) | N2—O3—Cu1—N5 | −82.48 (18) |
C8—C7—N5—C6 | 0.3 (3) | N2—O3—Cu1—N4 | 90.62 (18) |
C8—C7—N5—Cu1 | −177.67 (19) | N2—O3—Cu1—O2 | −175.6 (3) |
N5—C6—N6—C8 | −0.5 (3) | N1—O2—Cu1—N5 | 90.08 (18) |
N5—C6—N6—C5 | −179.8 (2) | N1—O2—Cu1—N4 | −83.13 (18) |
C7—C8—N6—C6 | 0.6 (3) | N1—O2—Cu1—O3 | −176.8 (3) |
Experimental details
Crystal data | |
Chemical formula | [Cu2(NO2)4(C4H6N2)4] |
Mr | 639.55 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.8281 (16), 8.4873 (17), 10.054 (2) |
α, β, γ (°) | 80.35 (3), 77.72 (3), 79.46 (3) |
V (Å3) | 635.9 (2) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 1.74 |
Crystal size (mm) | 0.29 × 0.23 × 0.20 |
Data collection | |
Diffractometer | Rigaku SCXmini |
Absorption correction | Multi-scan (CrystalClear; Rigaku, 2005) |
Tmin, Tmax | 0.625, 0.706 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6578, 2900, 2465 |
Rint | 0.035 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.091, 1.05 |
No. of reflections | 2900 |
No. of parameters | 174 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.40, −0.29 |
Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).
Acknowledgements
This work was supported by Southeast University.
References
Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Costes, J. P., Dahan, F., Ruiz, J. & Laurent, J. P. (1995). Inorg. Chim. Acta, 239, 53–59. CSD CrossRef CAS Web of Science Google Scholar
Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997. Web of Science CSD CrossRef CAS Google Scholar
Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469. Web of Science CSD CrossRef PubMed CAS Google Scholar
Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302. Web of Science CSD CrossRef CAS PubMed Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing study of potential ferroelectric phase change materials we have determined the structures of several copper complexes and examined the changes in their dielectric constants with temperature, which is the usual method for detecting such behaviour (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). Unfortunately, the dielectric constant of the title compound indicates the onset of a ferroelectric phase change over the range 80–298 K.
As show in Fig. 1, the copper ion adopts an elongated square pyramidal geometry with a slight tetrahedral distortion in the basal plane (maximum deviation 0.249 (2) Å for atom N4) which is primarily associated with the coordination of the nitrite ions (O2—Cu1—O3 = 167.15 (8)°). As observed in a related compound (Costes et al., 1995), this geometry displaces atom O2 from the ideal coordination plane towards the centrosymmetrically related Cu1i copper atom [symmetry code: (i) 1-x, 1-y, -z] resulting in an O2—Cu1 distance of 2.578 (5) Å. While this distance is considerably longer than those in basal plane (Cu1—O2 and Cu1—O3 are 2.0221 (19) and 2.0085 (19) Å, respectively), the direction of the displacement of atom O2 and the orientations of the two nitrite ligands which place both atoms O1 and O3 on the opposite side of the coordination plane, suggest that there is a weak association of one complex molecule with its centrosymmetrically related. The dihedral angle formed by the trans-arranged imidazole rings is 26.20 (10)°. The crystal packing (Fig. 2) is governed only by van der Waals interactions.