organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­octanaminium hydrogen succinate monohydrate

aMolecular Sciences Institute, School of Chemistry, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
*Correspondence e-mail: manuel.fernandes@wits.ac.za

(Received 12 March 2012; accepted 14 March 2012; online 28 March 2012)

In the title hydrated salt, C8H18N+·C4H5O4·H2O, the cyclo­octyl­ ring of the cation is disordered over two positions in a 0.833 (3):0.167 (3) ratio. The structure contains various O—H.·O and N—H⋯O inter­actions, forming a hydrogen-bonded layer of mol­ecules perpendicular to the c axis. In each layer, the ammonium cation hydrogen bonds to two hydrogen succinate anions and one water mol­ecule. Each hydrogen succinate anion hydrogen bonds to neighbouring anions, forming a chain of mol­ecules along the b axis. In addition, each hydrogen succinate anion hydrogen bonds to two water mol­ecules and the ammonium cation.

Related literature

For studies involving hydrogen-bonding inter­actions, see: Latimer & Rodebush (1920[Latimer, W. M. & Rodebush, W. H. (1920). J. Chem. Soc. 42, 1419-33.]); Pimentel & McClellan (1960[Pimentel, G. C. & McClellan, A. L. (1960). In The Hydrogen Bond. San Francisco, CA: Freeman.]); Lemmerer (2011a[Lemmerer, A. (2011a). CrystEngComm, 13, 2849-2862.],b[Lemmerer, A. (2011b). Cryst. Growth Des. 11, 583-593.]). For graph-set motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem., Int. Ed. Engl. 34, 1555-1573.]); Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • C8H18N+·C4H5O4·H2O

  • Mr = 263.33

  • Orthorhombic, P b c a

  • a = 8.4221 (6) Å

  • b = 14.3704 (9) Å

  • c = 23.7031 (16) Å

  • V = 2868.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 173 K

  • 0.46 × 0.42 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 12354 measured reflections

  • 3461 independent reflections

  • 2245 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.050

  • wR(F2) = 0.145

  • S = 1.04

  • 3461 reflections

  • 198 parameters

  • 30 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.40 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O1i 0.84 1.72 2.5586 (18) 179
N1—H1A⋯O2ii 0.91 1.93 2.834 (2) 175
N1—H1B⋯O1Wiii 0.91 1.91 2.804 (2) 168
N1—H1C⋯O1 0.91 1.89 2.7866 (19) 168
N1—H1A⋯O2ii 0.91 1.93 2.834 (2) 175
O1W—H1WA⋯O2 0.83 (3) 1.99 (3) 2.807 (2) 167 (3)
O1W—H1WB⋯O4iv 0.85 (3) 2.03 (3) 2.855 (2) 165 (2)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) -x, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-NT (Bruker, 2005[Bruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-NT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and SCHAKAL99 (Keller, 1999[Keller, E. (1999). SCHAKAL99. University of Freiberg, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Intramolecular and intermolecular hydrogen bonding is of great importance in chemical and biological systems. As a consequence it has been studied extensively since the 1920's (Latimer & Rodebush, 1920; Pimentel & McClellan, 1960) and is still an area of intense interest. In the crystal engineering field, hydrogen bonding plays an important role in organizing molecules, assembling them to create supramolecules and controlling their dimensions in one-, two- or three-dimensions. This is a requirement in order to create functional materials by design. Ammonium carboxylate salts, by having strong charge-assisted N—H..O hydrogen bonds, can be used to align molecules in desired directions, which is also useful for creating functional materials (Lemmerer, 2011a; Lemmerer, 2011b).

The title compound (Fig.1) crystallizes in Pbca and contains three independent molecules: a cyclooctanaminium cation disordered over two positions in a 0833 (3):0.167 (3) ratio, a hydrogen succinate anion, and a water molecule (Scheme 1). The crystal structure consists of a hydrogen bonded layer composed of several different hydrogen bonds between the three molecules (Fig. 2). The hydrogen succinate anions are linked via an intermolecular O3—H3···O1 hydrogen bond to form chains of molecules along the b axis described by the graph set C7 (Fig. 3) (Etter et al., 1990; Bernstein et al., 1995). All three independent molecules are linked via hydrogen bonding to form a ring described by the graph set motif R35(12). The three ammonium hydrogen atoms are involved in strong hydrogen bonds with the O atoms of the neighbouring succinate anions (N—H1C···O1 and N—H1A···O2) and a hydrogen bond with the water molecule (N—H1B···O1W). The water molecule act as both hydrogen acceptor (accepts the H atom from N) and donor (donates H atoms to the succinate anions) to surrounding molecules. The combination of these hydrogen bonds leads to a two-dimensional hydrogen bonded layer of molecules perpedicular to the c axis. A list hydrogen bonding interactions are given in Table 1.

Related literature top

For studies involving hydrogen-bonding interactions, see: Latimer & Rodebush (1920); Pimentel & McClellan (1960); Lemmerer (2011a,b). For graph-set motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Experimental top

The title compound was obtained after a failed synthesis. Succinic acid [succinic anhydride having reacted with water in the reagent bottle over time (years)] was dissolved in dioxane followed by the addition of an equimolar amount of cyclooctylamine. After 6 h, thionyl chloride in dioxane was slowly added to the reaction mixture at room temperature. The mixture was then kept at 50 °C for 6 h, followed by neutralization of excess thionyl chloride by pouring the mixture into a beaker containing ice. The mixture was then filtered and the solvent removed under reduced pressure. This was then redissolved in methanol which after a few days of evaporation yielded crystals suitable for analysis by X-ray diffraction.

Refinement top

H atoms in the cation and anion were positioned geometrically, and allowed to ride on their parent atoms, with Atom—H bond lengths of 0.99 Å (CH2), or 0.91 Å (NH3), or 0.84 Å (COOH), and isotropic displacement parameters set to 1.2 times (CH2) or 1.5 times (NH3 and COOH) the Ueq of the parent atom. Hydrogen atoms of the water molecule were refined freely.

Structure description top

Intramolecular and intermolecular hydrogen bonding is of great importance in chemical and biological systems. As a consequence it has been studied extensively since the 1920's (Latimer & Rodebush, 1920; Pimentel & McClellan, 1960) and is still an area of intense interest. In the crystal engineering field, hydrogen bonding plays an important role in organizing molecules, assembling them to create supramolecules and controlling their dimensions in one-, two- or three-dimensions. This is a requirement in order to create functional materials by design. Ammonium carboxylate salts, by having strong charge-assisted N—H..O hydrogen bonds, can be used to align molecules in desired directions, which is also useful for creating functional materials (Lemmerer, 2011a; Lemmerer, 2011b).

The title compound (Fig.1) crystallizes in Pbca and contains three independent molecules: a cyclooctanaminium cation disordered over two positions in a 0833 (3):0.167 (3) ratio, a hydrogen succinate anion, and a water molecule (Scheme 1). The crystal structure consists of a hydrogen bonded layer composed of several different hydrogen bonds between the three molecules (Fig. 2). The hydrogen succinate anions are linked via an intermolecular O3—H3···O1 hydrogen bond to form chains of molecules along the b axis described by the graph set C7 (Fig. 3) (Etter et al., 1990; Bernstein et al., 1995). All three independent molecules are linked via hydrogen bonding to form a ring described by the graph set motif R35(12). The three ammonium hydrogen atoms are involved in strong hydrogen bonds with the O atoms of the neighbouring succinate anions (N—H1C···O1 and N—H1A···O2) and a hydrogen bond with the water molecule (N—H1B···O1W). The water molecule act as both hydrogen acceptor (accepts the H atom from N) and donor (donates H atoms to the succinate anions) to surrounding molecules. The combination of these hydrogen bonds leads to a two-dimensional hydrogen bonded layer of molecules perpedicular to the c axis. A list hydrogen bonding interactions are given in Table 1.

For studies involving hydrogen-bonding interactions, see: Latimer & Rodebush (1920); Pimentel & McClellan (1960); Lemmerer (2011a,b). For graph-set motifs, see: Bernstein et al. (1995); Etter et al. (1990).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT-NT (Bruker, 2005); data reduction: SAINT-NT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL99 (Keller, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I). Only the major disorder component of the cation is shown.
[Figure 2] Fig. 2. O—H···O, N—H···O hydrogen bonding interactions in the structure of (I) drawn as dashed lines.
[Figure 3] Fig. 3. Hydrogen bonded chains of hydrogen succinate anions in the structure of (I). Also shown are the hydrogen bonding environments around the ammonium cations and the water molecules. Hydrogen bonds are drawn as dashed lines.
Cyclooctanaminium hydrogen succinate monohydrate top
Crystal data top
C8H18N+·C4H5O4·H2OF(000) = 1152
Mr = 263.33Dx = 1.219 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2803 reflections
a = 8.4221 (6) Åθ = 2.9–27.8°
b = 14.3704 (9) ŵ = 0.09 mm1
c = 23.7031 (16) ÅT = 173 K
V = 2868.8 (3) Å3Block, colourless
Z = 80.46 × 0.42 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2245 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 28.0°, θmin = 1.7°
φ and ω scansh = 911
12354 measured reflectionsk = 1818
3461 independent reflectionsl = 1531
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0721P)2 + 0.4241P]
where P = (Fo2 + 2Fc2)/3
3461 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.64 e Å3
30 restraintsΔρmin = 0.40 e Å3
Crystal data top
C8H18N+·C4H5O4·H2OV = 2868.8 (3) Å3
Mr = 263.33Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.4221 (6) ŵ = 0.09 mm1
b = 14.3704 (9) ÅT = 173 K
c = 23.7031 (16) Å0.46 × 0.42 × 0.10 mm
Data collection top
Bruker APEXII CCD
diffractometer
2245 reflections with I > 2σ(I)
12354 measured reflectionsRint = 0.038
3461 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05030 restraints
wR(F2) = 0.145H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.64 e Å3
3461 reflectionsΔρmin = 0.40 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.1688 (2)0.60717 (12)0.41032 (7)0.0245 (4)
C20.2573 (3)0.64226 (13)0.35928 (8)0.0369 (5)
H2A0.24160.59760.32800.044*
H2B0.37220.64350.36820.044*
C30.2077 (3)0.73821 (13)0.33930 (8)0.0379 (5)
H3A0.25650.75010.30200.046*
H3B0.09100.73910.33430.046*
C40.2540 (2)0.81521 (12)0.37880 (7)0.0259 (4)
O10.20323 (19)0.52624 (8)0.42678 (5)0.0377 (4)
O20.06634 (15)0.65701 (9)0.43292 (5)0.0321 (3)
O30.19460 (16)0.89565 (8)0.36302 (5)0.0331 (3)
H30.22870.93780.38430.050*
O40.33717 (17)0.80532 (9)0.41988 (5)0.0351 (3)
C50.2848 (3)0.49102 (16)0.57502 (9)0.0277 (5)0.833 (3)
H50.39980.50170.56670.033*0.833 (3)
C60.1996 (3)0.58377 (14)0.57461 (9)0.0288 (5)0.833 (3)
H6A0.08730.57350.58520.035*0.833 (3)
H6B0.20090.60870.53570.035*0.833 (3)
C70.2706 (8)0.6568 (3)0.61424 (15)0.0391 (10)0.833 (3)
H7A0.38270.63990.62150.047*0.833 (3)
H7B0.27060.71740.59440.047*0.833 (3)
C80.1887 (4)0.66935 (19)0.67014 (11)0.0491 (7)0.833 (3)
H8A0.26810.69490.69680.059*0.833 (3)
H8B0.10650.71790.66500.059*0.833 (3)
C90.1127 (4)0.5907 (2)0.69798 (13)0.0453 (8)0.833 (3)
H9A0.04060.56140.67020.054*0.833 (3)
H9B0.04500.61600.72850.054*0.833 (3)
C100.2099 (6)0.5162 (3)0.72271 (15)0.0524 (11)0.833 (3)
H10A0.13720.46760.73720.063*0.833 (3)
H10B0.26680.54250.75560.063*0.833 (3)
C110.3367 (3)0.46707 (17)0.68355 (10)0.0395 (7)0.833 (3)
H11A0.42190.51210.67460.047*0.833 (3)
H11B0.38530.41480.70450.047*0.833 (3)
C120.2701 (6)0.4314 (2)0.63067 (12)0.0482 (10)0.833 (3)
H12A0.15570.41970.63720.058*0.833 (3)
H12B0.32020.37030.62320.058*0.833 (3)
C5B0.2128 (17)0.4898 (8)0.5839 (5)0.0297 (15)*0.167 (3)
H5B0.10590.51550.59360.036*0.167 (3)
C6B0.3370 (13)0.5619 (7)0.5758 (4)0.0297 (15)*0.167 (3)
H6C0.35100.57400.53500.036*0.167 (3)
H6D0.43920.53880.59100.036*0.167 (3)
C7B0.291 (4)0.6541 (14)0.6063 (7)0.0297 (15)*0.167 (3)
H7C0.36720.70260.59380.036*0.167 (3)
H7D0.18520.67290.59240.036*0.167 (3)
C8B0.2862 (16)0.6565 (8)0.6697 (4)0.0297 (15)*0.167 (3)
H8C0.26680.72190.68090.036*0.167 (3)
H8D0.39380.64020.68330.036*0.167 (3)
C9B0.1692 (17)0.5967 (9)0.7026 (6)0.0297 (15)*0.167 (3)
H9C0.13730.62980.73750.036*0.167 (3)
H9D0.07280.58650.67960.036*0.167 (3)
C10B0.241 (3)0.5046 (11)0.7179 (8)0.0297 (15)*0.167 (3)
H10C0.19530.48330.75410.036*0.167 (3)
H10D0.35670.51240.72320.036*0.167 (3)
C11B0.2108 (14)0.4281 (7)0.6716 (4)0.0297 (15)*0.167 (3)
H11C0.22550.36880.69220.036*0.167 (3)
H11D0.09530.43250.66420.036*0.167 (3)
C12B0.269 (3)0.4122 (11)0.6238 (6)0.0297 (15)*0.167 (3)
H12C0.23380.35070.60980.036*0.167 (3)
H12D0.38690.41180.62600.036*0.167 (3)
N10.21505 (19)0.43116 (10)0.52915 (6)0.0265 (3)
H1A0.12130.40640.54090.040*0.833 (3)
H1B0.28460.38450.52120.040*0.833 (3)
H1C0.19840.46590.49760.040*0.833 (3)
H1D0.23410.46410.49710.040*0.167 (3)
H1E0.10910.41980.53220.040*0.167 (3)
H1F0.26870.37620.52780.040*0.167 (3)
O1W0.0370 (2)0.80506 (10)0.50947 (7)0.0424 (4)
H1WA0.061 (4)0.764 (2)0.4866 (12)0.071 (9)*
H1WB0.029 (3)0.7817 (17)0.5325 (11)0.060 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0283 (10)0.0228 (8)0.0223 (8)0.0050 (8)0.0029 (7)0.0023 (6)
C20.0552 (13)0.0230 (9)0.0327 (10)0.0022 (9)0.0148 (9)0.0003 (7)
C30.0630 (15)0.0269 (9)0.0239 (9)0.0035 (10)0.0035 (9)0.0029 (7)
C40.0287 (9)0.0231 (8)0.0258 (8)0.0011 (7)0.0050 (8)0.0049 (7)
O10.0629 (10)0.0207 (6)0.0294 (7)0.0024 (6)0.0016 (7)0.0029 (5)
O20.0326 (7)0.0308 (7)0.0331 (7)0.0005 (6)0.0065 (6)0.0058 (5)
O30.0427 (8)0.0220 (6)0.0345 (7)0.0010 (6)0.0086 (6)0.0048 (5)
O40.0384 (8)0.0296 (7)0.0373 (7)0.0021 (6)0.0091 (6)0.0068 (5)
C50.0279 (12)0.0276 (11)0.0277 (11)0.0047 (11)0.0060 (10)0.0061 (8)
C60.0406 (14)0.0232 (10)0.0225 (10)0.0022 (10)0.0017 (9)0.0011 (8)
C70.054 (3)0.0220 (11)0.0417 (19)0.0071 (13)0.0006 (16)0.0053 (12)
C80.070 (2)0.0410 (14)0.0369 (14)0.0016 (14)0.0018 (14)0.0144 (11)
C90.0325 (16)0.0675 (18)0.0361 (14)0.0066 (14)0.0040 (13)0.0117 (12)
C100.067 (3)0.063 (2)0.0265 (14)0.0106 (18)0.0140 (15)0.0001 (13)
C110.0496 (16)0.0371 (13)0.0319 (12)0.0087 (12)0.0139 (11)0.0000 (10)
C120.081 (2)0.0314 (17)0.0318 (15)0.0261 (18)0.0134 (15)0.0079 (11)
N10.0344 (9)0.0213 (7)0.0236 (7)0.0021 (7)0.0010 (6)0.0009 (5)
O1W0.0498 (10)0.0402 (8)0.0372 (8)0.0188 (8)0.0151 (7)0.0122 (7)
Geometric parameters (Å, º) top
C1—O21.243 (2)C12—H12A0.9900
C1—O11.260 (2)C12—H12B0.9900
C1—C21.508 (3)C5B—C6B1.485 (13)
C2—C31.517 (3)C5B—C12B1.539 (15)
C2—H2A0.9900C5B—N11.547 (13)
C2—H2B0.9900C5B—H5B1.0000
C3—C41.501 (3)C6B—C7B1.557 (17)
C3—H3A0.9900C6B—H6C0.9900
C3—H3B0.9900C6B—H6D0.9900
C4—O41.208 (2)C7B—C8B1.506 (16)
C4—O31.314 (2)C7B—H7C0.9900
O3—H30.8400C7B—H7D0.9900
C5—N11.506 (3)C8B—C9B1.522 (14)
C5—C61.514 (3)C8B—H8C0.9900
C5—C121.577 (4)C8B—H8D0.9900
C5—H51.0000C9B—C10B1.499 (16)
C6—C71.530 (5)C9B—H9C0.9900
C6—H6A0.9900C9B—H9D0.9900
C6—H6B0.9900C10B—C11B1.573 (16)
C7—C81.505 (4)C10B—H10C0.9900
C7—H7A0.9900C10B—H10D0.9900
C7—H7B0.9900C11B—C12B1.257 (15)
C8—C91.457 (4)C11B—H11C0.9900
C8—H8A0.9900C11B—H11D0.9900
C8—H8B0.9900C12B—H12C0.9900
C9—C101.470 (4)C12B—H12D0.9900
C9—H9A0.9900N1—H1A0.9100
C9—H9B0.9900N1—H1B0.9100
C10—C111.581 (4)N1—H1C0.9100
C10—H10A0.9900N1—H1D0.9100
C10—H10B0.9900N1—H1E0.9100
C11—C121.466 (4)N1—H1F0.9100
C11—H11A0.9900O1W—H1WA0.83 (3)
C11—H11B0.9900O1W—H1WB0.85 (3)
O2—C1—O1123.91 (17)C6B—C5B—H5B113.9
O2—C1—C2119.76 (16)C12B—C5B—H5B113.9
O1—C1—C2116.32 (16)N1—C5B—H5B113.9
C1—C2—C3114.74 (17)C5B—C6B—C7B111.1 (14)
C1—C2—H2A108.6C5B—C6B—H6C109.4
C3—C2—H2A108.6C7B—C6B—H6C109.4
C1—C2—H2B108.6C5B—C6B—H6D109.4
C3—C2—H2B108.6C7B—C6B—H6D109.4
H2A—C2—H2B107.6H6C—C6B—H6D108.0
C4—C3—C2113.84 (17)C8B—C7B—C6B119.3 (16)
C4—C3—H3A108.8C8B—C7B—H7C107.5
C2—C3—H3A108.8C6B—C7B—H7C107.5
C4—C3—H3B108.8C8B—C7B—H7D107.5
C2—C3—H3B108.8C6B—C7B—H7D107.5
H3A—C3—H3B107.7H7C—C7B—H7D107.0
O4—C4—O3123.63 (16)C7B—C8B—C9B121.2 (14)
O4—C4—C3124.51 (16)C7B—C8B—H8C107.0
O3—C4—C3111.86 (16)C9B—C8B—H8C107.0
C4—O3—H3109.5C7B—C8B—H8D107.0
N1—C5—C6108.26 (17)C9B—C8B—H8D107.0
N1—C5—C12105.3 (2)H8C—C8B—H8D106.8
C6—C5—C12116.5 (2)C10B—C9B—C8B111.2 (13)
N1—C5—H5108.9C10B—C9B—H9C109.4
C6—C5—H5108.9C8B—C9B—H9C109.4
C12—C5—H5108.9C10B—C9B—H9D109.4
C5—C6—C7114.5 (3)C8B—C9B—H9D109.4
C5—C6—H6A108.6H9C—C9B—H9D108.0
C7—C6—H6A108.6C9B—C10B—C11B112.6 (14)
C5—C6—H6B108.6C9B—C10B—H10C109.1
C7—C6—H6B108.6C11B—C10B—H10C109.1
H6A—C6—H6B107.6C9B—C10B—H10D109.1
C8—C7—C6116.3 (4)C11B—C10B—H10D109.1
C8—C7—H7A108.2H10C—C10B—H10D107.8
C6—C7—H7A108.2C12B—C11B—C10B133.8 (15)
C8—C7—H7B108.2C12B—C11B—H11C103.8
C6—C7—H7B108.2C10B—C11B—H11C103.8
H7A—C7—H7B107.4C12B—C11B—H11D103.8
C9—C8—C7120.5 (3)C10B—C11B—H11D103.8
C9—C8—H8A107.2H11C—C11B—H11D105.4
C7—C8—H8A107.2C11B—C12B—C5B107.4 (13)
C9—C8—H8B107.2C11B—C12B—H12C110.2
C7—C8—H8B107.2C5B—C12B—H12C110.2
H8A—C8—H8B106.8C11B—C12B—H12D110.2
C8—C9—C10120.0 (3)C5B—C12B—H12D110.2
C8—C9—H9A107.3H12C—C12B—H12D108.5
C10—C9—H9A107.3C5—N1—H1A109.9
C8—C9—H9B107.3C5B—N1—H1A86.8
C10—C9—H9B107.3C5—N1—H1B108.6
H9A—C9—H9B106.9C5B—N1—H1B125.6
C9—C10—C11117.9 (3)H1A—N1—H1B109.5
C9—C10—H10A107.8C5—N1—H1C109.9
C11—C10—H10A107.8C5B—N1—H1C112.9
C9—C10—H10B107.8H1A—N1—H1C109.5
C11—C10—H10B107.8H1B—N1—H1C109.5
H10A—C10—H10B107.2C5—N1—H1D103.8
C12—C11—C10113.6 (3)C5B—N1—H1D114.9
C12—C11—H11A108.9H1A—N1—H1D127.8
C10—C11—H11A108.9H1B—N1—H1D95.6
C12—C11—H11B108.9C5—N1—H1E115.3
C10—C11—H11B108.9C5B—N1—H1E91.1
H11A—C11—H11B107.7H1B—N1—H1E121.0
C11—C12—C5119.7 (3)H1C—N1—H1E90.8
C11—C12—H12A107.4H1D—N1—H1E109.5
C5—C12—H12A107.4C5—N1—H1F109.1
C11—C12—H12B107.4C5B—N1—H1F120.6
C5—C12—H12B107.4H1A—N1—H1F95.9
H12A—C12—H12B106.9H1C—N1—H1F121.5
C6B—C5B—C12B111.5 (12)H1D—N1—H1F109.5
C6B—C5B—N1105.3 (9)H1E—N1—H1F109.5
C12B—C5B—N196.7 (9)H1WA—O1W—H1WB107 (2)
O2—C1—C2—C31.1 (3)C12B—C5B—C6B—C7B108.6 (15)
O1—C1—C2—C3177.55 (17)N1—C5B—C6B—C7B147.6 (12)
C1—C2—C3—C469.2 (2)C5B—C6B—C7B—C8B68 (3)
C2—C3—C4—O47.5 (3)C6B—C7B—C8B—C9B63 (3)
C2—C3—C4—O3173.33 (17)C7B—C8B—C9B—C10B91.6 (19)
N1—C5—C6—C7173.0 (2)C8B—C9B—C10B—C11B90.2 (17)
C12—C5—C6—C768.7 (4)C9B—C10B—C11B—C12B76 (2)
C5—C6—C7—C899.4 (4)C10B—C11B—C12B—C5B70 (2)
C6—C7—C8—C932.6 (6)C6B—C5B—C12B—C11B100.1 (17)
C7—C8—C9—C1070.8 (5)N1—C5B—C12B—C11B150.5 (14)
C8—C9—C10—C1154.0 (5)C6—C5—N1—C5B60.1 (11)
C9—C10—C11—C1253.1 (5)C12—C5—N1—C5B65.1 (12)
C10—C11—C12—C597.5 (4)C6B—C5B—N1—C530.7 (7)
N1—C5—C12—C11176.1 (3)C12B—C5B—N1—C583.8 (15)
C6—C5—C12—C1163.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.722.5586 (18)179
N1—H1A···O2ii0.911.932.834 (2)175
N1—H1B···O1Wiii0.911.912.804 (2)168
N1—H1C···O10.911.892.7866 (19)168
N1—H1A···O2ii0.911.932.834 (2)175
O1W—H1WA···O20.83 (3)1.99 (3)2.807 (2)167 (3)
O1W—H1WB···O4iv0.85 (3)2.03 (3)2.855 (2)165 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z; (iv) x1/2, y+3/2, z+1.

Experimental details

Crystal data
Chemical formulaC8H18N+·C4H5O4·H2O
Mr263.33
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)173
a, b, c (Å)8.4221 (6), 14.3704 (9), 23.7031 (16)
V3)2868.8 (3)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.46 × 0.42 × 0.10
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
12354, 3461, 2245
Rint0.038
(sin θ/λ)max1)0.661
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.145, 1.04
No. of reflections3461
No. of parameters198
No. of restraints30
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.64, 0.40

Computer programs: APEX2 (Bruker, 2005), SAINT-NT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and SCHAKAL99 (Keller, 1999), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O1i0.841.722.5586 (18)179
N1—H1A···O2ii0.911.932.834 (2)175
N1—H1B···O1Wiii0.911.912.804 (2)168
N1—H1C···O10.911.892.7866 (19)168
N1—H1A···O2ii0.911.932.834 (2)175
O1W—H1WA···O20.83 (3)1.99 (3)2.807 (2)167 (3)
O1W—H1WB···O4iv0.85 (3)2.03 (3)2.855 (2)165 (2)
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z; (iv) x1/2, y+3/2, z+1.
 

Acknowledgements

This work was supported by the National Research Foundation, Pretoria (NRF, GUN 77122) and the University of the Witwatersrand.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem., Int. Ed. Engl. 34, 1555–1573.  Google Scholar
First citationBruker (2005). APEX2 and SAINT-NT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEtter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationKeller, E. (1999). SCHAKAL99. University of Freiberg, Germany.  Google Scholar
First citationLatimer, W. M. & Rodebush, W. H. (1920). J. Chem. Soc. 42, 1419–33.  CrossRef CAS Google Scholar
First citationLemmerer, A. (2011a). CrystEngComm, 13, 2849–2862.  Web of Science CSD CrossRef CAS Google Scholar
First citationLemmerer, A. (2011b). Cryst. Growth Des. 11, 583–593.  Web of Science CSD CrossRef CAS Google Scholar
First citationPimentel, G. C. & McClellan, A. L. (1960). In The Hydrogen Bond. San Francisco, CA: Freeman.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds