organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,7-Bis(2-nitro­phen­yl)-9-octyl-9H-carbazole

aUniversity Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
*Correspondence e-mail: detert@uni-mainz.de

(Received 19 March 2012; accepted 23 March 2012; online 31 March 2012)

The title compound, C32H31N3O4, was obtained in a Suzuki coupling of carbazole diboronic acid and bromo­nitro­benzene. In the crystal, the mol­ecule adopts a non-symmetric conformation. The carbazole ring system is approximately planar [maximum deviation from the least-squares plane = 0.039 (2) Å]. The planes of the carbazole unit and the benzene rings subtend dihedral angles of 48.42 (7) and 41.81 (6)°. The dihedral angles between the planes of the nitro­phenyl rings and the nitro groups are 44.34 (19) and 61.64 (15)°. The crystal is built from two strands of parallel mol­ecules with inter­digitated octyl chains. These strands are symmetry related by a twofold screw axis.

Related literature

For Suzuki cross-couplings, see: Miyaura & Suzuki (1995[Miyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.]). For the Cadogan reaction, see: Cadogan (1962[Cadogan, J. I. G. (1962). Q. Rev. 16, 208-239.]). For indolocarbazoles, see: Nemkovich et al. (2009[Nemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275-281.]). For heteroanalogous carbazoles, see: Dassonneville et al. (2011[Dassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836-2844.]); Letessier & Detert (2012[Letessier, J. & Detert, H. (2012). Synthesis, 44, 290-296.]). For the structures of aryl-substituted carbazoles and substituted p-terphenyls, see: Letessier et al. (2011[Letessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2494.]); Jones et al. (2005[Jones, P. G., Kuś, P. & Pasewicz, A. (2005). Acta Cryst. E61, o1895-o1896.]); Moschel et al. (2011[Moschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425.]); Wrobel et al. (2012[Wrobel, N., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1022.]).

[Scheme 1]

Experimental

Crystal data
  • C32H31N3O4

  • Mr = 521.60

  • Monoclinic, P 21 /c

  • a = 8.722 (2) Å

  • b = 7.987 (2) Å

  • c = 39.508 (11) Å

  • β = 95.044 (6)°

  • V = 2741.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.50 × 0.04 × 0.04 mm

Data collection
  • Bruker SMART APEXII diffractometer

  • 15053 measured reflections

  • 6525 independent reflections

  • 2814 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.137

  • S = 0.93

  • 6525 reflections

  • 353 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: PLATON.

Supporting information


Comment top

The title compound was prepared as an intermediate in a larger project on carbazoles and heteroanalogous carbazoles, see Dassonneville et al. (2011), Letessier et al. (2011), Letessier & Detert (2012). Indolocarbazoles (Nemkovich et al. 2009) are prepared by Cadogan reaction (Cadogan, 1962).

The molecule adopts a non-symmetric conformation with a nearly planar carbazole unit (maximum deviation from the least-squares plane = 0.039 (2) Å at C7). Attached to N9 is the octyl chain in an an all-trans conformation. The planes of the carbazole unit and the benzene rings subtend dihedral angles of 48.42 (7)° (ring C1–C9a and ring C18–C23) and 41.81 (6)° (ring C4b–C8a and ring C27–C32). Dihedral angles between the planes of the benzene rings and the nitro groups are 44.34 (19)° and 61.64 (35)°. Whereas the dihedral angles between the aromatic rings are comparable to those found in a o-nitrobiaryl with an additional o-substituent (Wrobel et al.., 2012), the dihedral angles between the planes of the niro groups and the adjacent benzene ring are even larger. Both nitro goups are oriented toward the N9 nitrogen atom of the carbazole. Two strands of parallel molecules with interdigitated octyl chains, symmetry-related by a twofold screw axis, build the crystal.

Related literature top

For Suzuki cross-couplings, see: Miyaura & Suzuki (1995). For the Cadogan reaction, see: Cadogan (1962). For indolocarbazoles, see: Nemkovich et al. (2009). For heteroanalogous carbazoles, see: Dassonneville et al. (2011); Letessier & Detert (2012). For the structures of aryl-substituted carbazoles and substituted p-terphenyls, see: Letessier et al. (2011); Jones et al. (2005); Moschel et al. (2011); Wrobel et al. (2012).

Experimental top

N-Octylcarbazol-2,7-diboronic acid (1 g, 1.88 mmol) and 2-bromonitrobenzene (0.75 g, 3.71 mmol) were dissolved in toluene (4.5 ml). A solution of K2CO3 (2M, 3 ml) was added and the mixture was stirred for 30 min. Palladium acetate (34 mg, 0.15 mmol) and triphenylphosphine (159 mg, 0.606 mmol) were added to the stirred solution. After refluxing for 48 h, the mixture was cooled, diluted with water (15 ml) and extracted with dichloromethane (3 × 25 ml). The pooled extracts were washed with water, brine, and dried (MgSO4). The residue was recrystallized from methanol to give the analytically pure compound. Greenish needles-like crystals suitable for X-rax analysis were grown by slow evaporation of a chloroform / methanol (1:1 v/v) solution. M. p. = 411-412 K.

Refinement top

H atoms were placed at calculated positions with C—H = 0.95 Å (aromatic) or 0.98–0.99 Å (sp3 C-atom). All H atoms were refined in the riding-model approximation with isotropic displacement parameters (set at 1.2–1.5 times of the Ueq of the parent atom).

Structure description top

The title compound was prepared as an intermediate in a larger project on carbazoles and heteroanalogous carbazoles, see Dassonneville et al. (2011), Letessier et al. (2011), Letessier & Detert (2012). Indolocarbazoles (Nemkovich et al. 2009) are prepared by Cadogan reaction (Cadogan, 1962).

The molecule adopts a non-symmetric conformation with a nearly planar carbazole unit (maximum deviation from the least-squares plane = 0.039 (2) Å at C7). Attached to N9 is the octyl chain in an an all-trans conformation. The planes of the carbazole unit and the benzene rings subtend dihedral angles of 48.42 (7)° (ring C1–C9a and ring C18–C23) and 41.81 (6)° (ring C4b–C8a and ring C27–C32). Dihedral angles between the planes of the benzene rings and the nitro groups are 44.34 (19)° and 61.64 (35)°. Whereas the dihedral angles between the aromatic rings are comparable to those found in a o-nitrobiaryl with an additional o-substituent (Wrobel et al.., 2012), the dihedral angles between the planes of the niro groups and the adjacent benzene ring are even larger. Both nitro goups are oriented toward the N9 nitrogen atom of the carbazole. Two strands of parallel molecules with interdigitated octyl chains, symmetry-related by a twofold screw axis, build the crystal.

For Suzuki cross-couplings, see: Miyaura & Suzuki (1995). For the Cadogan reaction, see: Cadogan (1962). For indolocarbazoles, see: Nemkovich et al. (2009). For heteroanalogous carbazoles, see: Dassonneville et al. (2011); Letessier & Detert (2012). For the structures of aryl-substituted carbazoles and substituted p-terphenyls, see: Letessier et al. (2011); Jones et al. (2005); Moschel et al. (2011); Wrobel et al. (2012).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing section of the monoclinic crystal down the a axis. Molecules shown in equal colors are shifted by y/b = 1 along the b axis. Red/blue (green/black) molecules are related by the twofold screw axis.
2,7-Bis(2-nitrophenyl)-9-octyl-9H-carbazole top
Crystal data top
C32H31N3O4F(000) = 1104
Mr = 521.60Dx = 1.264 Mg m3
Monoclinic, P21/cMelting point: 411 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 8.722 (2) ÅCell parameters from 951 reflections
b = 7.987 (2) Åθ = 2.3–20.4°
c = 39.508 (11) ŵ = 0.08 mm1
β = 95.044 (6)°T = 173 K
V = 2741.5 (13) Å3Needle, green
Z = 40.50 × 0.04 × 0.04 mm
Data collection top
Bruker SMART APEXII
diffractometer
2814 reflections with I > 2σ(I)
Radiation source: sealed TubeRint = 0.099
Graphite monochromatorθmax = 28.0°, θmin = 2.1°
CCD scanh = 1111
15053 measured reflectionsk = 910
6525 independent reflectionsl = 5152
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137H-atom parameters constrained
S = 0.93 w = 1/[σ2(Fo2) + (0.0415P)2]
where P = (Fo2 + 2Fc2)/3
6525 reflections(Δ/σ)max < 0.001
353 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C32H31N3O4V = 2741.5 (13) Å3
Mr = 521.60Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.722 (2) ŵ = 0.08 mm1
b = 7.987 (2) ÅT = 173 K
c = 39.508 (11) Å0.50 × 0.04 × 0.04 mm
β = 95.044 (6)°
Data collection top
Bruker SMART APEXII
diffractometer
2814 reflections with I > 2σ(I)
15053 measured reflectionsRint = 0.099
6525 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.137H-atom parameters constrained
S = 0.93Δρmax = 0.22 e Å3
6525 reflectionsΔρmin = 0.22 e Å3
353 parameters
Special details top

Experimental. 1H-NMR (400 MHz, CDCl3): δ = 0.81 (m, 3 H, CH3), 1.20 - 1.40 (m, 10 H, CH2), 1.91 (qui, 2 H, β-CH2), 4.28 (t, 2 H, N—CH2), 7.18 (dd, J = 8.1 Hz, J= 1.2 Hz, 2 H), 7.34 (s, 2 H, 1-H, 8-H, carbazol), 7.49 (ddd, 2 H, 4-H phenyl), 7.56 - 7.68 (m, 4 H), 7.86 (d, 2 H, J = 7.5 Hz), 8.13 (d, 2 H, J = 8 Hz)

13C-NMR (75 MHz, CDCl3): δ = 14.1, 22.6, 27.3, 28.9, 29.1, 29.3, 31.8, 43.3, 108.3, 119.2, 120.8, 122.4, 124.0, 128.0, 132.1, 132.3, 135.1, 137.0, 141.0, 149.8.

ESI-MS: (M+H+): m/z = 522

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1501 (3)0.0908 (3)0.07930 (6)0.0281 (6)
H10.24970.06860.09010.034*
C20.0823 (3)0.0170 (3)0.05459 (6)0.0281 (6)
C30.0668 (3)0.0158 (3)0.03934 (6)0.0294 (7)
H30.11280.05930.02280.035*
C40.1471 (3)0.1566 (3)0.04823 (6)0.0295 (6)
H40.24740.17790.03770.035*
C4A0.0806 (3)0.2665 (3)0.07251 (6)0.0268 (6)
C4B0.1301 (3)0.4184 (3)0.08774 (6)0.0271 (6)
C50.2635 (3)0.5156 (4)0.08451 (7)0.0340 (7)
H50.34740.48410.06890.041*
C60.2731 (3)0.6580 (3)0.10414 (7)0.0350 (7)
H60.36350.72480.10150.042*
C70.1520 (3)0.7057 (3)0.12791 (6)0.0302 (7)
C80.0166 (3)0.6129 (3)0.13098 (6)0.0303 (7)
H80.06810.64670.14620.036*
C8A0.0080 (3)0.4701 (3)0.11135 (6)0.0272 (6)
N90.1124 (2)0.3575 (3)0.11075 (5)0.0296 (6)
C9A0.0684 (3)0.2310 (3)0.08774 (6)0.0265 (6)
C100.2587 (3)0.3693 (3)0.13157 (6)0.0323 (7)
H10A0.29810.48520.13050.039*
H10B0.33440.29410.12210.039*
C110.2451 (3)0.3226 (4)0.16865 (6)0.0353 (7)
H11A0.17060.39870.17830.042*
H11B0.20490.20710.16980.042*
C120.3993 (3)0.3338 (4)0.18988 (7)0.0351 (7)
H12A0.46650.24150.18340.042*
H12B0.44980.44080.18490.042*
C130.3825 (3)0.3236 (4)0.22768 (7)0.0361 (7)
H13A0.32690.21910.23230.043*
H13B0.31830.41870.23410.043*
C140.5335 (3)0.3266 (4)0.25009 (6)0.0346 (7)
H14A0.59260.22400.24580.042*
H14B0.59500.42400.24370.042*
C150.5117 (3)0.3369 (4)0.28762 (6)0.0358 (7)
H15A0.44680.24160.29360.043*
H15B0.45490.44110.29180.043*
C160.6591 (3)0.3349 (4)0.31096 (7)0.0393 (8)
H16A0.72670.42680.30440.047*
H16B0.71350.22790.30790.047*
C170.6310 (4)0.3547 (4)0.34818 (7)0.0545 (9)
H17A0.58030.46220.35150.082*
H17B0.72960.35120.36210.082*
H17C0.56500.26340.35490.082*
C180.1673 (3)0.1675 (3)0.04443 (6)0.0258 (6)
C190.3244 (3)0.1658 (3)0.03964 (6)0.0278 (6)
C200.4070 (3)0.3068 (3)0.03240 (7)0.0331 (7)
H200.51440.29990.03010.040*
C210.3302 (4)0.4589 (4)0.02854 (7)0.0403 (8)
H210.38470.55760.02350.048*
C220.1740 (4)0.4661 (4)0.03203 (7)0.0397 (8)
H220.12050.56930.02890.048*
C230.0956 (3)0.3233 (3)0.04001 (6)0.0347 (7)
H230.01140.33140.04260.042*
N240.4094 (3)0.0065 (3)0.04073 (6)0.0338 (6)
O250.5191 (2)0.0084 (3)0.06205 (6)0.0545 (6)
O260.3683 (2)0.1017 (2)0.01991 (5)0.0440 (6)
C270.1633 (3)0.8555 (3)0.14989 (7)0.0304 (7)
C280.1202 (3)0.8539 (3)0.18486 (6)0.0296 (7)
C290.1115 (3)0.9962 (4)0.20483 (7)0.0383 (7)
H290.07660.99000.22830.046*
C300.1546 (3)1.1479 (4)0.19000 (8)0.0428 (8)
H300.15021.24730.20330.051*
C310.2040 (4)1.1544 (4)0.15588 (8)0.0440 (8)
H310.23621.25810.14590.053*
C320.2070 (3)1.0114 (3)0.13615 (7)0.0389 (7)
H320.23981.01930.11260.047*
N330.0912 (3)0.6934 (3)0.20279 (6)0.0417 (7)
O340.1798 (3)0.5768 (2)0.19591 (5)0.0500 (6)
O350.0185 (3)0.6880 (3)0.22437 (6)0.0664 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0242 (16)0.0352 (16)0.0244 (14)0.0019 (13)0.0007 (12)0.0019 (13)
C20.0278 (17)0.0343 (16)0.0222 (13)0.0012 (13)0.0027 (12)0.0011 (13)
C30.0278 (17)0.0376 (17)0.0226 (13)0.0033 (14)0.0020 (11)0.0034 (13)
C40.0222 (16)0.0418 (17)0.0242 (13)0.0014 (14)0.0004 (11)0.0039 (14)
C4A0.0253 (17)0.0349 (16)0.0208 (13)0.0013 (13)0.0044 (11)0.0024 (13)
C4B0.0257 (17)0.0352 (16)0.0198 (13)0.0039 (13)0.0004 (11)0.0024 (13)
C50.0271 (17)0.0465 (18)0.0268 (14)0.0034 (14)0.0074 (12)0.0002 (14)
C60.0317 (18)0.0416 (18)0.0312 (15)0.0136 (14)0.0009 (13)0.0010 (15)
C70.0340 (18)0.0303 (16)0.0264 (14)0.0052 (13)0.0030 (13)0.0034 (13)
C80.0303 (18)0.0339 (17)0.0263 (14)0.0030 (13)0.0008 (12)0.0007 (13)
C8A0.0250 (17)0.0322 (16)0.0241 (13)0.0036 (13)0.0004 (12)0.0016 (13)
N90.0249 (14)0.0373 (14)0.0250 (11)0.0035 (11)0.0076 (10)0.0025 (11)
C9A0.0284 (17)0.0319 (16)0.0192 (12)0.0024 (13)0.0017 (11)0.0025 (12)
C100.0274 (17)0.0378 (17)0.0303 (15)0.0021 (13)0.0051 (12)0.0058 (14)
C110.0356 (18)0.0381 (17)0.0310 (15)0.0054 (14)0.0045 (13)0.0007 (14)
C120.0349 (18)0.0360 (17)0.0326 (15)0.0034 (14)0.0074 (13)0.0042 (14)
C130.0346 (18)0.0395 (17)0.0327 (15)0.0013 (14)0.0052 (13)0.0023 (14)
C140.0384 (19)0.0341 (17)0.0294 (15)0.0002 (14)0.0072 (13)0.0036 (13)
C150.0397 (19)0.0371 (17)0.0294 (15)0.0009 (14)0.0045 (13)0.0031 (14)
C160.0403 (19)0.0414 (18)0.0345 (16)0.0066 (15)0.0067 (14)0.0060 (15)
C170.070 (3)0.054 (2)0.0366 (17)0.0176 (18)0.0127 (16)0.0055 (17)
C180.0278 (17)0.0325 (16)0.0169 (12)0.0024 (13)0.0003 (11)0.0004 (12)
C190.0345 (18)0.0248 (15)0.0234 (13)0.0033 (13)0.0012 (12)0.0013 (12)
C200.0331 (18)0.0313 (17)0.0349 (16)0.0053 (14)0.0023 (13)0.0002 (14)
C210.053 (2)0.0267 (17)0.0412 (17)0.0063 (15)0.0052 (15)0.0017 (14)
C220.053 (2)0.0297 (17)0.0364 (17)0.0093 (15)0.0018 (15)0.0011 (14)
C230.0385 (19)0.0352 (18)0.0301 (15)0.0070 (15)0.0007 (13)0.0002 (14)
N240.0304 (16)0.0332 (15)0.0382 (14)0.0016 (12)0.0054 (12)0.0020 (13)
O250.0323 (14)0.0598 (15)0.0676 (15)0.0086 (11)0.0162 (12)0.0030 (13)
O260.0521 (15)0.0321 (12)0.0479 (13)0.0019 (10)0.0062 (11)0.0087 (11)
C270.0277 (17)0.0316 (16)0.0323 (15)0.0016 (13)0.0053 (12)0.0025 (14)
C280.0337 (18)0.0275 (15)0.0283 (14)0.0040 (13)0.0064 (12)0.0049 (13)
C290.0390 (19)0.0394 (18)0.0366 (16)0.0024 (15)0.0046 (13)0.0079 (16)
C300.048 (2)0.0298 (17)0.053 (2)0.0068 (15)0.0198 (16)0.0048 (16)
C310.051 (2)0.0314 (18)0.051 (2)0.0019 (15)0.0148 (16)0.0074 (17)
C320.044 (2)0.0357 (17)0.0376 (16)0.0007 (15)0.0061 (14)0.0064 (15)
N330.0542 (19)0.0428 (17)0.0287 (13)0.0105 (14)0.0078 (13)0.0047 (13)
O340.0712 (17)0.0279 (12)0.0522 (14)0.0002 (11)0.0137 (12)0.0040 (11)
O350.0716 (18)0.0771 (18)0.0473 (14)0.0137 (14)0.0129 (13)0.0204 (13)
Geometric parameters (Å, º) top
C1—C9A1.384 (3)C14—H14A0.9900
C1—C21.393 (3)C14—H14B0.9900
C1—H10.9500C15—C161.515 (4)
C2—C31.409 (3)C15—H15A0.9900
C2—C181.486 (4)C15—H15B0.9900
C3—C41.386 (4)C16—C171.520 (4)
C3—H30.9500C16—H16A0.9900
C4—C4A1.388 (3)C16—H16B0.9900
C4—H40.9500C17—H17A0.9800
C4A—C9A1.413 (3)C17—H17B0.9800
C4A—C4B1.438 (3)C17—H17C0.9800
C4B—C51.395 (4)C18—C231.397 (3)
C4B—C8A1.414 (3)C18—C191.399 (4)
C5—C61.383 (4)C19—C201.381 (3)
C5—H50.9500C19—N241.471 (3)
C6—C71.403 (4)C20—C211.390 (4)
C6—H60.9500C20—H200.9500
C7—C81.390 (4)C21—C221.382 (4)
C7—C271.487 (4)C21—H210.9500
C8—C8A1.385 (3)C22—C231.380 (4)
C8—H80.9500C22—H220.9500
C8A—N91.385 (3)C23—H230.9500
N9—C9A1.390 (3)N24—O251.224 (3)
N9—C101.459 (3)N24—O261.225 (3)
C10—C111.526 (4)C27—C321.398 (3)
C10—H10A0.9900C27—C281.400 (4)
C10—H10B0.9900C28—C291.382 (4)
C11—C121.524 (4)C28—N331.475 (3)
C11—H11A0.9900C29—C301.383 (4)
C11—H11B0.9900C29—H290.9500
C12—C131.515 (4)C30—C311.379 (4)
C12—H12A0.9900C30—H300.9500
C12—H12B0.9900C31—C321.381 (4)
C13—C141.522 (4)C31—H310.9500
C13—H13A0.9900C32—H320.9500
C13—H13B0.9900N33—O351.225 (3)
C14—C151.514 (4)N33—O341.225 (3)
C9A—C1—C2118.2 (2)C13—C14—H14A108.9
C9A—C1—H1120.9C15—C14—H14B108.9
C2—C1—H1120.9C13—C14—H14B108.9
C1—C2—C3120.3 (2)H14A—C14—H14B107.8
C1—C2—C18119.8 (2)C14—C15—C16115.0 (2)
C3—C2—C18119.9 (2)C14—C15—H15A108.5
C4—C3—C2120.7 (2)C16—C15—H15A108.5
C4—C3—H3119.7C14—C15—H15B108.5
C2—C3—H3119.7C16—C15—H15B108.5
C3—C4—C4A119.9 (2)H15A—C15—H15B107.5
C3—C4—H4120.1C15—C16—C17112.8 (3)
C4A—C4—H4120.1C15—C16—H16A109.0
C4—C4A—C9A118.7 (2)C17—C16—H16A109.0
C4—C4A—C4B134.4 (3)C15—C16—H16B109.0
C9A—C4A—C4B106.8 (2)C17—C16—H16B109.0
C5—C4B—C8A118.1 (2)H16A—C16—H16B107.8
C5—C4B—C4A135.2 (2)C16—C17—H17A109.5
C8A—C4B—C4A106.6 (2)C16—C17—H17B109.5
C6—C5—C4B119.8 (2)H17A—C17—H17B109.5
C6—C5—H5120.1C16—C17—H17C109.5
C4B—C5—H5120.1H17A—C17—H17C109.5
C5—C6—C7121.3 (2)H17B—C17—H17C109.5
C5—C6—H6119.4C23—C18—C19115.1 (2)
C7—C6—H6119.4C23—C18—C2121.7 (2)
C8—C7—C6119.8 (2)C19—C18—C2123.1 (2)
C8—C7—C27118.5 (2)C20—C19—C18123.7 (2)
C6—C7—C27121.7 (2)C20—C19—N24116.2 (2)
C8A—C8—C7118.5 (2)C18—C19—N24120.1 (2)
C8A—C8—H8120.7C19—C20—C21118.7 (3)
C7—C8—H8120.7C19—C20—H20120.6
N9—C8A—C8128.5 (2)C21—C20—H20120.6
N9—C8A—C4B109.1 (2)C22—C21—C20119.7 (3)
C8—C8A—C4B122.3 (2)C22—C21—H21120.2
C8A—N9—C9A108.5 (2)C20—C21—H21120.2
C8A—N9—C10125.1 (2)C23—C22—C21120.1 (3)
C9A—N9—C10126.4 (2)C23—C22—H22120.0
C1—C9A—N9128.9 (2)C21—C22—H22120.0
C1—C9A—C4A122.3 (2)C22—C23—C18122.6 (3)
N9—C9A—C4A108.9 (2)C22—C23—H23118.7
N9—C10—C11112.8 (2)C18—C23—H23118.7
N9—C10—H10A109.0O25—N24—O26123.9 (2)
C11—C10—H10A109.0O25—N24—C19117.7 (2)
N9—C10—H10B109.0O26—N24—C19118.3 (2)
C11—C10—H10B109.0C32—C27—C28115.6 (3)
H10A—C10—H10B107.8C32—C27—C7121.3 (2)
C12—C11—C10112.0 (2)C28—C27—C7122.9 (2)
C12—C11—H11A109.2C29—C28—C27123.5 (3)
C10—C11—H11A109.2C29—C28—N33116.2 (2)
C12—C11—H11B109.2C27—C28—N33120.1 (2)
C10—C11—H11B109.2C28—C29—C30118.6 (3)
H11A—C11—H11B107.9C28—C29—H29120.7
C13—C12—C11112.5 (2)C30—C29—H29120.7
C13—C12—H12A109.1C31—C30—C29119.8 (3)
C11—C12—H12A109.1C31—C30—H30120.1
C13—C12—H12B109.1C29—C30—H30120.1
C11—C12—H12B109.1C30—C31—C32120.6 (3)
H12A—C12—H12B107.8C30—C31—H31119.7
C12—C13—C14114.7 (2)C32—C31—H31119.7
C12—C13—H13A108.6C31—C32—C27121.7 (3)
C14—C13—H13A108.6C31—C32—H32119.1
C12—C13—H13B108.6C27—C32—H32119.1
C14—C13—H13B108.6O35—N33—O34124.5 (3)
H13A—C13—H13B107.6O35—N33—C28117.1 (3)
C15—C14—C13113.2 (2)O34—N33—C28118.4 (2)
C15—C14—H14A108.9
C9A—C1—C2—C31.3 (4)C11—C12—C13—C14177.5 (2)
C9A—C1—C2—C18179.1 (2)C12—C13—C14—C15173.2 (2)
C1—C2—C3—C41.0 (4)C13—C14—C15—C16178.2 (2)
C18—C2—C3—C4179.3 (2)C14—C15—C16—C17177.0 (2)
C2—C3—C4—C4A0.3 (4)C1—C2—C18—C23136.3 (3)
C3—C4—C4A—C9A0.2 (4)C3—C2—C18—C2343.3 (3)
C3—C4—C4A—C4B178.9 (3)C1—C2—C18—C1941.6 (3)
C4—C4A—C4B—C50.3 (5)C3—C2—C18—C19138.7 (3)
C9A—C4A—C4B—C5178.4 (3)C23—C18—C19—C202.5 (4)
C4—C4A—C4B—C8A179.5 (3)C2—C18—C19—C20175.6 (2)
C9A—C4A—C4B—C8A0.7 (3)C23—C18—C19—N24174.8 (2)
C8A—C4B—C5—C60.0 (4)C2—C18—C19—N247.2 (4)
C4A—C4B—C5—C6179.1 (3)C18—C19—C20—C212.1 (4)
C4B—C5—C6—C71.2 (4)N24—C19—C20—C21175.3 (2)
C5—C6—C7—C82.8 (4)C19—C20—C21—C220.1 (4)
C5—C6—C7—C27178.1 (2)C20—C21—C22—C231.4 (4)
C6—C7—C8—C8A3.0 (4)C21—C22—C23—C180.9 (4)
C27—C7—C8—C8A177.8 (2)C19—C18—C23—C221.0 (4)
C7—C8—C8A—N9178.4 (3)C2—C18—C23—C22177.1 (2)
C7—C8—C8A—C4B1.8 (4)C20—C19—N24—O2561.9 (3)
C5—C4B—C8A—N9179.9 (2)C18—C19—N24—O25120.6 (3)
C4A—C4B—C8A—N90.5 (3)C20—C19—N24—O26116.7 (3)
C5—C4B—C8A—C80.3 (4)C18—C19—N24—O2660.8 (3)
C4A—C4B—C8A—C8179.6 (2)C8—C7—C27—C32127.9 (3)
C8—C8A—N9—C9A178.5 (3)C6—C7—C27—C3251.2 (4)
C4B—C8A—N9—C9A1.6 (3)C8—C7—C27—C2847.1 (4)
C8—C8A—N9—C100.1 (4)C6—C7—C27—C28133.7 (3)
C4B—C8A—N9—C10179.8 (2)C32—C27—C28—C293.7 (4)
C2—C1—C9A—N9178.4 (2)C7—C27—C28—C29171.5 (3)
C2—C1—C9A—C4A0.8 (4)C32—C27—C28—N33172.1 (2)
C8A—N9—C9A—C1178.7 (3)C7—C27—C28—N3312.6 (4)
C10—N9—C9A—C10.2 (4)C27—C28—C29—C303.3 (4)
C8A—N9—C9A—C4A2.1 (3)N33—C28—C29—C30172.8 (3)
C10—N9—C9A—C4A179.4 (2)C28—C29—C30—C310.4 (4)
C4—C4A—C9A—C10.0 (4)C29—C30—C31—C321.7 (4)
C4B—C4A—C9A—C1179.0 (2)C30—C31—C32—C271.1 (4)
C4—C4A—C9A—N9179.3 (2)C28—C27—C32—C311.5 (4)
C4B—C4A—C9A—N91.7 (3)C7—C27—C32—C31173.9 (3)
C8A—N9—C10—C1174.3 (3)C29—C28—N33—O3544.5 (4)
C9A—N9—C10—C11104.0 (3)C27—C28—N33—O35139.3 (3)
N9—C10—C11—C12179.4 (2)C29—C28—N33—O34133.6 (3)
C10—C11—C12—C13168.0 (2)C27—C28—N33—O3442.6 (4)

Experimental details

Crystal data
Chemical formulaC32H31N3O4
Mr521.60
Crystal system, space groupMonoclinic, P21/c
Temperature (K)173
a, b, c (Å)8.722 (2), 7.987 (2), 39.508 (11)
β (°) 95.044 (6)
V3)2741.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.04 × 0.04
Data collection
DiffractometerBruker SMART APEXII
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
15053, 6525, 2814
Rint0.099
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.137, 0.93
No. of reflections6525
No. of parameters353
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.22

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

Acknowledgements

The authors are grateful to A. Oehlhof and S. Mallon for preparative assistance.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCadogan, J. I. G. (1962). Q. Rev. 16, 208–239.  CrossRef CAS Web of Science Google Scholar
First citationDassonneville, B., Witulski, B. & Detert, H. (2011). Eur. J. Org. Chem. pp. 2836–2844.  Web of Science CSD CrossRef Google Scholar
First citationJones, P. G., Kuś, P. & Pasewicz, A. (2005). Acta Cryst. E61, o1895–o1896.  CSD CrossRef IUCr Journals Google Scholar
First citationLetessier, J. & Detert, H. (2012). Synthesis, 44, 290–296.  CAS Google Scholar
First citationLetessier, J., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o2494.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiyaura, N. & Suzuki, A. (1995). Chem. Rev. 95, 2457–2483.  Web of Science CrossRef CAS Google Scholar
First citationMoschel, S., Schollmeyer, D. & Detert, H. (2011). Acta Cryst. E67, o1425.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationNemkovich, N. A., Kruchenok, Yu. V., Sobchuk, A. N., Detert, H., Wrobel, N. & Chernyavskii, E. A. (2009). Opt. Spectrosc. 107, 275–281.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWrobel, N., Schollmeyer, D. & Detert, H. (2012). Acta Cryst. E68, o1022.  CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds