metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,5-Di­methyl-1-(4-nitro­benz­yl)pyridinium bis­­(benzene-1,2-di­thiol­ato-κ2S,S′)nickelate(III)

aSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang University, Nanjing 211171, People's Republic of China
*Correspondence e-mail: njuliugx@gmail.com

(Received 28 February 2012; accepted 6 March 2012; online 14 March 2012)

The asymmetric unit of the title compound, (C14H15N2O2)[Ni(C6H4S2)2], contains one cation and two halves of two centrosymmetric crystallographically independent anions. In the anions, the NiIII atoms are coordinated by four S atoms in a distorted square-planar geometry. In the cation, the dihedral angle between the pyridine and benzene rings is 88.66 (17)°. In the crystal, anions and cations inter­act through C—H⋯S and C—H⋯O hydrogen bonds.

Related literature

For general background to the properties and applications of metal complexes of 1,2-dithiol­ate ligands, see: Robertson & Cronin (2002[Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93-127.]); Kato (2004[Kato, R. (2004). Chem. Rev. 104, 5319-5346.]); Cassoux (1999[Cassoux, P. (1999). Coord. Chem. Rev. 185-186, 213-232.]); Canadell (1999[Canadell, E. (1999). Coord. Chem. Rev. 185-186, 629-651.]); Akutagawa & Nakamura (2000[Akutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297-311.]); Ren et al. (2002[Ren, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931-5933.], 2004[Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem.43, 2569-2576.], 2008[Ren, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009-8014.]). For a related structure, see: Liu et al. (2007[Liu, G. X., Huang, L. F. & Ren, X. M. (2007). Appl. Organomet. Chem. 21, 1054-1058.]).

[Scheme 1]

Experimental

Crystal data
  • (C14H15N2O2)[Ni(C6H4S2)2]

  • Mr = 582.41

  • Triclinic, [P \overline 1]

  • a = 7.6114 (14) Å

  • b = 12.010 (2) Å

  • c = 15.317 (3) Å

  • α = 84.546 (3)°

  • β = 85.927 (2)°

  • γ = 72.435 (3)°

  • V = 1327.5 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 293 K

  • 0.12 × 0.10 × 0.04 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.882, Tmax = 0.958

  • 6651 measured reflections

  • 4578 independent reflections

  • 2424 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.069

  • S = 0.95

  • 4578 reflections

  • 321 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.18 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19A⋯S2i 0.97 2.88 3.697 (4) 143
C22—H22⋯O1ii 0.93 2.57 3.484 (7) 167
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, y-1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Metal complexes of 1,2-dithiolate ligands have been intensively studied because of their novel properties and applications in the areas of molecular conducting, magnetic materials, nonlinear optics, and others (Robertson et al., 2002; Kato, 2004). Over the last decade, a large number of new dithiolene ligands and resultant complexes have been prepared to optimize the molecular properties in an effort to prepare novel and advanced material, whose molecular arrangement can be sensitively affected by strong and directional noncovalent interactions (Cassoux, 1999; Canadell, 1999; Akutagawa & Nakamura, 2000). Although the closed-shell cations make no contribution to the conductivity and magnetism, their size and shapes play a predominant role in influencing the crystal structure and consequently, in altering the electronic and magnetic properties. Recently, using benzylpyridinium derivatives ([RBzPy]+) as the counter cation of [M(mnt)2]- (M = Ni, Pd, and Pt; mnt2– = maleonitriledithiolate), a series of ion-pair complexes with segregated columnar stacks of cations and anions have been reported (Ren et al., 2002, 2008). The quasi-one-dimensional magnetic nature of these complexes was attributed to intermolecular π orbital interactions within the anionic columns. Furthermore, for some complexes, spin-Peierls-like transition was observed (Ren et al., 2004). More presently, we are devoted to our research interesting on the molecular magnets self-assembled from [Ni(bdt)2]- ion (bdt is benzene-1,2-dithiolato) due to its molecular and electronic structure resembling [Ni(mnt)2]- ion, which is expected to obtain new series of molecular magnets with peculiar magnetic phase transition via incorporating the benzylpyridinium derivatives into the [Ni(bdt)2]- spin system. We report herein the synthesis and crystal structure of the title compound, a new ion-pair complex.

As shown in Fig. 1, the asymmetric unit of the title complex contains two different, independent halves of centrosymmetric [Ni(bdt)2]- anions and one [NO2BzPy(CH3)2]+ cation. The nickel atoms are each coordinated by four sulphur atoms in square-planar geometry. As for the Ni1-containing unit, the Ni1—S1 and Ni1—S2 distances are 2.1419 (11) and 2.1490 (10) Å, respectively. These values are in agreement with those reported for an analogous [Ni(bdt)2]- complex (Liu et al., 2007). The S—Ni—S bond angle within the five-member ring is 91.77 (4)°, which is slightly larger than that observed in the complex with substituent groups on benzene rings (Liu et al., 2007). There exists a dihedral angle of 5.36 (6)° between the C6S2 and NiS2 planes, with atom Ni1 deviating 0.165 (5) Å from the C6S2 plane. In the Ni2-containing unit, the Ni—S bonds range 2.1425 (11) to 2.1474 (11) Å and the S—Ni—S bond angle within the five member ring is 91.56 (4)°, which is in agreement with that of the Ni1-containing unit. The Ni2 atom deviates by 0.017 Å from the C6S2 plane and the dihedral angle between the C6S2 and NiS2 planes is 1.12 (4)°. The independent C6S2 planes are nearly perpendicular to each other forming a dihedral angle of 78.33 (8)°. In the cation, the dihedral angles formed by the N2/C19/C16 reference plane are 65.68 (14)° for the phenyl ring and 48.66 (15)° for the pyridine ring, respectively. The phenyl ring and the pyridine ring make a dihedral angle of 88.66 (17)°. The packing of two anionic units differ from each other. The Ni2-containing units stack in face-to-face fashion with an alternating arrangement of the anions and cations. Conversely, the Ni1-containing units stack in side-by-side fashion in which the anions with uniform spaced arrangements form one-dimensional chains along the a axis. The shortest separation between adjacent Ni(III) ions is 7.611 (14)Å. In the crystal (Fig. 2), anions and cation are held together via C—H···O and C—H···S hydrogen bonding interactions (Table 1).

Related literature top

For general background to the properties and applications of metal complexes of 1,2-dithiolate ligands, see: Robertson et al. (2002); Kato (2004); Cassoux (1999); Canadell (1999); Akutagawa & Nakamura (2000); Ren et al. (2002, 2004, 2008). For a related structure, see: Liu et al. (2007).

Experimental top

Under argon atmosphere at room temperature, benzene-1,2-dithiol (284 mg, 2 mmol) was added to a solution of sodium metal (92 mg, 4 mmol) in 25 ml of absolute methanol. A solution of NiCl2.6H2O (240 mg, 1 mmol) in methanol was added, resulting in the formation of a muddy red-brown color. Following this, 1-(4-nitrobenzyl)-3,5-dimethylpyridinium bromide (646 mg, 2 mmol) was added, and the mixture allowed to stand with stirring for 1 h and then stirred for 24 h in air. The colour of the mixture gradually turned green, indicating oxidation from a dianionic species to the more stable monoanionic form. The precipitate was washed with absolute methanol and ether and then dried. The crude product was recrystallized twice from methylene chloride to give black needles in ~61% yield.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and 1.2 for all other H atoms.

Structure description top

Metal complexes of 1,2-dithiolate ligands have been intensively studied because of their novel properties and applications in the areas of molecular conducting, magnetic materials, nonlinear optics, and others (Robertson et al., 2002; Kato, 2004). Over the last decade, a large number of new dithiolene ligands and resultant complexes have been prepared to optimize the molecular properties in an effort to prepare novel and advanced material, whose molecular arrangement can be sensitively affected by strong and directional noncovalent interactions (Cassoux, 1999; Canadell, 1999; Akutagawa & Nakamura, 2000). Although the closed-shell cations make no contribution to the conductivity and magnetism, their size and shapes play a predominant role in influencing the crystal structure and consequently, in altering the electronic and magnetic properties. Recently, using benzylpyridinium derivatives ([RBzPy]+) as the counter cation of [M(mnt)2]- (M = Ni, Pd, and Pt; mnt2– = maleonitriledithiolate), a series of ion-pair complexes with segregated columnar stacks of cations and anions have been reported (Ren et al., 2002, 2008). The quasi-one-dimensional magnetic nature of these complexes was attributed to intermolecular π orbital interactions within the anionic columns. Furthermore, for some complexes, spin-Peierls-like transition was observed (Ren et al., 2004). More presently, we are devoted to our research interesting on the molecular magnets self-assembled from [Ni(bdt)2]- ion (bdt is benzene-1,2-dithiolato) due to its molecular and electronic structure resembling [Ni(mnt)2]- ion, which is expected to obtain new series of molecular magnets with peculiar magnetic phase transition via incorporating the benzylpyridinium derivatives into the [Ni(bdt)2]- spin system. We report herein the synthesis and crystal structure of the title compound, a new ion-pair complex.

As shown in Fig. 1, the asymmetric unit of the title complex contains two different, independent halves of centrosymmetric [Ni(bdt)2]- anions and one [NO2BzPy(CH3)2]+ cation. The nickel atoms are each coordinated by four sulphur atoms in square-planar geometry. As for the Ni1-containing unit, the Ni1—S1 and Ni1—S2 distances are 2.1419 (11) and 2.1490 (10) Å, respectively. These values are in agreement with those reported for an analogous [Ni(bdt)2]- complex (Liu et al., 2007). The S—Ni—S bond angle within the five-member ring is 91.77 (4)°, which is slightly larger than that observed in the complex with substituent groups on benzene rings (Liu et al., 2007). There exists a dihedral angle of 5.36 (6)° between the C6S2 and NiS2 planes, with atom Ni1 deviating 0.165 (5) Å from the C6S2 plane. In the Ni2-containing unit, the Ni—S bonds range 2.1425 (11) to 2.1474 (11) Å and the S—Ni—S bond angle within the five member ring is 91.56 (4)°, which is in agreement with that of the Ni1-containing unit. The Ni2 atom deviates by 0.017 Å from the C6S2 plane and the dihedral angle between the C6S2 and NiS2 planes is 1.12 (4)°. The independent C6S2 planes are nearly perpendicular to each other forming a dihedral angle of 78.33 (8)°. In the cation, the dihedral angles formed by the N2/C19/C16 reference plane are 65.68 (14)° for the phenyl ring and 48.66 (15)° for the pyridine ring, respectively. The phenyl ring and the pyridine ring make a dihedral angle of 88.66 (17)°. The packing of two anionic units differ from each other. The Ni2-containing units stack in face-to-face fashion with an alternating arrangement of the anions and cations. Conversely, the Ni1-containing units stack in side-by-side fashion in which the anions with uniform spaced arrangements form one-dimensional chains along the a axis. The shortest separation between adjacent Ni(III) ions is 7.611 (14)Å. In the crystal (Fig. 2), anions and cation are held together via C—H···O and C—H···S hydrogen bonding interactions (Table 1).

For general background to the properties and applications of metal complexes of 1,2-dithiolate ligands, see: Robertson et al. (2002); Kato (2004); Cassoux (1999); Canadell (1999); Akutagawa & Nakamura (2000); Ren et al. (2002, 2004, 2008). For a related structure, see: Liu et al. (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of the title complex, with displacement ellipsoids drawn at the 30% probability level. Hydrogen atoms are omitted for clarity. Atoms marked with suffixes A and B are related to those with no suffixes by the symmetry codes (1-x, 2-y, 1-z) and (1-x, 2-y, -z) respectively.
[Figure 2] Fig. 2. Packing diagram of the title complex viewed along the a axis. Hydrogen bonds are shown as dashed lines.
3,5-Dimethyl-1-(4-nitrobenzyl)pyridinium bis(benzene-1,2-dithiolato-κ2S,S')nickelate(III) top
Crystal data top
(C14H15N2O2)[Ni(C6H4S2)2]Z = 2
Mr = 582.41F(000) = 602
Triclinic, P1Dx = 1.457 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.6114 (14) ÅCell parameters from 1160 reflections
b = 12.010 (2) Åθ = 2.7–18.1°
c = 15.317 (3) ŵ = 1.07 mm1
α = 84.546 (3)°T = 293 K
β = 85.927 (2)°Platelet, dark green
γ = 72.435 (3)°0.12 × 0.10 × 0.04 mm
V = 1327.5 (4) Å3
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4578 independent reflections
Radiation source: sealed tube2424 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
phi and ω scansθmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 97
Tmin = 0.882, Tmax = 0.958k = 147
6651 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0002P)2 + 0.0986P]
where P = (Fo2 + 2Fc2)/3
4578 reflections(Δ/σ)max < 0.001
321 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
(C14H15N2O2)[Ni(C6H4S2)2]γ = 72.435 (3)°
Mr = 582.41V = 1327.5 (4) Å3
Triclinic, P1Z = 2
a = 7.6114 (14) ÅMo Kα radiation
b = 12.010 (2) ŵ = 1.07 mm1
c = 15.317 (3) ÅT = 293 K
α = 84.546 (3)°0.12 × 0.10 × 0.04 mm
β = 85.927 (2)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
4578 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2424 reflections with I > 2σ(I)
Tmin = 0.882, Tmax = 0.958Rint = 0.033
6651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.069H-atom parameters constrained
S = 0.95Δρmax = 0.23 e Å3
4578 reflectionsΔρmin = 0.18 e Å3
321 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50001.00000.50000.0634 (2)
Ni20.50001.00000.00000.0804 (3)
O11.0908 (9)0.4666 (4)0.1105 (4)0.213 (3)
O21.2794 (8)0.3723 (4)0.2098 (4)0.209 (2)
S10.25357 (13)0.96184 (8)0.47173 (6)0.0790 (3)
S20.62478 (13)0.82242 (8)0.55057 (6)0.0743 (3)
S30.37839 (15)0.99427 (10)0.13058 (7)0.0960 (4)
S40.56664 (15)0.81374 (9)0.00239 (7)0.0905 (4)
N11.1382 (9)0.3946 (5)0.1687 (4)0.144 (2)
N20.7941 (4)0.0362 (3)0.2355 (2)0.0813 (10)
C10.2877 (5)0.8163 (3)0.5090 (2)0.0672 (10)
C20.1519 (5)0.7605 (4)0.5056 (2)0.0836 (12)
H20.04090.80110.48010.100*
C30.1795 (6)0.6467 (4)0.5392 (3)0.0935 (13)
H30.08700.61120.53750.112*
C40.3455 (7)0.5851 (4)0.5755 (3)0.0986 (14)
H40.36480.50770.59750.118*
C50.4811 (6)0.6366 (4)0.5795 (3)0.0879 (13)
H50.59140.59450.60500.105*
C60.4556 (5)0.7532 (3)0.5454 (2)0.0675 (10)
C70.4178 (5)0.8468 (4)0.1626 (3)0.0822 (12)
C80.3665 (6)0.8083 (5)0.2483 (3)0.1024 (15)
H80.31280.86200.28950.123*
C90.3973 (7)0.6910 (6)0.2692 (4)0.1223 (18)
H90.36570.66530.32560.147*
C100.4743 (7)0.6097 (5)0.2084 (5)0.1249 (19)
H100.49060.53050.22360.150*
C110.5267 (6)0.6459 (5)0.1255 (4)0.1112 (16)
H110.57960.59110.08490.133*
C120.5005 (5)0.7659 (4)0.1020 (3)0.0807 (12)
C131.0226 (8)0.3148 (5)0.1929 (4)0.0967 (15)
C140.8642 (8)0.3328 (4)0.1516 (3)0.1004 (15)
H140.82710.39470.10900.120*
C150.7588 (6)0.2589 (5)0.1734 (3)0.0923 (14)
H150.64990.27070.14490.111*
C160.8114 (7)0.1673 (4)0.2367 (3)0.0781 (12)
C170.9698 (7)0.1526 (4)0.2783 (3)0.0931 (14)
H171.00690.09170.32160.112*
C181.0762 (6)0.2269 (5)0.2570 (4)0.1038 (17)
H181.18360.21690.28620.125*
C190.6967 (6)0.0853 (4)0.2592 (3)0.1079 (15)
H19A0.66520.08380.32170.130*
H19B0.58270.11460.22850.130*
C200.7956 (6)0.1279 (5)0.2931 (3)0.0917 (14)
H200.74120.11420.34900.110*
C210.8745 (6)0.2407 (5)0.2722 (3)0.0872 (13)
C220.9529 (5)0.2555 (4)0.1886 (3)0.0822 (12)
H221.00750.33120.17210.099*
C230.9537 (5)0.1628 (4)0.1284 (3)0.0688 (11)
C240.8703 (5)0.0528 (4)0.1546 (3)0.0772 (12)
H240.86660.01180.11540.093*
C250.8743 (7)0.3422 (4)0.3383 (3)0.1314 (18)
H25A0.82120.39440.31350.197*
H25B0.80310.31340.39010.197*
H25C0.99870.38350.35340.197*
C261.0373 (5)0.1798 (3)0.0372 (2)0.0886 (13)
H26A1.14620.15460.03110.133*
H26B0.94990.13450.00440.133*
H26C1.06940.26120.02660.133*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0585 (5)0.0708 (5)0.0592 (4)0.0198 (3)0.0019 (3)0.0014 (3)
Ni20.0710 (5)0.0819 (6)0.0895 (6)0.0180 (4)0.0068 (4)0.0256 (4)
O10.268 (7)0.095 (4)0.276 (7)0.063 (4)0.030 (5)0.008 (3)
O20.198 (5)0.229 (5)0.252 (6)0.129 (4)0.013 (4)0.053 (4)
S10.0712 (7)0.0745 (8)0.0922 (8)0.0240 (5)0.0167 (6)0.0066 (6)
S20.0610 (7)0.0754 (7)0.0832 (7)0.0198 (5)0.0022 (5)0.0088 (5)
S30.0972 (9)0.0931 (9)0.0948 (9)0.0189 (7)0.0016 (7)0.0278 (7)
S40.0866 (8)0.0843 (9)0.1006 (9)0.0183 (6)0.0063 (7)0.0294 (7)
N10.131 (5)0.120 (6)0.196 (7)0.046 (5)0.004 (5)0.058 (4)
N20.089 (3)0.087 (3)0.072 (3)0.030 (2)0.019 (2)0.024 (2)
C10.068 (3)0.073 (3)0.063 (3)0.025 (2)0.000 (2)0.006 (2)
C20.078 (3)0.080 (3)0.098 (3)0.030 (3)0.010 (2)0.005 (3)
C30.095 (4)0.080 (4)0.114 (4)0.040 (3)0.000 (3)0.005 (3)
C40.100 (4)0.075 (3)0.125 (4)0.037 (3)0.004 (3)0.007 (3)
C50.078 (3)0.072 (3)0.107 (3)0.016 (2)0.005 (3)0.008 (3)
C60.068 (3)0.066 (3)0.068 (3)0.022 (2)0.007 (2)0.005 (2)
C70.068 (3)0.088 (4)0.088 (3)0.014 (2)0.013 (3)0.020 (3)
C80.092 (4)0.121 (5)0.091 (4)0.023 (3)0.012 (3)0.015 (3)
C90.098 (4)0.126 (5)0.133 (5)0.027 (4)0.011 (3)0.019 (5)
C100.121 (5)0.104 (5)0.143 (5)0.026 (3)0.017 (4)0.002 (4)
C110.111 (4)0.093 (4)0.122 (5)0.019 (3)0.012 (3)0.008 (4)
C120.066 (3)0.076 (3)0.101 (4)0.019 (2)0.021 (3)0.004 (3)
C130.107 (5)0.077 (4)0.110 (4)0.024 (3)0.000 (4)0.041 (3)
C140.115 (5)0.064 (4)0.108 (4)0.001 (3)0.018 (4)0.012 (3)
C150.081 (4)0.091 (4)0.097 (4)0.002 (3)0.025 (3)0.029 (3)
C160.081 (4)0.076 (3)0.072 (3)0.010 (3)0.006 (3)0.027 (3)
C170.092 (4)0.101 (4)0.077 (3)0.012 (3)0.021 (3)0.006 (3)
C180.071 (4)0.131 (5)0.112 (4)0.022 (3)0.022 (3)0.040 (4)
C190.107 (4)0.114 (4)0.107 (4)0.034 (3)0.037 (3)0.051 (3)
C200.100 (4)0.124 (4)0.068 (3)0.062 (3)0.016 (3)0.010 (3)
C210.103 (4)0.094 (4)0.083 (4)0.057 (3)0.002 (3)0.011 (3)
C220.088 (3)0.081 (3)0.084 (3)0.031 (2)0.006 (3)0.019 (3)
C230.059 (3)0.084 (3)0.062 (3)0.017 (2)0.001 (2)0.016 (3)
C240.080 (3)0.087 (3)0.062 (3)0.023 (2)0.014 (2)0.012 (2)
C250.193 (5)0.128 (4)0.102 (4)0.101 (4)0.002 (4)0.019 (3)
C260.089 (3)0.097 (3)0.076 (3)0.021 (2)0.012 (2)0.024 (2)
Geometric parameters (Å, º) top
Ni1—S1i2.1419 (11)C9—H90.9300
Ni1—S12.1419 (11)C10—C111.373 (5)
Ni1—S2i2.1490 (10)C10—H100.9300
Ni1—S22.1490 (10)C11—C121.408 (5)
Ni2—S4ii2.1425 (11)C11—H110.9300
Ni2—S42.1425 (11)C13—C141.350 (6)
Ni2—S32.1474 (11)C13—C181.359 (6)
Ni2—S3ii2.1474 (11)C14—C151.372 (5)
O1—N11.176 (6)C14—H140.9300
O2—N11.230 (6)C15—C161.377 (5)
S1—C11.733 (4)C15—H150.9300
S2—C61.740 (4)C16—C171.361 (5)
S3—C71.733 (4)C16—C191.503 (5)
S4—C121.739 (4)C17—C181.379 (5)
N1—C131.491 (7)C17—H170.9300
N2—C241.336 (4)C18—H180.9300
N2—C201.343 (4)C19—H19A0.9700
N2—C191.491 (4)C19—H19B0.9700
C1—C61.398 (4)C20—C211.364 (5)
C1—C21.398 (5)C20—H200.9300
C2—C31.373 (4)C21—C221.378 (5)
C2—H20.9300C21—C251.510 (5)
C3—C41.382 (5)C22—C231.377 (4)
C3—H30.9300C22—H220.9300
C4—C51.361 (5)C23—C241.367 (4)
C4—H40.9300C23—C261.499 (4)
C5—C61.408 (4)C24—H240.9300
C5—H50.9300C25—H25A0.9600
C7—C121.386 (5)C25—H25B0.9600
C7—C81.418 (5)C25—H25C0.9600
C8—C91.366 (5)C26—H26A0.9600
C8—H80.9300C26—H26B0.9600
C9—C101.385 (6)C26—H26C0.9600
S1i—Ni1—S1180.00 (5)C7—C12—C11119.3 (4)
S1i—Ni1—S2i91.77 (4)C7—C12—S4119.8 (4)
S1—Ni1—S2i88.23 (4)C11—C12—S4121.0 (4)
S1i—Ni1—S288.23 (4)C14—C13—C18121.1 (5)
S1—Ni1—S291.77 (4)C14—C13—N1119.2 (6)
S2i—Ni1—S2180.00 (5)C18—C13—N1119.6 (6)
S4ii—Ni2—S4180.00 (6)C13—C14—C15119.2 (5)
S4ii—Ni2—S388.44 (4)C13—C14—H14120.4
S4—Ni2—S391.56 (4)C15—C14—H14120.4
S4ii—Ni2—S3ii91.56 (4)C14—C15—C16121.1 (5)
S4—Ni2—S3ii88.44 (4)C14—C15—H15119.5
S3—Ni2—S3ii180.00 (6)C16—C15—H15119.5
C1—S1—Ni1105.34 (14)C17—C16—C15118.4 (5)
C6—S2—Ni1104.83 (14)C17—C16—C19120.8 (5)
C7—S3—Ni2105.32 (17)C15—C16—C19120.8 (5)
C12—S4—Ni2104.68 (17)C16—C17—C18120.9 (5)
O1—N1—O2127.5 (8)C16—C17—H17119.6
O1—N1—C13117.4 (7)C18—C17—H17119.6
O2—N1—C13114.9 (7)C13—C18—C17119.3 (5)
C24—N2—C20120.6 (4)C13—C18—H18120.3
C24—N2—C19119.1 (4)C17—C18—H18120.3
C20—N2—C19120.1 (4)N2—C19—C16112.4 (3)
C6—C1—C2118.8 (4)N2—C19—H19A109.1
C6—C1—S1118.9 (3)C16—C19—H19A109.1
C2—C1—S1122.3 (3)N2—C19—H19B109.1
C3—C2—C1121.1 (4)C16—C19—H19B109.1
C3—C2—H2119.5H19A—C19—H19B107.8
C1—C2—H2119.5N2—C20—C21121.9 (4)
C2—C3—C4119.8 (4)N2—C20—H20119.1
C2—C3—H3120.1C21—C20—H20119.1
C4—C3—H3120.1C20—C21—C22116.4 (4)
C5—C4—C3120.7 (4)C20—C21—C25120.8 (5)
C5—C4—H4119.7C22—C21—C25122.8 (5)
C3—C4—H4119.7C23—C22—C21122.8 (4)
C4—C5—C6120.4 (4)C23—C22—H22118.6
C4—C5—H5119.8C21—C22—H22118.6
C6—C5—H5119.8C24—C23—C22116.9 (4)
C1—C6—C5119.2 (4)C24—C23—C26120.6 (4)
C1—C6—S2119.1 (3)C22—C23—C26122.4 (4)
C5—C6—S2121.7 (3)N2—C24—C23121.4 (4)
C12—C7—C8120.1 (4)N2—C24—H24119.3
C12—C7—S3118.4 (4)C23—C24—H24119.3
C8—C7—S3121.5 (4)C21—C25—H25A109.5
C9—C8—C7118.9 (5)C21—C25—H25B109.5
C9—C8—H8120.5H25A—C25—H25B109.5
C7—C8—H8120.5C21—C25—H25C109.5
C8—C9—C10121.5 (6)H25A—C25—H25C109.5
C8—C9—H9119.2H25B—C25—H25C109.5
C10—C9—H9119.2C23—C26—H26A109.5
C11—C10—C9120.0 (6)C23—C26—H26B109.5
C11—C10—H10120.0H26A—C26—H26B109.5
C9—C10—H10120.0C23—C26—H26C109.5
C10—C11—C12120.2 (5)H26A—C26—H26C109.5
C10—C11—H11119.9H26B—C26—H26C109.5
C12—C11—H11119.9
S1i—Ni1—S1—C168 (100)C8—C7—C12—S4178.9 (3)
S2i—Ni1—S1—C1177.31 (12)S3—C7—C12—S41.5 (4)
S2—Ni1—S1—C12.69 (12)C10—C11—C12—C71.4 (6)
S1i—Ni1—S2—C6176.97 (12)C10—C11—C12—S4179.7 (4)
S1—Ni1—S2—C63.03 (12)Ni2—S4—C12—C72.2 (3)
S2i—Ni1—S2—C659 (100)Ni2—S4—C12—C11178.9 (3)
S4ii—Ni2—S3—C7175.48 (13)O1—N1—C13—C144.3 (9)
S4—Ni2—S3—C74.52 (13)O2—N1—C13—C14179.6 (5)
S3ii—Ni2—S3—C721 (100)O1—N1—C13—C18177.0 (6)
S4ii—Ni2—S4—C12168 (100)O2—N1—C13—C180.9 (8)
S3—Ni2—S4—C123.86 (14)C18—C13—C14—C151.8 (7)
S3ii—Ni2—S4—C12176.14 (14)N1—C13—C14—C15179.5 (4)
Ni1—S1—C1—C61.6 (3)C13—C14—C15—C160.3 (7)
Ni1—S1—C1—C2177.0 (3)C14—C15—C16—C170.9 (6)
C6—C1—C2—C31.7 (6)C14—C15—C16—C19179.0 (4)
S1—C1—C2—C3177.0 (3)C15—C16—C17—C180.6 (6)
C1—C2—C3—C41.3 (6)C19—C16—C17—C18179.3 (4)
C2—C3—C4—C51.0 (7)C14—C13—C18—C172.1 (7)
C3—C4—C5—C61.0 (7)N1—C13—C18—C17179.2 (4)
C2—C1—C6—C51.6 (5)C16—C17—C18—C130.8 (7)
S1—C1—C6—C5177.1 (3)C24—N2—C19—C1650.5 (5)
C2—C1—C6—S2179.6 (3)C20—N2—C19—C16133.2 (4)
S1—C1—C6—S20.9 (4)C17—C16—C19—N265.6 (5)
C4—C5—C6—C11.3 (6)C15—C16—C19—N2114.3 (4)
C4—C5—C6—S2179.2 (3)C24—N2—C20—C210.2 (6)
Ni1—S2—C6—C12.9 (3)C19—N2—C20—C21176.4 (4)
Ni1—S2—C6—C5175.0 (3)N2—C20—C21—C220.0 (6)
Ni2—S3—C7—C124.4 (3)N2—C20—C21—C25180.0 (4)
Ni2—S3—C7—C8176.0 (3)C20—C21—C22—C230.2 (6)
C12—C7—C8—C91.0 (6)C25—C21—C22—C23179.7 (4)
S3—C7—C8—C9178.6 (3)C21—C22—C23—C240.7 (6)
C7—C8—C9—C101.1 (7)C21—C22—C23—C26179.3 (4)
C8—C9—C10—C111.9 (8)C20—N2—C24—C230.8 (6)
C9—C10—C11—C120.7 (8)C19—N2—C24—C23177.0 (3)
C8—C7—C12—C112.2 (6)C22—C23—C24—N21.0 (5)
S3—C7—C12—C11177.4 (3)C26—C23—C24—N2179.5 (3)
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···S2iii0.972.883.697 (4)143
C22—H22···O1iv0.932.573.484 (7)167
Symmetry codes: (iii) x+1, y+1, z+1; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formula(C14H15N2O2)[Ni(C6H4S2)2]
Mr582.41
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.6114 (14), 12.010 (2), 15.317 (3)
α, β, γ (°)84.546 (3), 85.927 (2), 72.435 (3)
V3)1327.5 (4)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.12 × 0.10 × 0.04
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.882, 0.958
No. of measured, independent and
observed [I > 2σ(I)] reflections
6651, 4578, 2424
Rint0.033
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.069, 0.95
No. of reflections4578
No. of parameters321
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.23, 0.18

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19A···S2i0.972.883.697 (4)143
C22—H22···O1ii0.932.573.484 (7)167
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y1, z.
 

Acknowledgements

This work was supported by the Natural Science Foundation of Anhui Province (No. 11040606).

References

First citationAkutagawa, T. & Nakamura, T. (2000). Coord. Chem. Rev. 198, 297–311.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCanadell, E. (1999). Coord. Chem. Rev. 185–186, 629–651.  Web of Science CrossRef CAS Google Scholar
First citationCassoux, P. (1999). Coord. Chem. Rev. 185–186, 213–232.  Web of Science CrossRef CAS Google Scholar
First citationKato, R. (2004). Chem. Rev. 104, 5319–5346.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLiu, G. X., Huang, L. F. & Ren, X. M. (2007). Appl. Organomet. Chem. 21, 1054–1058.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X. M., Meng, Q. J., Song, Y., Hu, C. J., Lu, C. S., Chen, X. Y. & Xue, Z. L. (2002). Inorg. Chem. 41, 5931–5933.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationRen, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem.43, 2569–2576.  Google Scholar
First citationRen, X. M., Sui, Y. X., Liu, G. X. & Xie, J. L. (2008). J. Phys. Chem. A, 112, 8009–8014.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRobertson, N. & Cronin, L. (2002). Coord. Chem. Rev. 227, 93–127.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds