organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Azido-1-(4-fluoro­phen­yl)ethanone

aH.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi 75270, Pakistan, and bDepartment of Chemistry, University of Karachi 75270, Pakistan
*Correspondence e-mail: dr.sammer.yousuf@gmail.com

(Received 22 March 2012; accepted 28 March 2012; online 31 March 2012)

The crystal structure of the title compound, C8H6FN3O, is stabilized by C—H⋯O hydrogen bonds, which link the mol­ecules into chains running parallel to the a axis.

Related literature

The title compound is an inter­mediate obtained during an attempt to synthesize biologically active triazoles. For the biological activity of triazoles, see: Genin et al. (2000[Genin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953-970.]); Parmee et al. (2000[Parmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111-2114.]); Koble et al. (1995[Koble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 4131-4134.]); Moltzen et al. (1994[Moltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. & Lemboel, H. L. (1994). J. Med. Chem. 37, 4085-4099.]). For standard bond lengths: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6FN3O

  • Mr = 179.16

  • Orthorhombic, P b c a

  • a = 10.7985 (16) Å

  • b = 8.3971 (12) Å

  • c = 17.485 (3) Å

  • V = 1585.5 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 273 K

  • 0.35 × 0.28 × 0.20 mm

Data collection
  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.959, Tmax = 0.976

  • 8606 measured reflections

  • 1476 independent reflections

  • 1239 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.090

  • S = 1.06

  • 1476 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1B⋯O1i 0.93 2.45 3.3722 (17) 174
Symmetry code: (i) [x+{\script{1\over 2}}, y, -z+{\script{3\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of 1,2,3-trizoles via click chemistry approach has gained much attention by synthetic chemists due to their immensely known medicinal importance (Genin et al., 2000, Parmee et al., 2000, Koble et al., 1995, Moltzen et al., 1994). In our quest for the synthesis of therapeutically active triazoles starting from commercially available acetophenone derivatives, a number of azides including the title compound, whose crystal structure is reported herein, have been prepared as an intermediate.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal structure (Fig. 2) is stabilized by intermolecular hydrogen bonds (Table 1) linking the m olecules to form chains parallel to the a axis.

Related literature top

The title compound is an intermediate obtained during an attempt to synthesize biologically active triazoles. For the biological activity of triazoles, see: Genin et al. (2000); Parmee et al. (2000); Koble et al. (1995); Moltzen et al. (1994). For standard bond lengths: Allen et al. (1987).

Experimental top

1-(4-Fluorophenyl)ethanone (7.239 mmol, 1.0 equiv.) was dissolved in acetonitrile (18 ml) in a round bottom flask. To the stirred mixture, p-toluenesulphonic acid (10.858 mmol, 1.5 equiv.) and N-bromosuccinimide (10.134 mmol, 1.4 equiv.) were added, and the solution was heated to reflux for 1 to 1.5 h until completion of the reaction as monitored by TLC analysis. The reaction mixture was cooled to room temperature and sodium azide (21.717 mmol, 3.0 equiv.) was added. After additional stirring for 2 to 3 h, ice cooled water was added to quench the reaction. The reaction mixture was extracted with diethyl ether (2 × 25 ml) and the combined organic layer was dried over anhydrous Na2SO4, filtered and concentrated in vacuum to get the crude product. The crude product was purified by flash silica gel chromatography (EtOAc/hexane, 1:9–3:7 v/v) to afford the title compound in 65% yield. Recrystallization by slow evaporation of an ethanol solution afforded crystals suitable for single-crystal X-ray studies. All chemicals were purchased from Sigma-Aldrich.

Refinement top

H atoms were positioned geometrically with C—H = 0.93–0.97 Å, and constrained to ride on their parent atoms with Uiso(H) = 1.2 Ueq(C).

Structure description top

The synthesis of 1,2,3-trizoles via click chemistry approach has gained much attention by synthetic chemists due to their immensely known medicinal importance (Genin et al., 2000, Parmee et al., 2000, Koble et al., 1995, Moltzen et al., 1994). In our quest for the synthesis of therapeutically active triazoles starting from commercially available acetophenone derivatives, a number of azides including the title compound, whose crystal structure is reported herein, have been prepared as an intermediate.

In the molecule of the title compound (Fig. 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. The crystal structure (Fig. 2) is stabilized by intermolecular hydrogen bonds (Table 1) linking the m olecules to form chains parallel to the a axis.

The title compound is an intermediate obtained during an attempt to synthesize biologically active triazoles. For the biological activity of triazoles, see: Genin et al. (2000); Parmee et al. (2000); Koble et al. (1995); Moltzen et al. (1994). For standard bond lengths: Allen et al. (1987).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with displacement ellipsoids drawn at 30% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound viewed along the b axis. Hydrogen atoms not involved in hydrogen bonds (dashed lines) are omitted.
2-Azido-1-(4-fluorophenyl)ethanone top
Crystal data top
C8H6FN3OF(000) = 736
Mr = 179.16Dx = 1.501 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2831 reflections
a = 10.7985 (16) Åθ = 2.3–27.8°
b = 8.3971 (12) ŵ = 0.12 mm1
c = 17.485 (3) ÅT = 273 K
V = 1585.5 (4) Å3Block, colourless
Z = 80.35 × 0.28 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1476 independent reflections
Radiation source: fine-focus sealed tube1239 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ω scanθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1013
Tmin = 0.959, Tmax = 0.976k = 1010
8606 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2956P]
where P = (Fo2 + 2Fc2)/3
1476 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H6FN3OV = 1585.5 (4) Å3
Mr = 179.16Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7985 (16) ŵ = 0.12 mm1
b = 8.3971 (12) ÅT = 273 K
c = 17.485 (3) Å0.35 × 0.28 × 0.20 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
1476 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1239 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.976Rint = 0.034
8606 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 1.06Δρmax = 0.20 e Å3
1476 reflectionsΔρmin = 0.19 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.61761 (8)0.03188 (12)0.73973 (5)0.0358 (3)
N10.77319 (12)0.13811 (15)0.83252 (7)0.0361 (3)
N20.68380 (11)0.09577 (14)0.87237 (7)0.0336 (3)
N30.60363 (13)0.07646 (17)0.91283 (7)0.0451 (4)
C10.89336 (12)0.19093 (16)0.64990 (8)0.0305 (3)
H1B0.95360.15210.68300.037*
C20.92779 (14)0.28254 (17)0.58742 (8)0.0348 (4)
H2A1.01060.30600.57820.042*
C30.83684 (14)0.33759 (17)0.53966 (8)0.0342 (3)
C40.71318 (14)0.30861 (18)0.55138 (8)0.0366 (4)
H4A0.65360.34920.51820.044*
C50.67981 (13)0.21777 (17)0.61363 (8)0.0333 (3)
H5A0.59650.19680.62270.040*
C60.76889 (12)0.15677 (16)0.66330 (7)0.0273 (3)
C70.72692 (12)0.05618 (16)0.72799 (7)0.0277 (3)
C80.82354 (13)0.01705 (17)0.78080 (8)0.0313 (3)
H8A0.88820.06500.74990.038*
H8B0.86110.06690.81100.038*
F10.87045 (9)0.42468 (11)0.47751 (5)0.0478 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0225 (6)0.0481 (6)0.0370 (5)0.0033 (4)0.0003 (4)0.0021 (5)
N10.0337 (7)0.0341 (7)0.0405 (7)0.0037 (5)0.0029 (6)0.0004 (5)
N20.0346 (7)0.0329 (7)0.0333 (6)0.0019 (5)0.0049 (6)0.0031 (5)
N30.0413 (8)0.0548 (9)0.0392 (7)0.0024 (7)0.0065 (6)0.0069 (6)
C10.0248 (7)0.0338 (8)0.0328 (7)0.0029 (6)0.0019 (6)0.0054 (6)
C20.0293 (8)0.0374 (8)0.0376 (7)0.0015 (6)0.0049 (6)0.0064 (6)
C30.0414 (9)0.0314 (7)0.0299 (7)0.0013 (6)0.0036 (6)0.0031 (6)
C40.0355 (9)0.0378 (8)0.0366 (8)0.0021 (6)0.0068 (6)0.0006 (6)
C50.0260 (7)0.0343 (8)0.0394 (8)0.0003 (6)0.0025 (6)0.0041 (6)
C60.0241 (7)0.0274 (7)0.0304 (7)0.0011 (6)0.0005 (5)0.0075 (5)
C70.0232 (7)0.0287 (7)0.0313 (7)0.0004 (5)0.0009 (5)0.0098 (5)
C80.0254 (7)0.0336 (7)0.0348 (7)0.0004 (6)0.0003 (6)0.0012 (6)
F10.0544 (6)0.0501 (6)0.0389 (5)0.0045 (4)0.0040 (4)0.0089 (4)
Geometric parameters (Å, º) top
O1—C71.2154 (16)C3—C41.373 (2)
N1—N21.2425 (17)C4—C51.377 (2)
N1—C81.4652 (19)C4—H4A0.9300
N2—N31.1296 (17)C5—C61.3936 (19)
C1—C21.387 (2)C5—H5A0.9300
C1—C61.3942 (19)C6—C71.4826 (19)
C1—H1B0.9300C7—C81.5229 (19)
C2—C31.370 (2)C8—H8A0.9700
C2—H2A0.9300C8—H8B0.9700
C3—F11.3591 (16)
N2—N1—C8115.85 (12)C4—C5—H5A119.5
N3—N2—N1170.98 (14)C6—C5—H5A119.5
C2—C1—C6120.33 (13)C5—C6—C1119.02 (13)
C2—C1—H1B119.8C5—C6—C7118.29 (12)
C6—C1—H1B119.8C1—C6—C7122.69 (12)
C3—C2—C1118.38 (13)O1—C7—C6121.43 (12)
C3—C2—H2A120.8O1—C7—C8119.67 (12)
C1—C2—H2A120.8C6—C7—C8118.90 (11)
F1—C3—C2118.53 (13)N1—C8—C7113.59 (12)
F1—C3—C4118.33 (13)N1—C8—H8A108.8
C2—C3—C4123.14 (14)C7—C8—H8A108.8
C3—C4—C5118.09 (14)N1—C8—H8B108.8
C3—C4—H4A121.0C7—C8—H8B108.8
C5—C4—H4A121.0H8A—C8—H8B107.7
C4—C5—C6121.04 (13)
C6—C1—C2—C30.2 (2)C2—C1—C6—C7178.42 (12)
C1—C2—C3—F1178.68 (12)C5—C6—C7—O12.87 (19)
C1—C2—C3—C41.1 (2)C1—C6—C7—O1177.86 (12)
F1—C3—C4—C5178.78 (12)C5—C6—C7—C8177.46 (12)
C2—C3—C4—C51.0 (2)C1—C6—C7—C81.81 (18)
C3—C4—C5—C60.1 (2)N2—N1—C8—C754.22 (16)
C4—C5—C6—C11.0 (2)O1—C7—C8—N111.84 (17)
C4—C5—C6—C7178.34 (12)C6—C7—C8—N1168.49 (11)
C2—C1—C6—C50.84 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.932.453.3722 (17)174
Symmetry code: (i) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC8H6FN3O
Mr179.16
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)273
a, b, c (Å)10.7985 (16), 8.3971 (12), 17.485 (3)
V3)1585.5 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.35 × 0.28 × 0.20
Data collection
DiffractometerBruker SMART APEX CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.959, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
8606, 1476, 1239
Rint0.034
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.090, 1.06
No. of reflections1476
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.19

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), PARST (Nardelli, 1995) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···O1i0.932.453.3722 (17)174
Symmetry code: (i) x+1/2, y, z+3/2.
 

Footnotes

Additional corresponding author, e-mail: bashafz@gmail.com.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGenin, M. J., Allwine, D. A., Anderson, D. J., Barbachyn, M. R., Emmert, D. E., Garmon, S. A., Graber, D. R., Grega, K. C., Hester, J. B., Hutchinson, D. K., Morris, J., Reischer, R. J., Ford, C. W., Zurenco, G. E., Hamel, J. C., Schaadt, R. D., Stapert, D. & Yagi, B. H. (2000). J. Med. Chem. 43, 953–970.  Web of Science CrossRef PubMed CAS Google Scholar
First citationKoble, C. S., Davis, R. G., McLean, E. W., Soroko, F. E. & Cooper, B. R. (1995). J. Med. Chem. 38, 4131–4134.  PubMed Web of Science Google Scholar
First citationMoltzen, E. K., Pedersen, H., Boegesoe, K. P., Meier, E., Frederiksen, K., Sanchez, C. & Lemboel, H. L. (1994). J. Med. Chem. 37, 4085–4099.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationParmee, L., Ok, E. R., Candelore, H. O., Cascieri, M. R., Colwell, M. A., Deng, L. F., Feeney, L., Forrest, W. P. M. J., Hom, G. J., MacIntyre, D. E., Tota, L., Wyvratt, M. J., Fisher, M. H. & Weber, A. E. (2000). Bioorg. Med. Chem. Lett. 10, 2111–2114.  Web of Science CrossRef PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds