organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1-(5-Benzyl­sulfanyl-2,2-di­methyl-2,3-di­hydro-1,3,4-thia­diazol-3-yl)-2,2-di­methyl­propan-1-one

aDepartment of Chemical Sciences, Faculty of Science and Technology, Universiti Malaysia Terengganu, Mengabang Telipot, 21030 Kuala Terengganu, Malaysia, and bSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: arazaki@usm.my

(Received 1 March 2012; accepted 23 March 2012; online 31 March 2012)

In the title compound, C16H22N2OS2, the S atom of the thia­diazole ring and the attached methyl groups are disordered over two orientations with a refined site-occupancy ratio of 0.641 (11):0.359 (11). The thia­diazole ring is in a twist conformation in both disorder components. The mean plane through the thia­diazole ring makes dihedral angles of 77.39 (8) (major component) and 67.45 (11)° (minor component) with the benzene ring. Intra­molecular C—H⋯N inter­actions generate two S(6) ring motifs. In the crystal, mol­ecules are linked by C—H⋯O hydrogen bonds into zigzag chains parallel to the b axis.

Related literature

For background to the pharmacological properties of thia­diazole derivatives, see: Noolvi et al. (2011[Noolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411-4418.]); Yusuf et al. (2008[Yusuf, M., Khan, R. A. & Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029-8034.]). For a related structure, see: Fun et al. (2011[Fun, H.-K., Chantrapromma, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o163.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]). For ring conformations, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C16H22N2OS2

  • Mr = 322.48

  • Monoclinic, P 21 /c

  • a = 16.6174 (2) Å

  • b = 10.5178 (1) Å

  • c = 9.6758 (1) Å

  • β = 96.345 (1)°

  • V = 1680.76 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.26 × 0.19 × 0.12 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.922, Tmax = 0.962

  • 22216 measured reflections

  • 5972 independent reflections

  • 4678 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.092

  • S = 1.02

  • 5972 reflections

  • 225 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14B⋯N1 0.98 2.36 2.9893 (15) 122
C15—H15B⋯N1 0.98 2.37 2.9803 (15) 120
C11—H11B⋯O1i 0.98 2.56 3.490 (4) 159
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2009[Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Thiadiazole derivatives have been reported to posses anti-cancer (Noolvi et al., 2011) and anti-depressant activity (Yusuf et al., 2008). The title compound is one of these thiadiazole derivatives, and its crystal structure is reported herein.

In the molecule of the title compound (Fig. 1), the S atom of the thiadiazole ring and the attached dimethyl groups (C10/C10X and C11/C11X) are disordered over two orientations with a refined site-occupancy ratio of 0.641 (11):0.359 (11). The disordered thiadiazole (S1/N1/N2/C8/C9 and S1X/N1/N2/C8/C9) rings are both in twist conformation (Cremer & Pople, 1975) in which the ring is twisted about the C9–S1 bond [puckering parameters: Q = 0.1477 (19) Å and φ= 167.7 (5)°] and about the S1X–C8 bond [puckering parameters: Q = 0.131 (2) Å and φ= 298.6 (8)°], respectively. The mean plane through the thiadiazole rings make dihedral angles of 77.39 (8) and 67.45 (11)°, respectively, with the benzene (C1–C6) ring. Intramolecular C14—H14B···N1 and C15—H15B···N1 interactions (Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The bond lengths and angles are within normal ranges and are comparable to those reported in a related structure (Fun et al., 2011). The crystal packing is shown in Fig. 2. Intermolecular C11—H11B···O1 (Table 1) hydrogen bonds link the molecules into one dimensional zigzag chains parallel to the b axis.

Related literature top

For background to the pharmacological properties of thiadiazole derivatives, see: Noolvi et al. (2011); Yusuf et al. (2008). For a related structure, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

Experimental top

A solution of pivaloylisothiocyanate (1.0 g, 8 mmol) in 30 ml acetone was added into a flask containing 30 ml acetone solution of s-benzyldithiocarbazate (1.5 g, 8.00 mmol). The mixture was refluxed for 4 h, then, the solution was filtered-off and left to evaporate at room temperature. Colourless crystals suitable for X-ray analyisis were obtained after one day on slow evaporation of the solvent (yield 60%, M.p. 503.5–504.5 K, IR(KBr)cm-1: 1334.72 (ν C—N), 1547.95 (ν CN), 1647.08 (ν CO), 8944.79 (ν C—S). 1H NMR (CDCl3)δp.p.m. 1.289 (s, 9H, -(CH3)3), 2.004 (s, 6H, -(CH3)2), 4.330 (s, 2H, –CH2), 7.35–7.45 (m, 2H, ar-H). 13C NMR (CDCl3)δp.p.m. 127.86–135.40 (6 C, ar-C), 144.57 (thiadiazole carbon), 176.72 (CO), 27.06–37.50(4 C, –C-(CH3)3). Anal. Found (calc.) for C16H22N2OS2 (%): C, 59.59(58.98); H, 6.88(6.86); N, 8.69(8.66); S, 19.89(19.86).

Refinement top

The S atom of the thiadiazole ring and the attached dimethyl groups (C10/C10X) and C11/C11X) are disordered over two orientations with a refined site-occupancy ratio of 0.641 (11):0.359 (11). All H atoms were positioned geometrically [C–H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups.

Structure description top

Thiadiazole derivatives have been reported to posses anti-cancer (Noolvi et al., 2011) and anti-depressant activity (Yusuf et al., 2008). The title compound is one of these thiadiazole derivatives, and its crystal structure is reported herein.

In the molecule of the title compound (Fig. 1), the S atom of the thiadiazole ring and the attached dimethyl groups (C10/C10X and C11/C11X) are disordered over two orientations with a refined site-occupancy ratio of 0.641 (11):0.359 (11). The disordered thiadiazole (S1/N1/N2/C8/C9 and S1X/N1/N2/C8/C9) rings are both in twist conformation (Cremer & Pople, 1975) in which the ring is twisted about the C9–S1 bond [puckering parameters: Q = 0.1477 (19) Å and φ= 167.7 (5)°] and about the S1X–C8 bond [puckering parameters: Q = 0.131 (2) Å and φ= 298.6 (8)°], respectively. The mean plane through the thiadiazole rings make dihedral angles of 77.39 (8) and 67.45 (11)°, respectively, with the benzene (C1–C6) ring. Intramolecular C14—H14B···N1 and C15—H15B···N1 interactions (Table 1) generate two S(6) ring motifs (Bernstein et al., 1995). The bond lengths and angles are within normal ranges and are comparable to those reported in a related structure (Fun et al., 2011). The crystal packing is shown in Fig. 2. Intermolecular C11—H11B···O1 (Table 1) hydrogen bonds link the molecules into one dimensional zigzag chains parallel to the b axis.

For background to the pharmacological properties of thiadiazole derivatives, see: Noolvi et al. (2011); Yusuf et al. (2008). For a related structure, see: Fun et al. (2011). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986). For ring conformations, see: Cremer & Pople (1975).

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT (Bruker, 2009); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with 30% probability displacement ellipsoids. Dashed lines indicate intramolecular hydrogen bonds. Bonds involving the minor component of the disorder are shown as empty sticks.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. The H atoms not involved in the intermolecular interactions (dashed lines) are omitted for clarity. Only major disordered components are shown.
1-(5-Benzylsulfanyl-2,2-dimethyl-2,3-dihydro-1,3,4-thiadiazol-3-yl)- 2,2-dimethylpropan-1-one top
Crystal data top
C16H22N2OS2F(000) = 688
Mr = 322.48Dx = 1.274 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6904 reflections
a = 16.6174 (2) Åθ = 2.9–32.3°
b = 10.5178 (1) ŵ = 0.32 mm1
c = 9.6758 (1) ÅT = 100 K
β = 96.345 (1)°Block, colourless
V = 1680.76 (3) Å30.26 × 0.19 × 0.12 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5972 independent reflections
Radiation source: fine-focus sealed tube4678 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
φ and ω scansθmax = 32.4°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
h = 2513
Tmin = 0.922, Tmax = 0.962k = 1515
22216 measured reflectionsl = 1214
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0355P)2 + 0.5012P]
where P = (Fo2 + 2Fc2)/3
5972 reflections(Δ/σ)max = 0.001
225 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H22N2OS2V = 1680.76 (3) Å3
Mr = 322.48Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.6174 (2) ŵ = 0.32 mm1
b = 10.5178 (1) ÅT = 100 K
c = 9.6758 (1) Å0.26 × 0.19 × 0.12 mm
β = 96.345 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
5972 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
4678 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.962Rint = 0.033
22216 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.092H-atom parameters constrained
S = 1.02Δρmax = 0.38 e Å3
5972 reflectionsΔρmin = 0.25 e Å3
225 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.36774 (15)0.26997 (19)0.2500 (3)0.0233 (4)0.641 (11)
S1X0.3827 (2)0.28188 (18)0.2089 (6)0.0216 (6)0.359 (11)
S20.214397 (18)0.34659 (3)0.07503 (3)0.01843 (7)
O10.41502 (5)0.14077 (8)0.14798 (9)0.02125 (18)
N10.28175 (6)0.11644 (9)0.08318 (10)0.01500 (18)
N20.34822 (6)0.04481 (9)0.13754 (10)0.01761 (19)
C10.09412 (8)0.41815 (12)0.21819 (12)0.0227 (2)
H1A0.14670.42430.24750.027*
C20.03192 (8)0.49319 (13)0.28083 (14)0.0279 (3)
H2A0.04200.55050.35280.033*
C30.04488 (8)0.48490 (12)0.23872 (14)0.0250 (3)
H3A0.08750.53600.28220.030*
C40.05940 (7)0.40174 (11)0.13292 (13)0.0223 (2)
H4A0.11200.39610.10360.027*
C50.00308 (7)0.32658 (11)0.06983 (12)0.0193 (2)
H5A0.00700.27010.00290.023*
C60.08002 (7)0.33358 (10)0.11244 (11)0.0166 (2)
C70.14763 (7)0.25122 (11)0.04636 (12)0.0183 (2)
H7A0.17860.21550.11900.022*
H7B0.12500.17980.00360.022*
C80.28772 (7)0.23196 (10)0.12453 (11)0.0161 (2)
C90.41461 (7)0.11385 (10)0.22346 (11)0.0159 (2)
C100.4419 (3)0.0577 (4)0.3624 (4)0.0267 (7)0.641 (11)
H10A0.46950.02320.35000.040*0.641 (11)
H10B0.39490.04310.41310.040*0.641 (11)
H10C0.47940.11650.41530.040*0.641 (11)
C10X0.4118 (6)0.0686 (8)0.3771 (8)0.0296 (14)0.359 (11)
H10D0.42940.02020.38600.044*0.359 (11)
H10E0.35630.07600.40160.044*0.359 (11)
H10F0.44790.12180.43970.044*0.359 (11)
C110.4847 (2)0.1317 (4)0.1339 (4)0.0252 (7)0.641 (11)
H11A0.50990.04910.11950.038*0.641 (11)
H11B0.52510.18920.18140.038*0.641 (11)
H11C0.46390.16800.04380.038*0.641 (11)
C11X0.4988 (4)0.1030 (7)0.1826 (10)0.0275 (14)0.359 (11)
H11D0.51840.01580.19860.041*0.359 (11)
H11E0.53460.16200.23850.041*0.359 (11)
H11F0.49830.12420.08390.041*0.359 (11)
C120.35519 (7)0.08096 (10)0.10018 (11)0.0146 (2)
C130.28826 (7)0.14282 (10)0.00111 (11)0.0147 (2)
C140.28175 (7)0.07640 (11)0.14377 (11)0.0178 (2)
H14A0.33460.07830.17990.027*
H14B0.26480.01200.13360.027*
H14C0.24170.12070.20860.027*
C150.20567 (7)0.14025 (11)0.05629 (12)0.0202 (2)
H15A0.16670.19080.00410.030*
H15B0.18650.05230.05920.030*
H15C0.21120.17600.15040.030*
C160.31270 (8)0.28173 (10)0.02075 (13)0.0210 (2)
H16A0.36490.28460.05880.031*
H16B0.27150.32390.08520.031*
H16C0.31730.32550.06920.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0205 (5)0.0179 (4)0.0287 (7)0.0056 (3)0.0097 (5)0.0087 (4)
S1X0.0196 (8)0.0125 (4)0.0302 (13)0.0001 (4)0.0078 (8)0.0024 (6)
S20.01715 (14)0.01447 (12)0.02242 (14)0.00448 (10)0.00341 (11)0.00322 (10)
O10.0199 (4)0.0168 (4)0.0253 (4)0.0047 (3)0.0053 (3)0.0004 (3)
N10.0120 (4)0.0150 (4)0.0175 (4)0.0024 (3)0.0007 (3)0.0005 (3)
N20.0152 (5)0.0142 (4)0.0215 (5)0.0033 (3)0.0065 (4)0.0029 (3)
C10.0196 (6)0.0273 (6)0.0219 (6)0.0068 (5)0.0048 (5)0.0048 (5)
C20.0276 (7)0.0321 (7)0.0243 (6)0.0092 (5)0.0042 (5)0.0108 (5)
C30.0204 (6)0.0257 (6)0.0277 (6)0.0078 (5)0.0030 (5)0.0033 (5)
C40.0147 (5)0.0203 (5)0.0314 (6)0.0012 (4)0.0002 (5)0.0008 (5)
C50.0177 (6)0.0171 (5)0.0227 (5)0.0007 (4)0.0003 (4)0.0007 (4)
C60.0167 (5)0.0152 (5)0.0168 (5)0.0029 (4)0.0024 (4)0.0018 (4)
C70.0169 (5)0.0163 (5)0.0204 (5)0.0027 (4)0.0037 (4)0.0021 (4)
C80.0149 (5)0.0157 (5)0.0171 (5)0.0023 (4)0.0013 (4)0.0013 (4)
C90.0143 (5)0.0144 (4)0.0180 (5)0.0018 (4)0.0029 (4)0.0025 (4)
C100.037 (2)0.0245 (11)0.0163 (13)0.0004 (14)0.0060 (14)0.0003 (9)
C10X0.043 (4)0.025 (2)0.020 (2)0.009 (3)0.001 (3)0.0002 (17)
C110.0236 (14)0.0246 (14)0.0280 (16)0.0058 (10)0.0061 (12)0.0046 (11)
C11X0.020 (2)0.024 (2)0.040 (4)0.0046 (18)0.007 (2)0.010 (2)
C120.0162 (5)0.0134 (4)0.0142 (5)0.0011 (4)0.0018 (4)0.0008 (4)
C130.0153 (5)0.0136 (4)0.0149 (5)0.0005 (4)0.0007 (4)0.0004 (4)
C140.0199 (6)0.0182 (5)0.0147 (5)0.0004 (4)0.0004 (4)0.0001 (4)
C150.0178 (6)0.0202 (5)0.0229 (5)0.0037 (4)0.0043 (5)0.0005 (4)
C160.0258 (6)0.0142 (5)0.0223 (5)0.0004 (4)0.0004 (5)0.0015 (4)
Geometric parameters (Å, º) top
S1—C81.7448 (16)C9—C111.539 (3)
S1—C91.8473 (15)C9—C10X1.566 (8)
S1X—C81.774 (2)C10—H10A0.9800
S1X—C91.846 (2)C10—H10B0.9800
S2—C81.7432 (11)C10—H10C0.9800
S2—C71.8245 (12)C10X—H10D0.9800
O1—C121.2233 (13)C10X—H10E0.9800
N1—C81.2795 (14)C10X—H10F0.9800
N1—N21.3913 (13)C11—H11A0.9800
N2—C121.3796 (14)C11—H11B0.9800
N2—C91.4942 (14)C11—H11C0.9800
C1—C21.3857 (17)C11X—H11D0.9800
C1—C61.3950 (16)C11X—H11E0.9800
C1—H1A0.9500C11X—H11F0.9800
C2—C31.3847 (18)C12—C131.5428 (15)
C2—H2A0.9500C13—C161.5339 (15)
C3—C41.3878 (18)C13—C151.5365 (16)
C3—H3A0.9500C13—C141.5401 (15)
C4—C51.3912 (17)C14—H14A0.9800
C4—H4A0.9500C14—H14B0.9800
C5—C61.3880 (16)C14—H14C0.9800
C5—H5A0.9500C15—H15A0.9800
C6—C71.5042 (16)C15—H15B0.9800
C7—H7A0.9900C15—H15C0.9800
C7—H7B0.9900C16—H16A0.9800
C9—C101.492 (4)C16—H16B0.9800
C9—C11X1.499 (6)C16—H16C0.9800
C8—S1—C990.02 (7)C11X—C9—S1121.6 (2)
C8—S1X—C989.16 (10)C11—C9—S1109.09 (13)
C8—S2—C798.83 (5)C10X—C9—S194.7 (3)
C8—N1—N2111.41 (9)C9—C10—H10A109.5
C12—N2—N1120.42 (9)C9—C10—H10B109.5
C12—N2—C9122.25 (9)C9—C10—H10C109.5
N1—N2—C9116.98 (8)C9—C10X—H10D109.5
C2—C1—C6120.42 (12)C9—C10X—H10E109.5
C2—C1—H1A119.8H10D—C10X—H10E109.5
C6—C1—H1A119.8C9—C10X—H10F109.5
C3—C2—C1120.18 (12)H10D—C10X—H10F109.5
C3—C2—H2A119.9H10E—C10X—H10F109.5
C1—C2—H2A119.9C9—C11—H11A109.5
C2—C3—C4119.85 (11)C9—C11—H11B109.5
C2—C3—H3A120.1C9—C11—H11C109.5
C4—C3—H3A120.1C9—C11X—H11D109.5
C3—C4—C5119.98 (12)C9—C11X—H11E109.5
C3—C4—H4A120.0H11D—C11X—H11E109.5
C5—C4—H4A120.0C9—C11X—H11F109.5
C6—C5—C4120.45 (11)H11D—C11X—H11F109.5
C6—C5—H5A119.8H11E—C11X—H11F109.5
C4—C5—H5A119.8O1—C12—N2118.84 (10)
C5—C6—C1119.12 (11)O1—C12—C13121.47 (9)
C5—C6—C7120.83 (10)N2—C12—C13119.69 (9)
C1—C6—C7120.06 (11)C16—C13—C15108.72 (9)
C6—C7—S2109.24 (8)C16—C13—C14108.32 (9)
C6—C7—H7A109.8C15—C13—C14109.81 (9)
S2—C7—H7A109.8C16—C13—C12107.35 (9)
C6—C7—H7B109.8C15—C13—C12111.90 (9)
S2—C7—H7B109.8C14—C13—C12110.64 (9)
H7A—C7—H7B108.3C13—C14—H14A109.5
N1—C8—S2122.90 (9)C13—C14—H14B109.5
N1—C8—S1117.51 (10)H14A—C14—H14B109.5
S2—C8—S1119.24 (7)C13—C14—H14C109.5
N1—C8—S1X117.33 (12)H14A—C14—H14C109.5
S2—C8—S1X118.74 (9)H14B—C14—H14C109.5
C10—C9—N2116.2 (2)C13—C15—H15A109.5
C10—C9—C11X90.4 (3)C13—C15—H15B109.5
N2—C9—C11X118.0 (3)H15A—C15—H15B109.5
C10—C9—C11112.43 (18)C13—C15—H15C109.5
N2—C9—C11107.73 (16)H15A—C15—H15C109.5
N2—C9—C10X106.4 (3)H15B—C15—H15C109.5
C11X—C9—C10X110.7 (3)C13—C16—H16A109.5
N2—C9—S1X103.56 (9)C13—C16—H16B109.5
C11X—C9—S1X108.7 (2)H16A—C16—H16B109.5
C10X—C9—S1X109.0 (3)C13—C16—H16C109.5
C10—C9—S1108.51 (15)H16A—C16—H16C109.5
N2—C9—S1102.27 (8)H16B—C16—H16C109.5
C8—N1—N2—C12176.95 (10)N1—N2—C9—C11103.8 (2)
C8—N1—N2—C93.69 (13)C12—N2—C9—C10X77.1 (4)
C6—C1—C2—C30.1 (2)N1—N2—C9—C10X109.8 (4)
C1—C2—C3—C40.4 (2)C12—N2—C9—S1X168.1 (2)
C2—C3—C4—C50.26 (19)N1—N2—C9—S1X5.0 (3)
C3—C4—C5—C60.34 (18)C12—N2—C9—S1175.75 (17)
C4—C5—C6—C10.79 (17)N1—N2—C9—S111.12 (18)
C4—C5—C6—C7179.04 (11)C8—S1X—C9—C10123.1 (4)
C2—C1—C6—C50.66 (18)C8—S1X—C9—N28.7 (3)
C2—C1—C6—C7179.17 (12)C8—S1X—C9—C11X135.0 (5)
C5—C6—C7—S2103.10 (11)C8—S1X—C9—C11118.0 (4)
C1—C6—C7—S277.07 (12)C8—S1X—C9—C10X104.3 (5)
C8—S2—C7—C6176.36 (8)C8—S1X—C9—S178.5 (3)
N2—N1—C8—S2179.94 (8)C8—S1—C9—C10134.8 (3)
N2—N1—C8—S17.0 (2)C8—S1—C9—N211.51 (19)
N2—N1—C8—S1X11.7 (3)C8—S1—C9—C11X122.7 (5)
C7—S2—C8—N14.34 (11)C8—S1—C9—C11102.4 (3)
C7—S2—C8—S1177.32 (18)C8—S1—C9—C10X119.5 (4)
C7—S2—C8—S1X163.8 (3)C8—S1—C9—S1X84.9 (3)
C9—S1—C8—N111.8 (2)N1—N2—C12—O1178.79 (10)
C9—S1—C8—S2174.86 (9)C9—N2—C12—O15.89 (16)
C9—S1—C8—S1X81.9 (3)N1—N2—C12—C130.76 (15)
C9—S1X—C8—N112.7 (3)C9—N2—C12—C13173.67 (9)
C9—S1X—C8—S2178.57 (12)O1—C12—C13—C161.05 (14)
C9—S1X—C8—S182.3 (3)N2—C12—C13—C16179.41 (10)
C12—N2—C9—C1057.8 (3)O1—C12—C13—C15120.25 (11)
N1—N2—C9—C10129.1 (2)N2—C12—C13—C1560.21 (13)
C12—N2—C9—C11X48.0 (5)O1—C12—C13—C14116.95 (11)
N1—N2—C9—C11X125.2 (4)N2—C12—C13—C1462.59 (13)
C12—N2—C9—C1169.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···N10.982.362.9893 (15)122
C15—H15B···N10.982.372.9803 (15)120
C11—H11B···O1i0.982.563.490 (4)159
Symmetry code: (i) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC16H22N2OS2
Mr322.48
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)16.6174 (2), 10.5178 (1), 9.6758 (1)
β (°) 96.345 (1)
V3)1680.76 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.32
Crystal size (mm)0.26 × 0.19 × 0.12
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2009)
Tmin, Tmax0.922, 0.962
No. of measured, independent and
observed [I > 2σ(I)] reflections
22216, 5972, 4678
Rint0.033
(sin θ/λ)max1)0.754
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.092, 1.02
No. of reflections5972
No. of parameters225
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.25

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker, 2009), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14B···N10.98002.36002.9893 (15)122.00
C15—H15B···N10.98002.37002.9803 (15)120.00
C11—H11B···O1i0.98002.56003.490 (4)159.00
Symmetry code: (i) x+1, y+1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-5599-2009.

Acknowledgements

The authors thank the Malaysian Government, Universiti Malaysia Terengganu and Universiti Sains Malaysia for research facilities and the Fundamental Research Grant Scheme (FRGS) Nos. 203/PFIZIK/6711171 and FRGS 59166 to conduct this work.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFun, H.-K., Chantrapromma, S., Chandrakantha, B., Isloor, A. M. & Shetty, P. (2011). Acta Cryst. E67, o163.  Web of Science CrossRef IUCr Journals Google Scholar
First citationNoolvi, M. N., Patel, H. M., Singh, N., Gadad, A. K., Cameotra, S. S. & Badiger, A. (2011). Eur. J. Med. Chem. 46, 4411–4418.  Web of Science CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYusuf, M., Khan, R. A. & Ahmed, B. (2008). Bioorg. Med. Chem. 16, 8029–8034.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds