organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-1-{4-[Bis(4-meth­­oxy­phen­yl)meth­yl]piperazin-1-yl}-3-(4-eth­­oxy-3-meth­­oxy­phen­yl)prop-2-en-1-one

aSchool of Chemistry and Chemical Engineering, Southeast University, Sipailou No. 2 Nanjing, Nanjing 210096, People's Republic of China, bCentre of Laboratory Animals, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China, and cSchool of Pharmacy, Nanjing Medical University, Hanzhong Road No. 140 Nanjing, Nanjing 210029, People's Republic of China
*Correspondence e-mail: wubin@njmu.edu.cn

(Received 8 March 2012; accepted 23 March 2012; online 31 March 2012)

In the mol­ecule of the title compound, C31H36N2O5, the piperazine ring displays a chair conformation. The dihedral angle between the benzene rings of the bis­(4-meth­oxy­phen­yl)methyl group is 83.42 (15)°. In the crystal, centrosymmetric­ally related mol­ecules are linked through pairs of C—H⋯O hydrogen bonds into dimers, generating an R22(10) ring motif. The dimers are further connected into chains parallel to [2-10] by C—H⋯O hydrogen bonds involving the meth­oxy groups.

Related literature

For a related structure and background to cinnamic acid derivatives, see: Teng et al. (2011[Teng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.]); Zhong et al. (2012[Zhong, Y., Zhang, X. P. & Wu, B. (2012). Acta Cryst. E68, o298.]). For synthetic details, see: Wu et al. (2008[Wu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163-1166.]).

[Scheme 1]

Experimental

Crystal data
  • C31H36N2O5

  • Mr = 516.62

  • Triclinic, [P \overline 1]

  • a = 8.7450 (17) Å

  • b = 11.635 (2) Å

  • c = 13.967 (3) Å

  • α = 84.07 (3)°

  • β = 78.80 (3)°

  • γ = 80.48 (3)°

  • V = 1371.1 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.975, Tmax = 0.992

  • 5385 measured reflections

  • 5029 independent reflections

  • 2919 reflections with I > 2σ(I)

  • Rint = 0.024

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.185

  • S = 1.00

  • 5029 reflections

  • 343 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17A⋯O2i 0.97 2.44 3.286 (4) 146
C22—H22A⋯O3ii 0.93 2.60 3.476 (3) 157
Symmetry codes: (i) -x, -y+2, -z+1; (ii) -x+2, -y+1, -z+1.

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994[Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As a continuation of our study on the characterization of cinnamic acid derivatives (Teng et al., 2011; Zhong & Wu, 2012), we present here the crystal structure title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Teng et al., 2011; Zhong et al., 2012). The molecule exists in an E configulation with respect to the C21C22 ethene bond [1.325 (4) Å]. The piperazine ring adopts a chair conformation with puckering parameters Q = 0.569 (3) Å, θ = 4.9 (3)° and φ = 4(4)°. In the crystal (Fig. 2), centrosymmetrically related molecules are linked by intermolecular C—H···O hydrogen bonds into dimers (Table 1), generating an R22(10) ring motif. The dimers are further connected into chains parallel to the [2 -1 0] direction by intermolecular C—H···O hydrogen bonds involving the O2 methoxy oxygen atom.

Related literature top

For a related structure and background to cinnamic acid derivatives, see: Teng et al. (2011); Zhong et al. (2012). For synthetic details, see: Wu et al. (2008).

Experimental top

The synthesis follows the method of Wu et al. (2008). The title compound was prepared by stirring a mixture of (E)-3-(4-ethoxy-3-methoxyphenyl) acrylic acid (0.889 g; 4 mmol), thionyl chloride (2 ml) and dichloromethane (30 ml) for 6 h at room temperature. The solvent was removed under reduced pressure. The residue was dissolved in acetone (15 ml) and reacted with 1-(bis(4-methoxyphenyl)methyl)iperazine (1.874 g; 6 mmol) in the presence of triethylamine (5 ml) for 12 h at room temperature. The resultant mixture was cooled. The solid obtained was filtered and was recrystallized from ethanol. The colourless single crystals of the title compound used for X-ray diffraction studies were grown by slow evaporation at room temperature of an ethanol:ethyl acetate:chloroform (3:1:1 v/i>v/i>v) solution.

Refinement top

All hydrogen atoms were positioned geometrically with C—H distances ranging from 0.93 Å to 0.98 Å and refined as riding on their parent atoms, with Uiso(H) = 1.2 or 1.5Ueq(C).

Structure description top

As a continuation of our study on the characterization of cinnamic acid derivatives (Teng et al., 2011; Zhong & Wu, 2012), we present here the crystal structure title compound (I).

In (I) (Fig. 1), all bond lengths and angles are normal and correspond to those observed in related compounds (Teng et al., 2011; Zhong et al., 2012). The molecule exists in an E configulation with respect to the C21C22 ethene bond [1.325 (4) Å]. The piperazine ring adopts a chair conformation with puckering parameters Q = 0.569 (3) Å, θ = 4.9 (3)° and φ = 4(4)°. In the crystal (Fig. 2), centrosymmetrically related molecules are linked by intermolecular C—H···O hydrogen bonds into dimers (Table 1), generating an R22(10) ring motif. The dimers are further connected into chains parallel to the [2 -1 0] direction by intermolecular C—H···O hydrogen bonds involving the O2 methoxy oxygen atom.

For a related structure and background to cinnamic acid derivatives, see: Teng et al. (2011); Zhong et al. (2012). For synthetic details, see: Wu et al. (2008).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound, with intermolecular C—H···O hydrogen bonds drawn as dashed lines.
(E)-1-{4-[Bis(4-methoxyphenyl)methyl]piperazin-1-yl}-3-(4-ethoxy-3- methoxyphenyl)prop-2-en-1-one top
Crystal data top
C31H36N2O5Z = 2
Mr = 516.62F(000) = 552
Triclinic, P1Dx = 1.251 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7450 (17) ÅCell parameters from 25 reflections
b = 11.635 (2) Åθ = 10–13°
c = 13.967 (3) ŵ = 0.09 mm1
α = 84.07 (3)°T = 293 K
β = 78.80 (3)°Block, colourless
γ = 80.48 (3)°0.30 × 0.20 × 0.10 mm
V = 1371.1 (5) Å3
Data collection top
Enraf–Nonius CAD-4
diffractometer
2919 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 25.4°, θmin = 1.5°
ω/2θ scansh = 010
Absorption correction: ψ scan
(North et al., 1968)
k = 1314
Tmin = 0.975, Tmax = 0.992l = 1616
5385 measured reflections3 standard reflections every 200 reflections
5029 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.185H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
5029 reflections(Δ/σ)max < 0.001
343 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C31H36N2O5γ = 80.48 (3)°
Mr = 516.62V = 1371.1 (5) Å3
Triclinic, P1Z = 2
a = 8.7450 (17) ÅMo Kα radiation
b = 11.635 (2) ŵ = 0.09 mm1
c = 13.967 (3) ÅT = 293 K
α = 84.07 (3)°0.30 × 0.20 × 0.10 mm
β = 78.80 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
2919 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.024
Tmin = 0.975, Tmax = 0.9923 standard reflections every 200 reflections
5385 measured reflections intensity decay: 1%
5029 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.185H-atom parameters constrained
S = 1.00Δρmax = 0.20 e Å3
5029 reflectionsΔρmin = 0.23 e Å3
343 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3768 (3)0.8993 (2)0.66703 (15)0.0501 (6)
O10.3423 (3)1.1578 (2)1.05560 (15)0.0756 (7)
C10.2360 (3)0.9243 (2)0.74301 (19)0.0524 (7)
H1A0.20190.84990.77100.063*
N20.6239 (3)0.7536 (2)0.55113 (16)0.0559 (6)
O20.2833 (2)1.2435 (2)0.64559 (17)0.0733 (6)
C20.2737 (3)0.9857 (2)0.82438 (19)0.0481 (7)
O30.8333 (2)0.61556 (18)0.55887 (15)0.0711 (7)
C30.2196 (4)0.9519 (3)0.9210 (2)0.0589 (8)
H3A0.16410.88880.93590.071*
O40.5773 (2)0.47350 (19)0.10257 (15)0.0667 (6)
C40.2464 (4)1.0103 (3)0.9958 (2)0.0646 (8)
H4A0.20940.98581.06040.077*
O50.8391 (2)0.36390 (17)0.01711 (14)0.0619 (6)
C50.3265 (3)1.1036 (3)0.9761 (2)0.0552 (7)
C60.3837 (4)1.1383 (3)0.8805 (2)0.0605 (8)
H6A0.44031.20080.86600.073*
C70.3559 (3)1.0790 (3)0.8060 (2)0.0567 (8)
H7A0.39411.10310.74140.068*
C80.1001 (3)0.9999 (2)0.70365 (19)0.0494 (7)
C90.1224 (3)1.0973 (3)0.6397 (2)0.0649 (9)
H9A0.22481.10880.61170.078*
C100.0013 (4)1.1779 (3)0.6160 (2)0.0667 (9)
H10A0.01751.24190.57210.080*
C110.1526 (3)1.1625 (3)0.6581 (2)0.0549 (8)
C120.1791 (3)1.0636 (3)0.7180 (2)0.0590 (8)
H12A0.28181.05110.74400.071*
C130.0542 (3)0.9828 (3)0.7396 (2)0.0548 (7)
H13A0.07380.91560.77910.066*
C140.4221 (5)1.2558 (3)1.0382 (3)0.0874 (11)
H14A0.42361.28601.09940.131*
H14B0.36881.31510.99810.131*
H14C0.52831.23321.00520.131*
C150.2520 (4)1.3508 (3)0.5941 (3)0.0928 (12)
H15A0.34971.40100.58980.139*
H15B0.19491.33650.52940.139*
H15C0.19011.38770.62800.139*
C160.3460 (3)0.8373 (3)0.5892 (2)0.0562 (8)
H16A0.25930.88210.56130.067*
H16B0.31550.76240.61610.067*
C170.4903 (3)0.8181 (3)0.5101 (2)0.0580 (8)
H17A0.46840.77450.46000.070*
H17B0.51630.89290.47990.070*
C180.6536 (3)0.8093 (3)0.6328 (2)0.0622 (8)
H18A0.68900.88360.60950.075*
H18B0.73630.76030.66180.075*
C190.5065 (3)0.8289 (3)0.7088 (2)0.0567 (8)
H19A0.47600.75400.73570.068*
H19B0.52740.86840.76170.068*
C200.7246 (3)0.6608 (2)0.5165 (2)0.0522 (7)
C210.7065 (3)0.6159 (2)0.4245 (2)0.0543 (7)
H21A0.61770.64410.39700.065*
C220.8165 (3)0.5356 (2)0.3813 (2)0.0529 (7)
H22A0.90060.50780.41330.063*
C230.8201 (3)0.4861 (2)0.2892 (2)0.0493 (7)
C240.6896 (3)0.5045 (2)0.2415 (2)0.0528 (7)
H24A0.59570.54730.27070.063*
C250.6981 (3)0.4607 (2)0.1527 (2)0.0499 (7)
C260.8413 (3)0.3991 (2)0.1071 (2)0.0514 (7)
C270.9680 (3)0.3780 (2)0.1541 (2)0.0567 (8)
H27A1.06160.33450.12530.068*
C280.9569 (3)0.4210 (3)0.2443 (2)0.0586 (8)
H28A1.04370.40570.27550.070*
C290.4275 (4)0.5266 (3)0.1486 (3)0.0746 (10)
H29A0.35300.52980.10580.112*
H29B0.43390.60440.16300.112*
H29C0.39370.48160.20830.112*
C300.9841 (3)0.3096 (3)0.0371 (2)0.0608 (8)
H30A1.02540.23980.00030.073*
H30B1.06140.36270.04950.073*
C310.9514 (4)0.2785 (3)0.1315 (2)0.0776 (10)
H31A1.04740.24240.16980.116*
H31B0.91010.34810.16710.116*
H31C0.87580.22520.11850.116*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0466 (13)0.0617 (14)0.0413 (12)0.0009 (11)0.0075 (10)0.0150 (11)
O10.1028 (18)0.0774 (15)0.0527 (13)0.0129 (13)0.0218 (12)0.0193 (11)
C10.0543 (17)0.0575 (17)0.0443 (16)0.0087 (14)0.0031 (13)0.0085 (13)
N20.0509 (14)0.0666 (15)0.0516 (14)0.0084 (12)0.0168 (11)0.0243 (12)
O20.0480 (12)0.0907 (17)0.0820 (16)0.0089 (12)0.0199 (11)0.0027 (13)
C20.0453 (15)0.0527 (16)0.0433 (16)0.0034 (13)0.0025 (12)0.0059 (13)
O30.0687 (14)0.0777 (15)0.0698 (14)0.0170 (12)0.0324 (12)0.0269 (11)
C30.0664 (19)0.0651 (19)0.0446 (17)0.0214 (16)0.0007 (15)0.0037 (14)
O40.0512 (12)0.0867 (15)0.0652 (13)0.0084 (11)0.0190 (10)0.0328 (11)
C40.082 (2)0.072 (2)0.0382 (16)0.0145 (18)0.0020 (15)0.0083 (15)
O50.0584 (12)0.0728 (13)0.0546 (12)0.0042 (10)0.0104 (10)0.0275 (10)
C50.0588 (18)0.0574 (18)0.0493 (18)0.0018 (15)0.0136 (14)0.0130 (14)
C60.0627 (19)0.0641 (19)0.0555 (19)0.0144 (16)0.0062 (15)0.0098 (15)
C70.0614 (19)0.070 (2)0.0371 (15)0.0148 (16)0.0002 (13)0.0036 (14)
C80.0489 (16)0.0621 (18)0.0368 (15)0.0080 (14)0.0025 (12)0.0115 (13)
C90.0413 (17)0.088 (2)0.0596 (19)0.0095 (16)0.0027 (14)0.0016 (17)
C100.0535 (19)0.086 (2)0.0549 (19)0.0078 (17)0.0037 (15)0.0068 (17)
C110.0455 (17)0.074 (2)0.0494 (17)0.0099 (15)0.0142 (14)0.0108 (15)
C120.0415 (16)0.080 (2)0.0586 (19)0.0167 (16)0.0063 (14)0.0132 (17)
C130.0539 (18)0.0634 (18)0.0494 (17)0.0183 (15)0.0049 (14)0.0082 (14)
C140.120 (3)0.075 (2)0.080 (3)0.015 (2)0.040 (2)0.0193 (19)
C150.070 (2)0.083 (3)0.122 (3)0.004 (2)0.023 (2)0.011 (2)
C160.0521 (17)0.0707 (19)0.0474 (16)0.0000 (15)0.0137 (14)0.0184 (14)
C170.0540 (18)0.0681 (19)0.0507 (17)0.0064 (15)0.0127 (14)0.0174 (15)
C180.0555 (18)0.076 (2)0.0602 (19)0.0048 (16)0.0217 (15)0.0292 (16)
C190.0618 (18)0.0611 (18)0.0478 (17)0.0037 (15)0.0165 (15)0.0149 (14)
C200.0480 (17)0.0551 (17)0.0543 (18)0.0028 (14)0.0117 (14)0.0117 (14)
C210.0502 (17)0.0605 (18)0.0540 (18)0.0005 (14)0.0141 (14)0.0165 (14)
C220.0497 (17)0.0577 (17)0.0538 (17)0.0041 (14)0.0144 (14)0.0119 (14)
C230.0471 (16)0.0502 (16)0.0519 (17)0.0027 (13)0.0111 (13)0.0136 (13)
C240.0471 (16)0.0548 (17)0.0560 (18)0.0002 (13)0.0068 (14)0.0183 (14)
C250.0475 (16)0.0509 (16)0.0534 (17)0.0040 (13)0.0118 (14)0.0140 (13)
C260.0540 (17)0.0462 (16)0.0542 (18)0.0016 (13)0.0096 (14)0.0139 (13)
C270.0517 (17)0.0572 (18)0.0590 (18)0.0052 (14)0.0080 (15)0.0194 (14)
C280.0504 (17)0.0623 (18)0.065 (2)0.0033 (15)0.0185 (15)0.0183 (15)
C290.0513 (19)0.092 (2)0.085 (2)0.0076 (18)0.0230 (17)0.036 (2)
C300.0593 (19)0.0576 (18)0.0614 (19)0.0002 (15)0.0004 (15)0.0204 (15)
C310.080 (2)0.087 (2)0.060 (2)0.0059 (19)0.0003 (18)0.0303 (18)
Geometric parameters (Å, º) top
N1—C161.454 (3)C14—H14B0.9600
N1—C191.466 (3)C14—H14C0.9600
N1—C11.471 (3)C15—H15A0.9600
O1—C51.373 (3)C15—H15B0.9600
O1—C141.409 (4)C15—H15C0.9600
C1—C81.516 (4)C16—C171.509 (4)
C1—C21.517 (4)C16—H16A0.9700
C1—H1A0.9800C16—H16B0.9700
N2—C201.342 (3)C17—H17A0.9700
N2—C181.454 (3)C17—H17B0.9700
N2—C171.462 (3)C18—C191.502 (4)
O2—C111.383 (3)C18—H18A0.9700
O2—C151.415 (4)C18—H18B0.9700
C2—C71.375 (4)C19—H19A0.9700
C2—C31.379 (4)C19—H19B0.9700
O3—C201.233 (3)C20—C211.482 (4)
C3—C41.379 (4)C21—C221.325 (4)
C3—H3A0.9300C21—H21A0.9300
O4—C251.358 (3)C22—C231.455 (4)
O4—C291.414 (3)C22—H22A0.9300
C4—C51.364 (4)C23—C281.380 (4)
C4—H4A0.9300C23—C241.406 (4)
O5—C261.366 (3)C24—C251.373 (4)
O5—C301.429 (3)C24—H24A0.9300
C5—C61.375 (4)C25—C261.406 (4)
C6—C71.385 (4)C26—C271.370 (4)
C6—H6A0.9300C27—C281.384 (4)
C7—H7A0.9300C27—H27A0.9300
C8—C131.384 (4)C28—H28A0.9300
C8—C91.385 (4)C29—H29A0.9600
C9—C101.378 (4)C29—H29B0.9600
C9—H9A0.9300C29—H29C0.9600
C10—C111.373 (4)C30—C311.494 (4)
C10—H10A0.9300C30—H30A0.9700
C11—C121.375 (4)C30—H30B0.9700
C12—C131.377 (4)C31—H31A0.9600
C12—H12A0.9300C31—H31B0.9600
C13—H13A0.9300C31—H31C0.9600
C14—H14A0.9600
C16—N1—C19108.3 (2)N1—C16—H16B109.5
C16—N1—C1112.1 (2)C17—C16—H16B109.5
C19—N1—C1111.0 (2)H16A—C16—H16B108.1
C5—O1—C14117.8 (3)N2—C17—C16110.5 (2)
N1—C1—C8112.8 (2)N2—C17—H17A109.6
N1—C1—C2110.6 (2)C16—C17—H17A109.6
C8—C1—C2108.1 (2)N2—C17—H17B109.6
N1—C1—H1A108.4C16—C17—H17B109.6
C8—C1—H1A108.4H17A—C17—H17B108.1
C2—C1—H1A108.4N2—C18—C19110.5 (2)
C20—N2—C18119.6 (2)N2—C18—H18A109.6
C20—N2—C17127.9 (2)C19—C18—H18A109.6
C18—N2—C17112.1 (2)N2—C18—H18B109.6
C11—O2—C15115.9 (2)C19—C18—H18B109.6
C7—C2—C3117.3 (3)H18A—C18—H18B108.1
C7—C2—C1122.3 (2)N1—C19—C18111.2 (2)
C3—C2—C1120.3 (3)N1—C19—H19A109.4
C4—C3—C2121.1 (3)C18—C19—H19A109.4
C4—C3—H3A119.5N1—C19—H19B109.4
C2—C3—H3A119.5C18—C19—H19B109.4
C25—O4—C29117.9 (2)H19A—C19—H19B108.0
C5—C4—C3120.8 (3)O3—C20—N2120.7 (3)
C5—C4—H4A119.6O3—C20—C21120.3 (3)
C3—C4—H4A119.6N2—C20—C21119.0 (2)
C26—O5—C30117.8 (2)C22—C21—C20120.2 (3)
C4—C5—O1116.1 (3)C22—C21—H21A119.9
C4—C5—C6119.5 (3)C20—C21—H21A119.9
O1—C5—C6124.4 (3)C21—C22—C23127.2 (3)
C5—C6—C7119.2 (3)C21—C22—H22A116.4
C5—C6—H6A120.4C23—C22—H22A116.4
C7—C6—H6A120.4C28—C23—C24117.7 (2)
C2—C7—C6122.1 (3)C28—C23—C22119.8 (2)
C2—C7—H7A118.9C24—C23—C22122.5 (2)
C6—C7—H7A118.9C25—C24—C23121.3 (3)
C13—C8—C9116.9 (3)C25—C24—H24A119.3
C13—C8—C1121.0 (3)C23—C24—H24A119.3
C9—C8—C1121.7 (3)O4—C25—C24124.9 (2)
C10—C9—C8122.5 (3)O4—C25—C26115.6 (2)
C10—C9—H9A118.8C24—C25—C26119.5 (3)
C8—C9—H9A118.8O5—C26—C27125.6 (3)
C11—C10—C9119.1 (3)O5—C26—C25114.8 (2)
C11—C10—H10A120.4C27—C26—C25119.6 (3)
C9—C10—H10A120.4C26—C27—C28120.2 (3)
C10—C11—C12119.7 (3)C26—C27—H27A119.9
C10—C11—O2123.3 (3)C28—C27—H27A119.9
C12—C11—O2116.9 (3)C23—C28—C27121.6 (3)
C11—C12—C13120.3 (3)C23—C28—H28A119.2
C11—C12—H12A119.9C27—C28—H28A119.2
C13—C12—H12A119.9O4—C29—H29A109.5
C12—C13—C8121.3 (3)O4—C29—H29B109.5
C12—C13—H13A119.4H29A—C29—H29B109.5
C8—C13—H13A119.4O4—C29—H29C109.5
O1—C14—H14A109.5H29A—C29—H29C109.5
O1—C14—H14B109.5H29B—C29—H29C109.5
H14A—C14—H14B109.5O5—C30—C31107.7 (2)
O1—C14—H14C109.5O5—C30—H30A110.2
H14A—C14—H14C109.5C31—C30—H30A110.2
H14B—C14—H14C109.5O5—C30—H30B110.2
O2—C15—H15A109.5C31—C30—H30B110.2
O2—C15—H15B109.5H30A—C30—H30B108.5
H15A—C15—H15B109.5C30—C31—H31A109.5
O2—C15—H15C109.5C30—C31—H31B109.5
H15A—C15—H15C109.5H31A—C31—H31B109.5
H15B—C15—H15C109.5C30—C31—H31C109.5
N1—C16—C17110.8 (2)H31A—C31—H31C109.5
N1—C16—H16A109.5H31B—C31—H31C109.5
C17—C16—H16A109.5
C16—N1—C1—C860.4 (3)C1—N1—C16—C17177.3 (2)
C19—N1—C1—C8178.4 (2)C20—N2—C17—C16132.9 (3)
C16—N1—C1—C2178.3 (2)C18—N2—C17—C1654.0 (3)
C19—N1—C1—C257.1 (3)N1—C16—C17—N257.5 (3)
N1—C1—C2—C747.1 (3)C20—N2—C18—C19132.4 (3)
C8—C1—C2—C777.0 (3)C17—N2—C18—C1953.9 (3)
N1—C1—C2—C3135.8 (3)C16—N1—C19—C1860.1 (3)
C8—C1—C2—C3100.2 (3)C1—N1—C19—C18176.5 (2)
C7—C2—C3—C40.4 (4)N2—C18—C19—N157.2 (3)
C1—C2—C3—C4176.9 (3)C18—N2—C20—O36.9 (4)
C2—C3—C4—C50.4 (5)C17—N2—C20—O3179.5 (3)
C3—C4—C5—O1177.9 (3)C18—N2—C20—C21171.0 (3)
C3—C4—C5—C61.2 (5)C17—N2—C20—C211.6 (4)
C14—O1—C5—C4179.0 (3)O3—C20—C21—C227.5 (4)
C14—O1—C5—C60.2 (4)N2—C20—C21—C22170.4 (3)
C4—C5—C6—C71.2 (4)C20—C21—C22—C23177.3 (3)
O1—C5—C6—C7177.9 (3)C21—C22—C23—C28167.0 (3)
C3—C2—C7—C60.3 (4)C21—C22—C23—C2411.1 (5)
C1—C2—C7—C6176.9 (3)C28—C23—C24—C250.8 (4)
C5—C6—C7—C20.5 (5)C22—C23—C24—C25177.3 (3)
N1—C1—C8—C13143.9 (3)C29—O4—C25—C246.0 (4)
C2—C1—C8—C1393.4 (3)C29—O4—C25—C26175.1 (3)
N1—C1—C8—C944.3 (3)C23—C24—C25—O4179.2 (3)
C2—C1—C8—C978.4 (3)C23—C24—C25—C261.9 (4)
C13—C8—C9—C103.3 (4)C30—O5—C26—C276.0 (4)
C1—C8—C9—C10168.8 (3)C30—O5—C26—C25174.8 (2)
C8—C9—C10—C110.9 (5)O4—C25—C26—O51.9 (4)
C9—C10—C11—C124.2 (5)C24—C25—C26—O5177.2 (2)
C9—C10—C11—O2174.2 (3)O4—C25—C26—C27177.4 (3)
C15—O2—C11—C106.2 (4)C24—C25—C26—C273.6 (4)
C15—O2—C11—C12172.3 (3)O5—C26—C27—C28178.3 (3)
C10—C11—C12—C133.2 (4)C25—C26—C27—C282.6 (4)
O2—C11—C12—C13175.4 (2)C24—C23—C28—C271.9 (4)
C11—C12—C13—C81.3 (4)C22—C23—C28—C27176.3 (3)
C9—C8—C13—C124.4 (4)C26—C27—C28—C230.2 (5)
C1—C8—C13—C12167.8 (2)C26—O5—C30—C31179.6 (2)
C19—N1—C16—C1760.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O2i0.972.443.286 (4)146
C22—H22A···O3ii0.932.603.476 (3)157
Symmetry codes: (i) x, y+2, z+1; (ii) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC31H36N2O5
Mr516.62
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7450 (17), 11.635 (2), 13.967 (3)
α, β, γ (°)84.07 (3), 78.80 (3), 80.48 (3)
V3)1371.1 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.975, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
5385, 5029, 2919
Rint0.024
(sin θ/λ)max1)0.603
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.185, 1.00
No. of reflections5029
No. of parameters343
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1994), CAD-4 EXPRESS (Enraf-Nonius, 1994), XCAD4 (Harms & Wocadlo,1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17A···O2i0.972.443.286 (4)146
C22—H22A···O3ii0.932.603.476 (3)157
Symmetry codes: (i) x, y+2, z+1; (ii) x+2, y+1, z+1.
 

Acknowledgements

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for the diffraction measurements. This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK2010538).

References

First citationEnraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTeng, Y.-B., Dai, Z.-H. & Wu, B. (2011). Acta Cryst. E67, o697.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationWu, B., Zhou, L. & Cai, H.-H. (2008). Chin. Chem. Lett. 19, 1163–1166.  Web of Science CrossRef CAS Google Scholar
First citationZhong, Y., Zhang, X. P. & Wu, B. (2012). Acta Cryst. E68, o298.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds