organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Fluoro-2-[(3-methyl­phen­yl)imino­meth­yl]phenol

aDepartment of Chemistry, University of the Free State, PO Box 339, Bloemfontein 9300, South Africa
*Correspondence e-mail: alice.brink@gmail.com

(Received 5 March 2012; accepted 9 March 2012; online 14 March 2012)

The title compound, C14H12FNO, crystallizes as the trans phenol–imine tautomer. The two benzene rings are essentially coplanar, being inclined to one another by 9.28 (7)°. This is at least in part due to the intra­molecular O—H⋯N hydrogen bond between the hy­droxy O atom and the imine N atom. The crystal structure is stabilized by an array of weak C—H⋯O and C—H⋯F inter­actions, which link the mol­ecules into a stable three-dimensional network.

Related literature

For related structures, see: Karakaş et al. (2004[Karakaş, A., Elmali, A., Ūnver, H. & Svoboda, I. (2004). J. Mol. Struct. 702, 103-110.]); Arod et al. (2005[Arod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317-o320.]); Cheng et al. (2005[Cheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137-o1138.]); Brink et al. (2009[Brink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175-o3176.]). For related rhenium tricarbonyl complexes containing salicylaldimines, see: Brink et al. (2011[Brink, A., Visser, H. G. & Roodt, A. (2011). J. Coord. Chem. 64, 122-133.]). For related N,O-bidentate ligands coordinated to a rhenium tricarbonyl core, see: Schutte et al. (2011[Schutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486-12498.]).

[Scheme 1]

Experimental

Crystal data
  • C14H12FNO

  • Mr = 229.25

  • Monoclinic, P c

  • a = 10.2655 (6) Å

  • b = 4.6738 (2) Å

  • c = 12.3561 (8) Å

  • β = 112.331 (3)°

  • V = 548.37 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 100 K

  • 0.19 × 0.1 × 0.06 mm

Data collection
  • Bruker X8 APEXII 4K Kappa CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004[Bruker (2004). SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.981, Tmax = 0.994

  • 7009 measured reflections

  • 1319 independent reflections

  • 1203 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.095

  • S = 1.06

  • 1319 reflections

  • 156 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1B⋯N1 0.84 1.85 2.601 (2) 147
C1—H1A⋯O1i 0.95 2.6 3.467 (3) 151
C16—H16⋯O1i 0.95 2.65 3.495 (3) 149
C13—H13⋯F1ii 0.95 2.6 3.472 (3) 153
C231—H23A⋯F1iii 0.98 2.73 3.321 (3) 119
C231—H23C⋯F1iv 0.98 2.67 3.193 (2) 114
Symmetry codes: (i) [x, -y+1, z-{\script{1\over 2}}]; (ii) [x, -y, z+{\script{1\over 2}}]; (iii) x-1, y+1, z; (iv) x-1, y+2, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2004[Bruker (2004). SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2004[Bruker (2004). SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SIR92 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2004[Brandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WingGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

Schiff-base ligands have played a significant role in the development of coordination chemistry as stable organometallic complexes are readily formed with a variety of transition metals. In continuation of our research on the coordination of various bifunctional chelate systems on the fac-[M(CO)3]+ moiety (M = Re(I), Tc(I)) (Brink et al., 2011; Schutte et al., 2011) the title compound was synthesized and is reported here.

The title compound (Figure 1) is essentially co-planar with a dihedral angle of 9.28 (7)° between the aromatic rings. The bond distances and angles in the title compound are in accord with those reported for related salicylaldimine-based ligand systems (Karakaş et al., 2004; Arod et al., 2005; Cheng et al., 2005; Brink et al., 2009).

The compound crystallizes as the trans phenol-imine tautomer. A strong intramolecular hydrogen bond occurs between the O—H···N atoms in each unique molecule. The crystal structure is stabilized by an array of weak C—H···O and C—H···F interactions. The bifurcated acceptor, O1, experiences weak hydrogen bond interactions with H16 and H1A. As a result, the two independent molecules pack nearly perpendicular to each other with a dihedral angle of 88.01 (5)° between planes drawn through the C1 aromatic ring systems (Figures 2 and 3). All the interactions serve to link the molecules into a stable three-dimensional supramolecular network. The molecular packing, viewed along the c-axis, illustrates the cube-like tunnel formation resulting from the various interactions (Figure 4).

Related literature top

For related structures, see: Karakaş et al. (2004); Arod et al. (2005); Cheng et al. (2005); Brink et al. (2009). For related rhenium tricarbonyl complexes containing salicylaldimines, see: Brink et al. (2011). For related N,O-bidentate ligands coordinated to a rhenium tricarbonyl core, see: Schutte et al. (2011).

Experimental top

The reaction was performed under Schlenk conditions using a nitrogen atmosphere. To a solution of 5-fluorosalicylaldehyde (0.50 g, 3.57 mmol) in methanol, a solution of m-toluidine (0.382 g, 3.57 mmol) was added. The reaction was refluxed at 80°C for 3 h. The solvent was removed under reduced pressure. The product was obtained as an orange solid which was washed with cold methanol and filtered. Crystals suitable for X-ray diffraction were grown from the filtrate. Yield 82.1%. 1H NMR [acetone-d6, 600 MHz, δ (p.p.m.)] 13.04 (s, 1H), 8.90 (s, 1H), 7.40 (dd, 1H, J = 3.1, 8.7 Hz), 7.35 (t, 1H, J = 7.7 Hz), 7.25 (s, 1H), 7.24–7.20 (m, 2H), 7.16 (d, 1H, J = 7.7 Hz), 6.96 (dd, 1H, J = 4.5, 9.1 Hz), 2.39 (s, 3H, CH3).

Refinement top

The aromatic H atoms and hydroxy H atom were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and 1.5eq(O).The aliphatic H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with Uiso(H) = 1.2Ueq(C) and 1.5eq(C), respectively for the methylene and methyl carbon atoms. The methyl groups were generated to fit the difference electron density and the groups were then refined as rigid rotors. The absolute structure parameter is meaningless and has been removed from the CIF. The Friedel opposites have been merged as the compound is a weak anomalous scatterer.

Structure description top

Schiff-base ligands have played a significant role in the development of coordination chemistry as stable organometallic complexes are readily formed with a variety of transition metals. In continuation of our research on the coordination of various bifunctional chelate systems on the fac-[M(CO)3]+ moiety (M = Re(I), Tc(I)) (Brink et al., 2011; Schutte et al., 2011) the title compound was synthesized and is reported here.

The title compound (Figure 1) is essentially co-planar with a dihedral angle of 9.28 (7)° between the aromatic rings. The bond distances and angles in the title compound are in accord with those reported for related salicylaldimine-based ligand systems (Karakaş et al., 2004; Arod et al., 2005; Cheng et al., 2005; Brink et al., 2009).

The compound crystallizes as the trans phenol-imine tautomer. A strong intramolecular hydrogen bond occurs between the O—H···N atoms in each unique molecule. The crystal structure is stabilized by an array of weak C—H···O and C—H···F interactions. The bifurcated acceptor, O1, experiences weak hydrogen bond interactions with H16 and H1A. As a result, the two independent molecules pack nearly perpendicular to each other with a dihedral angle of 88.01 (5)° between planes drawn through the C1 aromatic ring systems (Figures 2 and 3). All the interactions serve to link the molecules into a stable three-dimensional supramolecular network. The molecular packing, viewed along the c-axis, illustrates the cube-like tunnel formation resulting from the various interactions (Figure 4).

For related structures, see: Karakaş et al. (2004); Arod et al. (2005); Cheng et al. (2005); Brink et al. (2009). For related rhenium tricarbonyl complexes containing salicylaldimines, see: Brink et al. (2011). For related N,O-bidentate ligands coordinated to a rhenium tricarbonyl core, see: Schutte et al. (2011).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-Plus (Bruker, 2004); data reduction: SAINT-Plus and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2004); software used to prepare material for publication: WingGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Representation of the molecular structure of the title compound, showing the numbering scheme and displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Representation of the hydrogen-bond interactions (only relevant H atoms are shown).
[Figure 3] Fig. 3. Representation of the perpendicular orientation of molecules.
[Figure 4] Fig. 4. Molecular packing of the unit cell illustrating the cube-like formation as viewed along the c-axis.
4-Fluoro-2-[(3-methylphenyl)iminomethyl]phenol top
Crystal data top
C14H12FNOF(000) = 240
Mr = 229.25Dx = 1.388 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 2573 reflections
a = 10.2655 (6) Åθ = 3.4–28.3°
b = 4.6738 (2) ŵ = 0.10 mm1
c = 12.3561 (8) ÅT = 100 K
β = 112.331 (3)°Cuboid, orange
V = 548.37 (5) Å30.19 × 0.1 × 0.06 mm
Z = 2
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
1319 independent reflections
Graphite monochromator1203 reflections with I > 2σ(I)
Detector resolution: 512 pixels mm-1Rint = 0.028
ω and φ scansθmax = 28.0°, θmin = 3.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 1313
Tmin = 0.981, Tmax = 0.994k = 56
7009 measured reflectionsl = 1616
Refinement top
Refinement on F22 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0597P)2 + 0.0513P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.095(Δ/σ)max < 0.001
S = 1.06Δρmax = 0.19 e Å3
1319 reflectionsΔρmin = 0.19 e Å3
156 parameters
Crystal data top
C14H12FNOV = 548.37 (5) Å3
Mr = 229.25Z = 2
Monoclinic, PcMo Kα radiation
a = 10.2655 (6) ŵ = 0.10 mm1
b = 4.6738 (2) ÅT = 100 K
c = 12.3561 (8) Å0.19 × 0.1 × 0.06 mm
β = 112.331 (3)°
Data collection top
Bruker X8 APEXII 4K Kappa CCD
diffractometer
1319 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
1203 reflections with I > 2σ(I)
Tmin = 0.981, Tmax = 0.994Rint = 0.028
7009 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0342 restraints
wR(F2) = 0.095H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
1319 reflectionsΔρmin = 0.19 e Å3
156 parameters
Special details top

Experimental. Intensity data was collected on a Bruker X8 Apex II 4 K Kappa CCD diffractometer using an exposure time of 55 s/frame. A total of 1495 frames were collected with a frame width of 0.5° covering up to θ = 28.0° with 99.6% completeness accomplished

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.51676 (18)0.7931 (4)0.51611 (15)0.0170 (4)
O10.62483 (16)0.5330 (3)0.71672 (14)0.0229 (4)
H1B0.5710.64420.6660.034*
F10.95777 (14)0.0665 (3)0.54083 (13)0.0276 (3)
C10.5962 (2)0.6410 (4)0.47953 (19)0.0178 (4)
H1A0.58970.66260.40120.021*
C110.6955 (2)0.4372 (4)0.55563 (18)0.0161 (4)
C120.7069 (2)0.3900 (4)0.67131 (18)0.0183 (4)
C130.8048 (2)0.1934 (5)0.74184 (18)0.0211 (5)
H130.81320.16370.82030.025*
C140.8897 (2)0.0416 (5)0.6980 (2)0.0219 (5)
H140.95670.09190.74580.026*
C150.8756 (2)0.0873 (4)0.5839 (2)0.0195 (5)
C160.7817 (2)0.2812 (5)0.51227 (19)0.0181 (4)
H160.77530.30920.43430.022*
C210.4220 (2)0.9970 (4)0.44138 (18)0.0168 (4)
C220.3265 (2)1.1211 (4)0.48298 (18)0.0171 (4)
H220.32861.06690.55770.021*
C230.2280 (2)1.3232 (5)0.41733 (18)0.0189 (4)
C240.2290 (2)1.4038 (5)0.30877 (18)0.0209 (5)
H240.1631.5410.26250.025*
C250.3257 (2)1.2853 (5)0.26779 (19)0.0223 (5)
H250.32581.34450.19430.027*
C260.4219 (2)1.0818 (4)0.33261 (19)0.0205 (5)
H260.48711.00080.30360.025*
C2310.1250 (2)1.4526 (5)0.4626 (2)0.0227 (5)
H23A0.13671.36410.53770.034*
H23B0.02891.41940.40630.034*
H23C0.14221.65880.47360.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0165 (8)0.0168 (8)0.0174 (9)0.0004 (6)0.0061 (7)0.0005 (6)
O10.0264 (8)0.0271 (8)0.0181 (7)0.0081 (6)0.0116 (7)0.0032 (6)
F10.0278 (7)0.0264 (7)0.0320 (7)0.0092 (5)0.0154 (6)0.0010 (6)
C10.0200 (10)0.0174 (8)0.0165 (10)0.0022 (8)0.0075 (8)0.0011 (8)
C110.0166 (10)0.0141 (9)0.0164 (10)0.0015 (7)0.0050 (8)0.0008 (8)
C120.0190 (10)0.0193 (10)0.0170 (10)0.0024 (8)0.0074 (9)0.0012 (8)
C130.0228 (11)0.0231 (10)0.0157 (10)0.0005 (9)0.0053 (9)0.0034 (8)
C140.0201 (11)0.0207 (10)0.0212 (11)0.0009 (8)0.0036 (9)0.0019 (8)
C150.0166 (10)0.0191 (10)0.0244 (12)0.0003 (8)0.0096 (9)0.0018 (8)
C160.0194 (10)0.0192 (10)0.0178 (10)0.0010 (8)0.0095 (8)0.0006 (7)
C210.0171 (10)0.0154 (9)0.0177 (10)0.0020 (8)0.0063 (8)0.0010 (7)
C220.0184 (10)0.0163 (9)0.0165 (10)0.0023 (7)0.0066 (8)0.0006 (8)
C230.0168 (10)0.0188 (10)0.0200 (11)0.0025 (8)0.0059 (8)0.0034 (8)
C240.0181 (11)0.0193 (10)0.0219 (11)0.0017 (8)0.0039 (9)0.0011 (8)
C250.0240 (12)0.0248 (11)0.0186 (10)0.0027 (8)0.0086 (9)0.0038 (8)
C260.0206 (10)0.0217 (10)0.0209 (11)0.0022 (8)0.0098 (9)0.0001 (8)
C2310.0192 (10)0.0244 (10)0.0247 (11)0.0015 (8)0.0086 (9)0.0019 (9)
Geometric parameters (Å, º) top
N1—C11.287 (3)C21—C221.395 (3)
N1—C211.422 (3)C21—C261.401 (3)
O1—C121.353 (3)C21—N11.422 (3)
O1—H1B0.84C22—C231.396 (3)
F1—C151.361 (2)C22—H220.95
C1—C111.450 (3)C23—C241.397 (3)
C1—H1A0.95C23—C2311.499 (3)
C11—C161.401 (3)C24—C251.389 (3)
C11—C121.407 (3)C24—H240.95
C12—C131.396 (3)C25—C261.386 (3)
C13—C141.385 (3)C25—H250.95
C13—H130.95C26—H260.95
C14—C151.377 (3)C231—H23A0.98
C14—H140.95C231—H23B0.98
C15—C161.373 (3)C231—H23C0.98
C16—H160.95
C1—N1—C21120.69 (16)C26—C21—N1124.30 (18)
C12—O1—H1B109.5C22—C21—N1116.25 (17)
N1—C1—C11121.23 (18)C26—C21—N1124.30 (18)
N1—C1—H1A119.4C21—C22—C23121.53 (18)
C11—C1—H1A119.4C21—C22—H22119.2
C16—C11—C12119.11 (19)C23—C22—H22119.2
C16—C11—C1118.98 (18)C22—C23—C24118.16 (18)
C12—C11—C1121.91 (18)C22—C23—C231120.94 (18)
O1—C12—C13118.70 (18)C24—C23—C231120.90 (19)
O1—C12—C11121.31 (19)C25—C24—C23120.63 (19)
C13—C12—C11119.99 (19)C25—C24—H24119.7
C14—C13—C12120.27 (19)C23—C24—H24119.7
C14—C13—H13119.9C26—C25—C24120.94 (19)
C12—C13—H13119.9C26—C25—H25119.5
C15—C14—C13118.9 (2)C24—C25—H25119.5
C15—C14—H14120.5C25—C26—C21119.3 (2)
C13—C14—H14120.5C25—C26—H26120.4
F1—C15—C16118.91 (19)C21—C26—H26120.4
F1—C15—C14118.57 (19)C23—C231—H23A109.5
C16—C15—C14122.5 (2)C23—C231—H23B109.5
C15—C16—C11119.17 (19)H23A—C231—H23B109.5
C15—C16—H16120.4C23—C231—H23C109.5
C11—C16—H16120.4H23A—C231—H23C109.5
C22—C21—C26119.44 (19)H23B—C231—H23C109.5
C22—C21—N1116.25 (17)
N1—N1—C1—C110.0 (6)N1—N1—C21—C220.0 (6)
C21—N1—C1—C11178.58 (17)C1—N1—C21—C22171.08 (18)
N1—C1—C11—C16178.66 (18)N1—N1—C21—C260.0 (7)
N1—C1—C11—C121.9 (3)C1—N1—C21—C2610.4 (3)
C16—C11—C12—O1179.24 (18)C1—N1—C21—N10E1 (10)
C1—C11—C12—O10.2 (3)C26—C21—C22—C231.7 (3)
C16—C11—C12—C131.1 (3)N1—C21—C22—C23179.74 (17)
C1—C11—C12—C13179.45 (19)N1—C21—C22—C23179.74 (17)
O1—C12—C13—C14179.49 (19)C21—C22—C23—C241.3 (3)
C11—C12—C13—C140.8 (3)C21—C22—C23—C231179.38 (19)
C12—C13—C14—C150.2 (3)C22—C23—C24—C250.0 (3)
C13—C14—C15—F1178.87 (18)C231—C23—C24—C25179.33 (19)
C13—C14—C15—C161.0 (3)C23—C24—C25—C260.9 (3)
F1—C15—C16—C11179.14 (17)C24—C25—C26—C210.5 (3)
C14—C15—C16—C110.8 (3)C22—C21—C26—C250.7 (3)
C12—C11—C16—C150.3 (3)N1—C21—C26—C25179.19 (19)
C1—C11—C16—C15179.79 (18)N1—C21—C26—C25179.19 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.841.852.601 (2)147
C1—H1A···O1i0.952.63.467 (3)151
C16—H16···O1i0.952.653.495 (3)149
C13—H13···F1ii0.952.63.472 (3)153
C231—H23A···F1iii0.982.733.321 (3)119
C231—H23C···F1iv0.982.673.193 (2)114
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2; (iii) x1, y+1, z; (iv) x1, y+2, z.

Experimental details

Crystal data
Chemical formulaC14H12FNO
Mr229.25
Crystal system, space groupMonoclinic, Pc
Temperature (K)100
a, b, c (Å)10.2655 (6), 4.6738 (2), 12.3561 (8)
β (°) 112.331 (3)
V3)548.37 (5)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.19 × 0.1 × 0.06
Data collection
DiffractometerBruker X8 APEXII 4K Kappa CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.981, 0.994
No. of measured, independent and
observed [I > 2σ(I)] reflections
7009, 1319, 1203
Rint0.028
(sin θ/λ)max1)0.660
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.095, 1.06
No. of reflections1319
No. of parameters156
No. of restraints2
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT-Plus (Bruker, 2004), SAINT-Plus and XPREP (Bruker, 2004), SIR92 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2004), WingGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1B···N10.841.852.601 (2)147.1
C1—H1A···O1i0.952.63.467 (3)151
C16—H16···O1i0.952.653.495 (3)149.1
C13—H13···F1ii0.952.63.472 (3)152.7
C231—H23A···F1iii0.982.733.321 (3)118.9
C231—H23C···F1iv0.982.673.193 (2)113.9
Symmetry codes: (i) x, y+1, z1/2; (ii) x, y, z+1/2; (iii) x1, y+1, z; (iv) x1, y+2, z.
 

Acknowledgements

Financial assistance from the University of the Free State (UFS), the UFS Advanced Biomolecular Cluster, SASOL and the South African National Research Foundation (SA-NRF/THRIP) is gratefully acknowledged. Part of this material is based on work supported by the SA-NRF/THRIP under grant No. GUN 2068915. Opinions, findings, conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the SA-NRF.

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationArod, F., Gardon, M., Pattison, P. & Chapuis, G. (2005). Acta Cryst. C61, o317–o320.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (2004). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBrink, A., Roodt, A. & Visser, H. G. (2009). Acta Cryst. E65, o3175–o3176.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrink, A., Visser, H. G. & Roodt, A. (2011). J. Coord. Chem. 64, 122–133.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2004). SAINT-Plus, X-PREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCheng, K., You, Z.-L., Li, Y.-G. & Zhu, H.-L. (2005). Acta Cryst. E61, o1137–o1138.  Web of Science CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKarakaş, A., Elmali, A., Ūnver, H. & Svoboda, I. (2004). J. Mol. Struct. 702, 103–110.  Google Scholar
First citationSchutte, M., Kemp, G., Visser, H. G. & Roodt, A. (2011). Inorg. Chem. 50, 12486–12498.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds