organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1072-o1073

8-O-Acetyl-8-epi-9-de­oxygoniopypyrone

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, bCrystal Materials Research Unit, Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, and cDepartment of Chemistry, Faculty of Science and Technology, Phuket Rajabhat University, Muang, Phuket 83000, Thailand
*Correspondence e-mail: hkfun@usm.my

(Received 29 February 2012; accepted 9 March 2012; online 17 March 2012)

The title compound (systematic name: 7-oxo-3-phenyl-2,6-dioxabicyclo­[3.3.1]nonan-4-yl acetate), C15H16O5, is a styryllactone derivative which was isolated from Goniothalamus macrophyllus. The mol­ecule has two fused rings consisting of a tetra­hydro-2H-pyran and a lactone ring, with the benzene ring and the acetyl group attached to the tetra­hydro-2H-pyran ring. The tetra­hydro-2H-pyran ring is in a standard chair conformation, whereas the lactone ring is in an envelope conformation. In the crystal, mol­ecules are linked by weak C—H⋯O inter­actions into sheets parallel to the ac plane. Weak C—H⋯π inter­actions are also observed.

Related literature

For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For background to Goniothamus plants and the bioactivity of styryllactone compounds, see: Abdul-Wahab et al. (2011[Abdul-Wahab, N.-Z., Shahar, S., Abdullah-Sani, H., Pihie, A. H. L. & Ibrahim, N. (2011). Afr. J. Microbiol. Res. 5, 3138-3143.]); Goh et al. (1995[Goh, S. H., Ee, G. C. L., Chuah, C. H. & Wei, C. (1995). Aust. J. Chem. 48, 199-205.]); Jiang et al. (2011[Jiang, M.-M., Feng, Y.-F., Gao, H., Zhang, X., Tang, J.-S. & Yao, X.-S. (2011). Fitoterapia, 82, 524-527.]); Smitinand (2001[Smitinand, T. (2001). Thai Plant Names, pp. 260-261. Bangkok: Prachachon Publisher.]); Wattanapiromsakul et al. (2005[Wattanapiromsakul, C., Wangsintaweekul, B., Sangprapan, P., Itharat, A. & Keawpradub, N. (2005). Songklanakarin J. Sci. Technol. 27, 480-487.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C15H16O5

  • Mr = 276.28

  • Monoclinic, P 21

  • a = 10.1013 (3) Å

  • b = 5.7749 (2) Å

  • c = 11.2295 (3) Å

  • β = 95.207 (1)°

  • V = 652.36 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.59 × 0.43 × 0.43 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.940, Tmax = 0.956

  • 24278 measured reflections

  • 3105 independent reflections

  • 3044 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.074

  • S = 1.08

  • 3105 reflections

  • 245 parameters

  • 1 restraint

  • All H-atom parameters refined

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C8–C13 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.988 (15) 2.398 (15) 3.3563 (10) 163.2 (11)
C11—H11⋯O5ii 0.981 (16) 2.531 (16) 3.4986 (12) 168.9 (14)
C15—H15A⋯O5iii 0.99 (2) 2.43 (2) 3.4048 (12) 167 (2)
C2—H2ACg1iv 0.986 (16) 2.714 (15) 3.4619 (9) 133.0 (11)
C12—H12⋯Cg1ii 0.97 (2) 2.947 (18) 3.6566 (10) 130.9 (14)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+1]; (ii) [-x, y-{\script{1\over 2}}, -z]; (iii) [-x+1, y-{\script{1\over 2}}, -z]; (iv) [-x, y+{\script{1\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Goniothalamus macrophyllus, a Thai medicinal plant, which is known in Thai as "Ching Dok Diao" belongs to the genus Goniothalamus (Smitinand, 2001). A study of methanolic extracts from the roots and stems of G. macrophyllus shows that the methanolic extracts exhibit good cytotoxicity against breast and lung carcinoma cancer cell lines with IC50 value in range 3.16-5.04 µg/mL (Wattanapiromsakul et al., 2005). In addition, methanolic extract from the leaves of G. umbrosus showed antoxidant, antibacterial and antiviral activities (Abdul-Wahab et al., 2011). The previous reports by Goh et al. (1995) and Jiang et al. (2011) showed that plants in Goniothalamus genus produce styryllactone compounds as major constituents and most of them exhibit potent cytotoxic activity. The above investigations has prompted us to search for cytotoxic components from Goniothalamus plants. Our research on bioactive compounds from G. macrophyllus yields the title compound (I), 8-O-Acetyl-8-epi-9-deoxygoniopypyrone. Herein the crystal structure of (I) was reported.

The molecule of (I) has a bicyclic skeleton (Fig. 1). The tetrahydro-2H-pyran ring (C3–C7/O3) is in a standard chair conformation whereas the lactone ring (C1–C5/O1/O2) adopts an envelope conformation with the puckering C4 atom having a deviation of 0.3806 (9) Å and puckering parameters Q = 0.5424 (9) Å, θ = 49.39 (9)° and φ = 234.03 (12)° (Cremer & Pople, 1975). The benzene ring is attached to the tetrahydro-2H-pyran ring at atom C7. The acetyl group is planar with the r.m.s. deviation of 0.0015 (1) Å for the four non-H atoms (C14/C15/O4/O5). The orientation of the acetyl group is described by the torsion angles C6–O4–C14–C15 = 175.73 (7)° and C6–O4–C14–O5 = -3.72 (12)°. The bond distances in (I) are within normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked into sheets parallel to the ac plane by weak C—H···O interactions (Table 1). Weak C—H···π interactions (Table 1) are also observed.

Related literature top

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to Goniothamus plants and the bioactivity of styryllactone compounds, see: Abdul-Wahab et al. (2011); Goh et al. (1995); Jiang et al. (2011); Smitinand (2001); Wattanapiromsakul et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was isolated from the methanolic extract of the G. macrophyllus by repeated column chromatography. Single crystals suitable for X-ray structure determination were obtained as colorless block-shaped crystals by slow evaporation of the solvent at room temperature after several days. M. p. 467–469 K.

Refinement top

All H atoms were located in difference maps and refined isotropically. A total of 2473 Friedel pairs were merged before final refinement as there is no large anomalous dispersion for the determination of the absolute configuration.

Structure description top

Goniothalamus macrophyllus, a Thai medicinal plant, which is known in Thai as "Ching Dok Diao" belongs to the genus Goniothalamus (Smitinand, 2001). A study of methanolic extracts from the roots and stems of G. macrophyllus shows that the methanolic extracts exhibit good cytotoxicity against breast and lung carcinoma cancer cell lines with IC50 value in range 3.16-5.04 µg/mL (Wattanapiromsakul et al., 2005). In addition, methanolic extract from the leaves of G. umbrosus showed antoxidant, antibacterial and antiviral activities (Abdul-Wahab et al., 2011). The previous reports by Goh et al. (1995) and Jiang et al. (2011) showed that plants in Goniothalamus genus produce styryllactone compounds as major constituents and most of them exhibit potent cytotoxic activity. The above investigations has prompted us to search for cytotoxic components from Goniothalamus plants. Our research on bioactive compounds from G. macrophyllus yields the title compound (I), 8-O-Acetyl-8-epi-9-deoxygoniopypyrone. Herein the crystal structure of (I) was reported.

The molecule of (I) has a bicyclic skeleton (Fig. 1). The tetrahydro-2H-pyran ring (C3–C7/O3) is in a standard chair conformation whereas the lactone ring (C1–C5/O1/O2) adopts an envelope conformation with the puckering C4 atom having a deviation of 0.3806 (9) Å and puckering parameters Q = 0.5424 (9) Å, θ = 49.39 (9)° and φ = 234.03 (12)° (Cremer & Pople, 1975). The benzene ring is attached to the tetrahydro-2H-pyran ring at atom C7. The acetyl group is planar with the r.m.s. deviation of 0.0015 (1) Å for the four non-H atoms (C14/C15/O4/O5). The orientation of the acetyl group is described by the torsion angles C6–O4–C14–C15 = 175.73 (7)° and C6–O4–C14–O5 = -3.72 (12)°. The bond distances in (I) are within normal ranges (Allen et al., 1987).

In the crystal packing (Fig. 2), the molecules are linked into sheets parallel to the ac plane by weak C—H···O interactions (Table 1). Weak C—H···π interactions (Table 1) are also observed.

For ring conformations, see: Cremer & Pople (1975). For bond-length data, see: Allen et al. (1987). For background to Goniothamus plants and the bioactivity of styryllactone compounds, see: Abdul-Wahab et al. (2011); Goh et al. (1995); Jiang et al. (2011); Smitinand (2001); Wattanapiromsakul et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the b axis, showing a sheet of molecules parallel to the ac plane. Weak C—H···O interactions are shown as dashed lines.
8-O-Acetyl-8-epi-9-deoxygoniopypyrone top
Crystal data top
C15H16O5F(000) = 292
Mr = 276.28Dx = 1.406 Mg m3
Monoclinic, P21Melting point = 467–469 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 10.1013 (3) ÅCell parameters from 3105 reflections
b = 5.7749 (2) Åθ = 1.8–35.0°
c = 11.2295 (3) ŵ = 0.11 mm1
β = 95.207 (1)°T = 100 K
V = 652.36 (3) Å3Block, colourless
Z = 20.59 × 0.43 × 0.43 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3105 independent reflections
Radiation source: sealed tube3044 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 35.0°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 1616
Tmin = 0.940, Tmax = 0.956k = 99
24278 measured reflectionsl = 1817
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074All H-atom parameters refined
S = 1.08 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.0379P]
where P = (Fo2 + 2Fc2)/3
3105 reflections(Δ/σ)max = 0.001
245 parametersΔρmax = 0.36 e Å3
1 restraintΔρmin = 0.21 e Å3
Crystal data top
C15H16O5V = 652.36 (3) Å3
Mr = 276.28Z = 2
Monoclinic, P21Mo Kα radiation
a = 10.1013 (3) ŵ = 0.11 mm1
b = 5.7749 (2) ÅT = 100 K
c = 11.2295 (3) Å0.59 × 0.43 × 0.43 mm
β = 95.207 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3105 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
3044 reflections with I > 2σ(I)
Tmin = 0.940, Tmax = 0.956Rint = 0.027
24278 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.074All H-atom parameters refined
S = 1.08Δρmax = 0.36 e Å3
3105 reflectionsΔρmin = 0.21 e Å3
245 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 120.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.38218 (6)0.66249 (12)0.48754 (5)0.01367 (11)
O20.33277 (7)0.47946 (14)0.64890 (6)0.01839 (13)
O30.07398 (6)0.88291 (11)0.39772 (5)0.01228 (10)
O40.31111 (6)0.52721 (11)0.25383 (5)0.01305 (11)
O50.43199 (7)0.73105 (15)0.13134 (6)0.02024 (13)
C10.30578 (8)0.63582 (15)0.57915 (7)0.01278 (13)
C20.19378 (8)0.80331 (15)0.59457 (7)0.01390 (13)
H2A0.2199 (15)0.887 (3)0.6695 (13)0.021 (4)*
H2B0.1169 (15)0.716 (4)0.6069 (13)0.021 (4)*
C30.16268 (8)0.97661 (14)0.49384 (7)0.01248 (12)
H30.1154 (14)1.096 (3)0.5230 (13)0.016 (3)*
C40.29247 (8)1.05337 (15)0.44717 (8)0.01427 (13)
H4B0.3513 (16)1.123 (4)0.5091 (14)0.024 (4)*
H4A0.2808 (16)1.162 (3)0.3857 (13)0.021 (4)*
C50.35311 (7)0.83992 (14)0.39615 (7)0.01247 (13)
H50.4394 (15)0.875 (3)0.3652 (12)0.015 (3)*
C60.25786 (7)0.73974 (14)0.29598 (7)0.01126 (12)
H60.2460 (14)0.846 (3)0.2307 (12)0.015 (3)*
C70.12169 (7)0.68308 (14)0.33982 (6)0.01064 (12)
H70.1354 (14)0.550 (3)0.3951 (12)0.015 (3)*
C80.01788 (7)0.61412 (14)0.24012 (7)0.01132 (12)
C90.09128 (8)0.75649 (15)0.20889 (7)0.01458 (13)
H90.0986 (15)0.900 (3)0.2471 (13)0.020 (3)*
C100.19036 (9)0.68736 (18)0.12145 (8)0.01878 (15)
H100.2673 (16)0.777 (4)0.1031 (15)0.027 (4)*
C110.18009 (9)0.47651 (18)0.06303 (8)0.01850 (15)
H110.2496 (16)0.427 (3)0.0016 (14)0.020 (3)*
C120.07031 (9)0.33484 (17)0.09223 (8)0.01722 (14)
H120.0621 (17)0.185 (4)0.0544 (15)0.029 (4)*
C130.02716 (8)0.40161 (15)0.18141 (7)0.01443 (13)
H130.1009 (16)0.305 (4)0.2043 (15)0.027 (4)*
C140.40180 (8)0.54736 (15)0.17195 (7)0.01314 (13)
C150.45668 (10)0.31577 (18)0.14257 (8)0.01938 (16)
H15A0.493 (2)0.317 (5)0.0635 (18)0.049 (6)*
H15B0.392 (2)0.209 (5)0.1444 (19)0.056 (7)*
H15C0.522 (2)0.284 (6)0.201 (2)0.064 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0109 (2)0.0165 (3)0.0139 (2)0.0029 (2)0.00278 (17)0.0007 (2)
O20.0182 (3)0.0198 (3)0.0173 (3)0.0043 (2)0.0025 (2)0.0040 (2)
O30.0107 (2)0.0131 (2)0.0130 (2)0.00175 (19)0.00023 (17)0.00312 (19)
O40.0137 (2)0.0117 (2)0.0146 (2)0.00091 (19)0.00635 (18)0.00016 (19)
O50.0234 (3)0.0190 (3)0.0200 (3)0.0015 (2)0.0110 (2)0.0048 (2)
C10.0109 (3)0.0152 (3)0.0123 (3)0.0010 (2)0.0008 (2)0.0015 (2)
C20.0130 (3)0.0168 (3)0.0120 (3)0.0034 (3)0.0024 (2)0.0010 (3)
C30.0118 (3)0.0123 (3)0.0133 (3)0.0010 (2)0.0007 (2)0.0025 (2)
C40.0137 (3)0.0115 (3)0.0178 (3)0.0015 (2)0.0023 (2)0.0022 (3)
C50.0105 (3)0.0126 (3)0.0145 (3)0.0006 (2)0.0024 (2)0.0000 (2)
C60.0107 (3)0.0109 (3)0.0126 (3)0.0000 (2)0.0034 (2)0.0004 (2)
C70.0100 (3)0.0107 (3)0.0115 (3)0.0002 (2)0.0024 (2)0.0007 (2)
C80.0110 (3)0.0116 (3)0.0116 (3)0.0010 (2)0.0019 (2)0.0005 (2)
C90.0135 (3)0.0149 (3)0.0150 (3)0.0011 (3)0.0007 (2)0.0014 (3)
C100.0162 (3)0.0211 (4)0.0181 (3)0.0012 (3)0.0037 (3)0.0023 (3)
C110.0177 (3)0.0219 (4)0.0154 (3)0.0034 (3)0.0014 (3)0.0021 (3)
C120.0198 (3)0.0162 (3)0.0156 (3)0.0035 (3)0.0011 (2)0.0034 (3)
C130.0153 (3)0.0128 (3)0.0151 (3)0.0005 (3)0.0010 (2)0.0021 (2)
C140.0127 (3)0.0163 (3)0.0108 (3)0.0021 (3)0.0031 (2)0.0002 (3)
C150.0225 (4)0.0185 (4)0.0180 (4)0.0062 (3)0.0065 (3)0.0017 (3)
Geometric parameters (Å, º) top
O1—C11.3498 (10)C6—C71.5377 (10)
O1—C51.4610 (10)C6—H60.955 (16)
O2—C11.2101 (11)C7—C81.5161 (11)
O3—C71.4295 (10)C7—H70.989 (16)
O3—C31.4440 (10)C8—C91.3945 (11)
O4—C141.3605 (9)C8—C131.4003 (12)
O4—C61.4374 (10)C9—C101.3953 (12)
O5—C141.2048 (11)C9—H90.938 (18)
C1—C21.5103 (11)C10—C111.3915 (14)
C2—C31.5216 (12)C10—H100.942 (19)
C2—H2A0.986 (16)C11—C121.3930 (13)
C2—H2B0.946 (17)C11—H110.981 (16)
C3—C41.5214 (11)C12—C131.3935 (12)
C3—H30.914 (17)C12—H120.97 (2)
C4—C51.5122 (12)C13—H130.946 (18)
C4—H4B0.962 (17)C14—C151.4960 (13)
C4—H4A0.932 (17)C15—H15A0.99 (2)
C5—C61.5262 (11)C15—H15B0.90 (3)
C5—H50.989 (15)C15—H15C0.90 (3)
C1—O1—C5121.54 (6)C7—C6—H6109.2 (8)
C7—O3—C3115.50 (6)O3—C7—C8107.98 (6)
C14—O4—C6116.40 (6)O3—C7—C6108.79 (6)
O2—C1—O1117.88 (7)C8—C7—C6113.48 (6)
O2—C1—C2122.06 (7)O3—C7—H7112.0 (9)
O1—C1—C2120.03 (7)C8—C7—H7107.9 (9)
C1—C2—C3116.25 (6)C6—C7—H7106.7 (8)
C1—C2—H2A105.5 (10)C9—C8—C13118.91 (7)
C3—C2—H2A109.5 (11)C9—C8—C7120.60 (7)
C1—C2—H2B108.0 (11)C13—C8—C7120.43 (7)
C3—C2—H2B110.0 (10)C8—C9—C10120.57 (8)
H2A—C2—H2B107.2 (13)C8—C9—H9119.9 (10)
O3—C3—C4110.32 (6)C10—C9—H9119.5 (10)
O3—C3—C2112.43 (7)C11—C10—C9120.18 (8)
C4—C3—C2108.75 (6)C11—C10—H10118.3 (12)
O3—C3—H3103.9 (9)C9—C10—H10121.4 (12)
C4—C3—H3113.5 (10)C10—C11—C12119.66 (8)
C2—C3—H3107.9 (10)C10—C11—H11120.5 (11)
C5—C4—C3106.52 (7)C12—C11—H11119.8 (11)
C5—C4—H4B111.8 (11)C11—C12—C13120.14 (8)
C3—C4—H4B111.7 (9)C11—C12—H12121.2 (10)
C5—C4—H4A107.2 (11)C13—C12—H12118.5 (10)
C3—C4—H4A113.3 (10)C12—C13—C8120.51 (8)
H4B—C4—H4A106.3 (16)C12—C13—H13121.4 (12)
O1—C5—C4111.60 (6)C8—C13—H13118.1 (12)
O1—C5—C6108.96 (6)O5—C14—O4122.70 (8)
C4—C5—C6109.77 (6)O5—C14—C15126.31 (7)
O1—C5—H5105.4 (9)O4—C14—C15111.00 (7)
C4—C5—H5111.4 (10)C14—C15—H15A111.3 (17)
C6—C5—H5109.6 (8)C14—C15—H15B108.9 (17)
O4—C6—C5109.68 (6)H15A—C15—H15B111 (2)
O4—C6—C7107.22 (6)C14—C15—H15C106 (2)
C5—C6—C7111.54 (6)H15A—C15—H15C110.6 (19)
O4—C6—H6108.6 (9)H15B—C15—H15C109 (2)
C5—C6—H6110.4 (10)
C5—O1—C1—O2177.18 (7)C3—O3—C7—C8178.45 (6)
C5—O1—C1—C24.92 (11)C3—O3—C7—C654.89 (8)
O2—C1—C2—C3174.31 (8)O4—C6—C7—O3171.98 (6)
O1—C1—C2—C37.88 (11)C5—C6—C7—O351.89 (8)
C7—O3—C3—C461.21 (8)O4—C6—C7—C867.80 (8)
C7—O3—C3—C260.37 (8)C5—C6—C7—C8172.11 (6)
C1—C2—C3—O384.88 (8)O3—C7—C8—C98.26 (10)
C1—C2—C3—C437.59 (9)C6—C7—C8—C9112.42 (8)
O3—C3—C4—C560.54 (8)O3—C7—C8—C13168.99 (7)
C2—C3—C4—C563.20 (8)C6—C7—C8—C1370.34 (9)
C1—O1—C5—C432.61 (10)C13—C8—C9—C100.66 (12)
C1—O1—C5—C688.77 (8)C7—C8—C9—C10176.62 (8)
C3—C4—C5—O161.42 (8)C8—C9—C10—C111.02 (13)
C3—C4—C5—C659.49 (8)C9—C10—C11—C120.05 (14)
C14—O4—C6—C583.04 (8)C10—C11—C12—C131.47 (14)
C14—O4—C6—C7155.69 (6)C11—C12—C13—C81.83 (13)
O1—C5—C6—O453.13 (7)C9—C8—C13—C120.76 (12)
C4—C5—C6—O4175.62 (6)C7—C8—C13—C12178.05 (8)
O1—C5—C6—C765.50 (8)C6—O4—C14—O53.72 (12)
C4—C5—C6—C756.99 (8)C6—O4—C14—C15175.73 (7)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.988 (15)2.398 (15)3.3563 (10)163.2 (11)
C11—H11···O5ii0.981 (16)2.531 (16)3.4986 (12)168.9 (14)
C15—H15A···O5iii0.99 (2)2.43 (2)3.4048 (12)167 (2)
C2—H2A···Cg1iv0.986 (16)2.714 (15)3.4619 (9)133.0 (11)
C12—H12···Cg1ii0.97 (2)2.947 (18)3.6566 (10)130.9 (14)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y1/2, z; (iv) x, y+1/2, z+1.

Experimental details

Crystal data
Chemical formulaC15H16O5
Mr276.28
Crystal system, space groupMonoclinic, P21
Temperature (K)100
a, b, c (Å)10.1013 (3), 5.7749 (2), 11.2295 (3)
β (°) 95.207 (1)
V3)652.36 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.59 × 0.43 × 0.43
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.940, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
24278, 3105, 3044
Rint0.027
(sin θ/λ)max1)0.807
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.074, 1.08
No. of reflections3105
No. of parameters245
No. of restraints1
H-atom treatmentAll H-atom parameters refined
Δρmax, Δρmin (e Å3)0.36, 0.21

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C8–C13 ring.
D—H···AD—HH···AD···AD—H···A
C5—H5···O2i0.988 (15)2.398 (15)3.3563 (10)163.2 (11)
C11—H11···O5ii0.981 (16)2.531 (16)3.4986 (12)168.9 (14)
C15—H15A···O5iii0.99 (2)2.43 (2)3.4048 (12)167 (2)
C2—H2A···Cg1iv0.986 (16)2.714 (15)3.4619 (9)133.0 (11)
C12—H12···Cg1ii0.97 (2)2.947 (18)3.6566 (10)130.9 (14)
Symmetry codes: (i) x+1, y+1/2, z+1; (ii) x, y1/2, z; (iii) x+1, y1/2, z; (iv) x, y+1/2, z+1.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Additional correspondence author, e-mail: suchada.c@psu.ac.th. Thomson Reuters ResearcherID: A-5085-2009.

Acknowledgements

SC and NB thank Prince of Songkla University for financial support through the Crystal Materials Research Unit. UP thanks Phuket Rajabhat University for a research grant. The authors also thank Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160.

References

First citationAbdul-Wahab, N.-Z., Shahar, S., Abdullah-Sani, H., Pihie, A. H. L. & Ibrahim, N. (2011). Afr. J. Microbiol. Res. 5, 3138–3143.  CAS Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationGoh, S. H., Ee, G. C. L., Chuah, C. H. & Wei, C. (1995). Aust. J. Chem. 48, 199–205.  CAS Google Scholar
First citationJiang, M.-M., Feng, Y.-F., Gao, H., Zhang, X., Tang, J.-S. & Yao, X.-S. (2011). Fitoterapia, 82, 524–527.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmitinand, T. (2001). Thai Plant Names, pp. 260–261. Bangkok: Prachachon Publisher.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWattanapiromsakul, C., Wangsintaweekul, B., Sangprapan, P., Itharat, A. & Keawpradub, N. (2005). Songklanakarin J. Sci. Technol. 27, 480–487.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1072-o1073
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds