metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m431-m432

Di­chloridobis(2-phenyl­pyridine-κN)zinc(II)

aDepartment of Bio & Nano Chemistry, College of Natural Sciences, Kookmin University, 861-1 Jeongneung-dong, Seongbuk-gu, Seoul 136-702, Republic of Korea, and bJeonju Center, Korea Basic Science Institute (KBSI), 664-14 Dukjin dong 1-ga, Dukjin-gu, Jeonju 561-756, Republic of Korea
*Correspondence e-mail: yoona@kookmin.ac.kr

(Received 3 March 2012; accepted 10 March 2012; online 17 March 2012)

In the title compound, [ZnCl2(C11H9N)2], the Zn2+ cation lies on a twofold axis and is coordinated by two Cl anions and the N atoms of two 2-phenyl­pyridine ligands, forming a ZnN2Cl2 polyhedron with a slightly distorted tetra­hedral coordination geometry. The dihedral angle between the phenyl ring and the metal-bound pyridine ring is 50.3 (4)° for each 2-phenyl­pyridine ligand. This arranges the phenyl ring from one ligand in the complex above the pyridine ring of the other resulting in an intra­molecular ππ inter­action, with a centroid–centroid distance of 3.6796 (17) Å. Weak C—H⋯Cl hydrogen bonds stabilize the crystal packing, linking mol­ecules into chains along the c axis.

Related literature

For background to metal complexes with 2-phenyl­pyridine ligands, see: Samha et al. (1993[Samha, H. A., Martinez, T. J. & Armond, M. K. D. (1993). Inorg. Chem. 32, 2583-2586.]); Yoshinari et al. (2010[Yoshinari, N., Kitani, N. & Konno, T. (2010). Acta Cryst. E66, m1499.]); Zhao et al. (2008[Zhao, Q., Lei Li, L., Li, F., Yu, M., Liu, Z., Yi, T. & Huang, C. (2008). Chem. Commun. pp. 685-687.]). For those involving substituted 2-phenyl­pyridine ligands, see: Santoro et al. (2011[Santoro, A., Prokhorov, A. M., Kozhevnikov, V. N., Whitwood, A. C., Donnio, B., Williams, J. A. G. & Bruce, D. W. (2011). J. Am. Chem. Soc. 133, 5248-5251.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl2(C11H9N)2]

  • Mr = 446.67

  • Tetragonal, I 41 c d

  • a = 15.2803 (3) Å

  • c = 16.4339 (7) Å

  • V = 3837.1 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.57 mm−1

  • T = 200 K

  • 0.31 × 0.29 × 0.14 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.814, Tmax = 1.00

  • 13165 measured reflections

  • 2231 independent reflections

  • 1754 reflections with I > 2σ(I)

  • Rint = 0.047

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.074

  • S = 1.09

  • 2231 reflections

  • 123 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.36 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 997 Friedel pairs

  • Flack parameter: 0.02 (2)

Table 1
Selected bond lengths (Å)

Zn1—N1 2.097 (2)
Zn1—Cl1 2.2432 (11)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C11—H11⋯Cl1i 0.95 2.90 3.666 (3) 138
Symmetry code: (i) [-x, y, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

2-Phenylpyridine coordinated metal complexes of IrIII and PtII are well known for their intense photoluminescence (Samha et al., 1993; Yoshinari et al., 2010; Zhao et al., 2008). A four coordinate PtII square planar metal complex has also been reported with two 2-phenylpyridine and two Cl- ligands (Yoshinari et al. 2010). Complexes with substituted 2-phenylpyridine ligands have also been reported (Santoro et al., 2011). Here, we report the structure of a tetrahedrally coordinated Zn2+ complex which crystallizes in the tetragonal space group I41cd with one half molecule in the asymmetric unit. Bond distances to the metal are given in Table 1 with the structure of the molecule shown in Fig 1 and its crystal packing involving weak intermolecular C—H···Cl interactions detailed in Fig 2 and Table 2.

Related literature top

For background to metal complexes with 2-phenylpyridine ligands, see: Samha et al. (1993); Yoshinari et al. (2010); Zhao et al. (2008). For those involving substituted 2-phenylpyridine ligands, see: Santoro et al. (2011).

Experimental top

To a solution of 2-phenylpyridine (1.56 ml, 11.0 mmol) in 30 mL of acetonitrile, ZnCl2 (0.50 g, 3.6 mmol) was added at room temperature. After three hours, acetonitrile was removed under reduced pressure and crystals were collected from a dichloromethane and pentane layering system. Colorless block-like crystals. Yield = 90%, (1.45 g).

Refinement top

The H atoms were placed at calculated positions and refined as riding with C–H = 0.95 Å [Uiso(H) = 1.2 Ueq(C)].

Structure description top

2-Phenylpyridine coordinated metal complexes of IrIII and PtII are well known for their intense photoluminescence (Samha et al., 1993; Yoshinari et al., 2010; Zhao et al., 2008). A four coordinate PtII square planar metal complex has also been reported with two 2-phenylpyridine and two Cl- ligands (Yoshinari et al. 2010). Complexes with substituted 2-phenylpyridine ligands have also been reported (Santoro et al., 2011). Here, we report the structure of a tetrahedrally coordinated Zn2+ complex which crystallizes in the tetragonal space group I41cd with one half molecule in the asymmetric unit. Bond distances to the metal are given in Table 1 with the structure of the molecule shown in Fig 1 and its crystal packing involving weak intermolecular C—H···Cl interactions detailed in Fig 2 and Table 2.

For background to metal complexes with 2-phenylpyridine ligands, see: Samha et al. (1993); Yoshinari et al. (2010); Zhao et al. (2008). For those involving substituted 2-phenylpyridine ligands, see: Santoro et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atom-numbering and with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A crystal packing diagram of the title compound, viewed along the a axis.
Dichloridobis(2-phenylpyridine-κN)zinc(II) top
Crystal data top
[ZnCl2(C11H9N)2]Dx = 1.546 Mg m3
Mr = 446.67Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41cdCell parameters from 4803 reflections
Hall symbol: I 4bw -2cθ = 2.7–28.1°
a = 15.2803 (3) ŵ = 1.57 mm1
c = 16.4339 (7) ÅT = 200 K
V = 3837.1 (2) Å3Block, colorless
Z = 80.31 × 0.29 × 0.14 mm
F(000) = 1824
Data collection top
Bruker SMART CCD area-detector
diffractometer
2231 independent reflections
Radiation source: fine-focus sealed tube1754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
φ and ω scansθmax = 28.3°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1820
Tmin = 0.814, Tmax = 1.00k = 2020
13165 measured reflectionsl = 2116
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.074 w = 1/[σ2(Fo2) + (0.0275P)2 + 1.0418P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2231 reflectionsΔρmax = 0.37 e Å3
123 parametersΔρmin = 0.36 e Å3
1 restraintAbsolute structure: Flack (1983), 997 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (2)
Crystal data top
[ZnCl2(C11H9N)2]Z = 8
Mr = 446.67Mo Kα radiation
Tetragonal, I41cdµ = 1.57 mm1
a = 15.2803 (3) ÅT = 200 K
c = 16.4339 (7) Å0.31 × 0.29 × 0.14 mm
V = 3837.1 (2) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
2231 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1754 reflections with I > 2σ(I)
Tmin = 0.814, Tmax = 1.00Rint = 0.047
13165 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.37 e Å3
S = 1.09Δρmin = 0.36 e Å3
2231 reflectionsAbsolute structure: Flack (1983), 997 Friedel pairs
123 parametersAbsolute structure parameter: 0.02 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.00000.00000.48912 (7)0.02540 (12)
N10.08480 (15)0.05713 (15)0.40397 (14)0.0207 (5)
C10.08984 (19)0.14499 (19)0.40824 (18)0.0265 (6)
H10.06700.17330.45510.032*
C20.12652 (19)0.19583 (19)0.34786 (19)0.0298 (7)
H20.12990.25760.35360.036*
C30.1581 (2)0.1554 (2)0.27923 (19)0.0329 (7)
H30.18340.18880.23650.039*
C40.1525 (2)0.0650 (2)0.27340 (18)0.0291 (7)
H40.17350.03610.22610.035*
C50.11645 (16)0.01706 (17)0.33602 (17)0.0222 (6)
C60.11275 (18)0.07988 (17)0.33127 (17)0.0226 (6)
C70.1446 (2)0.13120 (19)0.39417 (19)0.0298 (7)
H70.16880.10400.44110.036*
C80.1416 (2)0.2216 (2)0.3894 (2)0.0373 (8)
H80.16340.25640.43280.045*
C90.1067 (2)0.2607 (2)0.3209 (2)0.0389 (8)
H90.10400.32270.31740.047*
C100.0756 (2)0.2102 (2)0.2572 (2)0.0353 (8)
H100.05200.23760.21020.042*
C110.0787 (2)0.1198 (2)0.26203 (17)0.0285 (7)
H110.05770.08510.21820.034*
Cl10.04582 (6)0.10755 (6)0.57169 (5)0.0421 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0278 (3)0.0310 (3)0.0174 (2)0.0033 (2)0.0000.000
N10.0218 (12)0.0206 (12)0.0196 (12)0.0022 (10)0.0029 (10)0.0004 (10)
C10.0260 (17)0.0283 (16)0.0253 (15)0.0001 (13)0.0036 (13)0.0026 (13)
C20.0321 (17)0.0206 (15)0.0368 (18)0.0012 (12)0.0012 (13)0.0022 (13)
C30.0350 (18)0.0287 (18)0.0350 (18)0.0024 (14)0.0066 (15)0.0096 (15)
C40.0316 (17)0.0297 (17)0.0260 (15)0.0030 (13)0.0089 (13)0.0005 (13)
C50.0164 (13)0.0272 (15)0.0229 (16)0.0006 (11)0.0030 (11)0.0014 (12)
C60.0216 (14)0.0202 (13)0.0262 (16)0.0004 (12)0.0049 (12)0.0025 (12)
C70.0288 (17)0.0308 (17)0.0297 (17)0.0000 (13)0.0015 (13)0.0027 (13)
C80.0353 (19)0.0274 (17)0.049 (2)0.0038 (15)0.0000 (16)0.0047 (15)
C90.0400 (18)0.0252 (15)0.051 (2)0.0026 (15)0.0091 (17)0.0056 (17)
C100.0346 (17)0.0371 (18)0.0344 (19)0.0056 (14)0.0054 (14)0.0184 (14)
C110.0266 (16)0.0325 (17)0.0264 (18)0.0005 (13)0.0038 (12)0.0050 (13)
Cl10.0487 (5)0.0513 (5)0.0262 (4)0.0041 (4)0.0028 (4)0.0125 (4)
Geometric parameters (Å, º) top
Zn1—N12.097 (2)C4—H40.9500
Zn1—N1i2.097 (2)C5—C61.484 (4)
Zn1—Cl1i2.2432 (11)C6—C71.386 (4)
Zn1—Cl12.2432 (11)C6—C111.392 (4)
N1—C11.347 (4)C7—C81.384 (4)
N1—C51.362 (3)C7—H70.9500
C1—C21.379 (4)C8—C91.382 (5)
C1—H10.9500C8—H80.9500
C2—C31.374 (4)C9—C101.384 (5)
C2—H20.9500C9—H90.9500
C3—C41.388 (4)C10—C111.384 (4)
C3—H30.9500C10—H100.9500
C4—C51.378 (4)C11—H110.9500
N1—Zn1—N1i96.30 (13)N1—C5—C4121.0 (2)
N1—Zn1—Cl1i106.95 (7)N1—C5—C6118.6 (2)
N1i—Zn1—Cl1i121.04 (6)C4—C5—C6120.4 (2)
N1—Zn1—Cl1121.04 (6)C7—C6—C11119.6 (3)
N1i—Zn1—Cl1106.95 (7)C7—C6—C5120.8 (2)
Cl1i—Zn1—Cl1105.55 (7)C11—C6—C5119.6 (3)
C1—N1—C5118.1 (2)C8—C7—C6120.7 (3)
C1—N1—Zn1114.56 (19)C8—C7—H7119.6
C5—N1—Zn1125.39 (18)C6—C7—H7119.6
N1—C1—C2123.2 (3)C9—C8—C7119.3 (3)
N1—C1—H1118.4C9—C8—H8120.3
C2—C1—H1118.4C7—C8—H8120.3
C3—C2—C1118.7 (3)C8—C9—C10120.5 (3)
C3—C2—H2120.6C8—C9—H9119.7
C1—C2—H2120.6C10—C9—H9119.7
C2—C3—C4118.8 (3)C9—C10—C11120.1 (3)
C2—C3—H3120.6C9—C10—H10120.0
C4—C3—H3120.6C11—C10—H10120.0
C5—C4—C3120.2 (3)C10—C11—C6119.8 (3)
C5—C4—H4119.9C10—C11—H11120.1
C3—C4—H4119.9C6—C11—H11120.1
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl1ii0.952.903.666 (3)138
Symmetry code: (ii) x, y, z1/2.

Experimental details

Crystal data
Chemical formula[ZnCl2(C11H9N)2]
Mr446.67
Crystal system, space groupTetragonal, I41cd
Temperature (K)200
a, c (Å)15.2803 (3), 16.4339 (7)
V3)3837.1 (2)
Z8
Radiation typeMo Kα
µ (mm1)1.57
Crystal size (mm)0.31 × 0.29 × 0.14
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.814, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
13165, 2231, 1754
Rint0.047
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.074, 1.09
No. of reflections2231
No. of parameters123
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.37, 0.36
Absolute structureFlack (1983), 997 Friedel pairs
Absolute structure parameter0.02 (2)

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Selected bond lengths (Å) top
Zn1—N12.097 (2)Zn1—Cl12.2432 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11···Cl1i0.952.903.666 (3)138.4
Symmetry code: (i) x, y, z1/2.
 

Acknowledgements

This research was supported by the Basic Science Research program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (KRF-2008-C00146).

References

First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSamha, H. A., Martinez, T. J. & Armond, M. K. D. (1993). Inorg. Chem. 32, 2583–2586.  CrossRef CAS Web of Science Google Scholar
First citationSantoro, A., Prokhorov, A. M., Kozhevnikov, V. N., Whitwood, A. C., Donnio, B., Williams, J. A. G. & Bruce, D. W. (2011). J. Am. Chem. Soc. 133, 5248–5251.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshinari, N., Kitani, N. & Konno, T. (2010). Acta Cryst. E66, m1499.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationZhao, Q., Lei Li, L., Li, F., Yu, M., Liu, Z., Yi, T. & Huang, C. (2008). Chem. Commun. pp. 685–687.  Web of Science CSD CrossRef Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m431-m432
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds