organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1118-o1119

3-Amino-1-(3,4-dimeth­­oxy­phen­yl)-9,10-di­hydro­phenanthrene-2,4-dicarbo­nitrile

aChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, bThe Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 13 March 2012; accepted 14 March 2012; online 21 March 2012)

In the title compound, C24H19N3O2, the partially saturated ring adopts a distorted half-chair conformation with the methyl­ene-C atom closest to the amino­benzene ring lying 0.664 (3) Å out of the plane defined by the five remaining atoms (r.m.s. deviation = 0.1429 Å. The dihedral angle [32.01 (10)°] between the benzene rings on either side of this ring indicates a significant fold in this part of the mol­ecule. The dimeth­oxy-substituted benzene ring is almost orthogonal to the benzene ring to which it is attached [dihedral angle = 72.03 (9)°]. The mol­ecule has been observed previously as the major component of a 1:19 co-crystal with 2-amino-4-(3,4-dimeth­oxy­phen­yl)-5,6-dihydro­benzo[ha]quinoline-3-carbonitrile [Asiri et al. (2011). Acta Cryst. E67, o2873–o2873]. Supra­molecular chains with base vector [201] are formed in the crystal structure via N—H⋯O hydrogen bonds between the amino H atoms of one mol­ecule inter­acting with the meth­oxy O atoms of a neighbouring mol­ecule. The chains are linked into a three-dimensional architecture by C—H⋯π inter­actions.

Related literature

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010[Wang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337-12342.]); Rostom et al. (2011[Rostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260-1272.]). For related structures, see: Asiri et al. (2011a[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2449.],b[Asiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011b). Acta Cryst. E67, o2873.]); Al-Youbi et al. (2012[Al-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027-o1028.]).

[Scheme 1]

Experimental

Crystal data
  • C24H19N3O2

  • Mr = 381.42

  • Monoclinic, P 21 /c

  • a = 8.9360 (7) Å

  • b = 14.5007 (11) Å

  • c = 14.8074 (11) Å

  • β = 103.471 (8)°

  • V = 1865.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.983, Tmax = 0.991

  • 8105 measured reflections

  • 4272 independent reflections

  • 2851 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.136

  • S = 1.03

  • 4272 reflections

  • 270 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C17–C22 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O1i 0.95 (2) 2.23 (2) 2.921 (2) 129 (2)
N2—H2⋯O2i 0.90 (3) 2.28 (3) 2.984 (2) 135 (2)
C24—H24BCg1ii 0.98 2.78 3.538 (2) 135
C7—H7ACg4iii 0.99 2.92 3.792 (2) 147
Symmetry codes: (i) [x-1, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The X-ray crystallographic investigation of the title compound, 3-amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (I), was motivated by reports of the biological activity of related compounds (Wang et al., 2010; Rostom et al., 2011) and allied crystal structure investigations (Asiri et al., 2011a; Al-Youbi et al., 2012). The molecule of (I) has been observed previously in its 1/19 co-crystal with 2-amino-4-(3,4-dimethoxyphenyl)-5,6-dihydrobenzo[ha]quinoline-3-carbonitrile (Asiri et al., 2011b).

In (I), Fig. 1, the partially saturated ring adopts a distorted twisted half chair conformation with the C2 atom lying 0.664 (3) Å out of the plane defined by the five remaining atoms [r.m.s. deviation = 0.1429 Å; maximum deviations = 0.1733 (11) Å for the C9 atom and -0.2097 (14) Å for the C10 atom]. The dihedral angle between the benzene rings on either side of this ring = 32.01 (10)°, indicating a significant fold in this part of the molecule. The dimethoxy-substituted benzene ring is almost normal to the plane of the benzene ring to which it is attached, forming a dihedral angle of 72.03 (9)° The O1-and O2-methoxy substituents are each slightly twisted out of the plane of the benzene ring to which they are attached as seen in the values of the C23—O1—C19—C18 and C24—O2—C20—C21 torsion angles of -13.7 (3) and -5.0 (3)°, respectively; they lie to opposite sides of the plane through the benzene ting.

The most prominent feature in the crystal packing is the formation of N—H···O hydrogen bonds whereby the amino-H atoms are connected to the two methoxy-O atoms of a neighbouring molecule leading to a seven-membered {···HNH···OC2O} synthon linked into twisted supramolecular chains, Fig. 2 and Table 1; the base vector is along [2 0 1]. Clearly, the presence of two oxygen atoms in (I), is sufficient to disrupt the normally formed N—H···N hydrogen bonds between centrosymmetrically related molecules leading to to 12-membered {···HNC3N}2 synthons (Asiri et al., 2011a; Asiri et al., 2011b). Supramolecular chains are sustained in a three-dimensional architecture by C—H···π interactions, Fig. 3 and Table 1.

Related literature top

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010); Rostom et al. (2011). For related structures, see: Asiri et al. (2011a,b); Al-Youbi et al. (2012).

Experimental top

A mixture of 3,4-dimethoxybenzaldehyde (1.66 g, 0.01 mmol), 1-tetralone (1.46 g, 0.01 mmol), malononitrile (0.66 g, 0.01 mmol) and ammonium acetate (6.2 g, 0.08 mmol) in absolute ethanol (50 ml) was refluxed for 6 h. The reaction mixture was allowed to cool. The precipitate that formed was filtered, washed with water, dried and recrystallized from ethanol. Yield: 69%, M. pt. 533–535 K.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.95 to 0.99 Å, Uiso(H) = 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The N—H atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = 0.88±0.01 Å; their Uiso values were refined. Owing to poor agreement, the (1 15 5) reflection was omitted from the final cycles of refinement.

Structure description top

The X-ray crystallographic investigation of the title compound, 3-amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile (I), was motivated by reports of the biological activity of related compounds (Wang et al., 2010; Rostom et al., 2011) and allied crystal structure investigations (Asiri et al., 2011a; Al-Youbi et al., 2012). The molecule of (I) has been observed previously in its 1/19 co-crystal with 2-amino-4-(3,4-dimethoxyphenyl)-5,6-dihydrobenzo[ha]quinoline-3-carbonitrile (Asiri et al., 2011b).

In (I), Fig. 1, the partially saturated ring adopts a distorted twisted half chair conformation with the C2 atom lying 0.664 (3) Å out of the plane defined by the five remaining atoms [r.m.s. deviation = 0.1429 Å; maximum deviations = 0.1733 (11) Å for the C9 atom and -0.2097 (14) Å for the C10 atom]. The dihedral angle between the benzene rings on either side of this ring = 32.01 (10)°, indicating a significant fold in this part of the molecule. The dimethoxy-substituted benzene ring is almost normal to the plane of the benzene ring to which it is attached, forming a dihedral angle of 72.03 (9)° The O1-and O2-methoxy substituents are each slightly twisted out of the plane of the benzene ring to which they are attached as seen in the values of the C23—O1—C19—C18 and C24—O2—C20—C21 torsion angles of -13.7 (3) and -5.0 (3)°, respectively; they lie to opposite sides of the plane through the benzene ting.

The most prominent feature in the crystal packing is the formation of N—H···O hydrogen bonds whereby the amino-H atoms are connected to the two methoxy-O atoms of a neighbouring molecule leading to a seven-membered {···HNH···OC2O} synthon linked into twisted supramolecular chains, Fig. 2 and Table 1; the base vector is along [2 0 1]. Clearly, the presence of two oxygen atoms in (I), is sufficient to disrupt the normally formed N—H···N hydrogen bonds between centrosymmetrically related molecules leading to to 12-membered {···HNC3N}2 synthons (Asiri et al., 2011a; Asiri et al., 2011b). Supramolecular chains are sustained in a three-dimensional architecture by C—H···π interactions, Fig. 3 and Table 1.

For background to the biological activity of related phenanthrene compounds, see: Wang et al. (2010); Rostom et al. (2011). For related structures, see: Asiri et al. (2011a,b); Al-Youbi et al. (2012).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. The supramolecular chain in (I) sustained by N—H···O hydrogen bonds shown as blue dashed lines.
[Figure 3] Fig. 3. A view in projection down the a axis of the unit-cell contents of (I). The N—H···O hydrogen bonds and C—H···π interactions are shown as blue and purple dashed lines, respectively.
3-Amino-1-(3,4-dimethoxyphenyl)-9,10-dihydrophenanthrene-2,4-dicarbonitrile top
Crystal data top
C24H19N3O2F(000) = 800
Mr = 381.42Dx = 1.358 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2185 reflections
a = 8.9360 (7) Åθ = 2.4–27.5°
b = 14.5007 (11) ŵ = 0.09 mm1
c = 14.8074 (11) ÅT = 100 K
β = 103.471 (8)°Chip, orange
V = 1865.9 (2) Å30.20 × 0.15 × 0.10 mm
Z = 4
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4272 independent reflections
Radiation source: SuperNova (Mo) X-ray Source2851 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.037
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.7°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
k = 1817
Tmin = 0.983, Tmax = 0.991l = 1119
8105 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.2552P]
where P = (Fo2 + 2Fc2)/3
4272 reflections(Δ/σ)max = 0.001
270 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.23 e Å3
Crystal data top
C24H19N3O2V = 1865.9 (2) Å3
Mr = 381.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.9360 (7) ŵ = 0.09 mm1
b = 14.5007 (11) ÅT = 100 K
c = 14.8074 (11) Å0.20 × 0.15 × 0.10 mm
β = 103.471 (8)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4272 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
2851 reflections with I > 2σ(I)
Tmin = 0.983, Tmax = 0.991Rint = 0.037
8105 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.25 e Å3
4272 reflectionsΔρmin = 0.23 e Å3
270 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.69410 (14)0.85996 (10)0.89152 (10)0.0255 (4)
O20.92377 (14)0.80208 (9)0.82524 (9)0.0215 (3)
N10.21440 (18)0.47271 (12)0.60427 (12)0.0271 (4)
N20.0035 (2)0.62438 (13)0.51881 (12)0.0243 (4)
N30.31457 (19)0.75869 (13)0.50677 (13)0.0278 (4)
C10.1055 (2)0.47341 (14)0.82665 (13)0.0231 (5)
C20.0456 (2)0.47157 (15)0.83797 (15)0.0289 (5)
H2A0.12340.50580.79680.035*
C30.0831 (3)0.42019 (16)0.90882 (16)0.0347 (6)
H30.18590.41940.91600.042*
C40.0298 (3)0.37015 (16)0.96890 (16)0.0393 (6)
H40.00380.33381.01640.047*
C50.1807 (3)0.37300 (15)0.95975 (15)0.0350 (6)
H50.25760.33881.00140.042*
C60.2208 (2)0.42536 (15)0.89025 (14)0.0279 (5)
C70.3846 (2)0.43614 (15)0.88204 (15)0.0313 (5)
H7A0.40290.39730.83070.038*
H7B0.45610.41620.94030.038*
C80.4127 (2)0.53735 (15)0.86299 (14)0.0273 (5)
H8A0.39670.57600.91510.033*
H8B0.52000.54590.85730.033*
C90.3017 (2)0.56644 (14)0.77347 (13)0.0215 (4)
C100.1525 (2)0.52829 (14)0.75366 (13)0.0207 (4)
C110.0532 (2)0.54618 (13)0.66663 (13)0.0182 (4)
C120.0953 (2)0.60554 (13)0.60093 (13)0.0189 (4)
C130.2426 (2)0.64665 (13)0.62557 (13)0.0186 (4)
C140.3445 (2)0.62742 (13)0.71120 (13)0.0198 (4)
C150.0950 (2)0.50286 (14)0.63642 (14)0.0221 (4)
C160.2857 (2)0.70935 (14)0.56101 (14)0.0210 (4)
C170.4968 (2)0.67539 (14)0.73596 (13)0.0199 (4)
C180.5213 (2)0.74481 (14)0.80346 (14)0.0215 (5)
H180.44020.76230.83150.026*
C190.6633 (2)0.78845 (13)0.82984 (13)0.0193 (4)
C200.7852 (2)0.75935 (13)0.79148 (13)0.0182 (4)
C210.7588 (2)0.69338 (14)0.72295 (14)0.0241 (5)
H210.83940.67610.69440.029*
C220.6146 (2)0.65146 (15)0.69485 (14)0.0249 (5)
H220.59770.60620.64710.030*
C230.5626 (2)0.90343 (16)0.91355 (16)0.0333 (6)
H23A0.59690.95320.95830.050*
H23B0.50470.85780.94050.050*
H23C0.49630.92890.85680.050*
C241.0509 (2)0.76905 (15)0.79032 (15)0.0257 (5)
H24A1.14340.80470.81810.039*
H24B1.02740.77620.72270.039*
H24C1.06880.70380.80630.039*
H10.105 (3)0.5996 (17)0.5047 (17)0.044 (7)*
H20.028 (3)0.6568 (18)0.4750 (18)0.040 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0178 (7)0.0281 (8)0.0307 (8)0.0001 (6)0.0057 (6)0.0119 (7)
O20.0141 (6)0.0248 (8)0.0260 (7)0.0022 (5)0.0054 (5)0.0058 (6)
N10.0207 (9)0.0277 (10)0.0327 (10)0.0014 (7)0.0060 (7)0.0010 (8)
N20.0186 (9)0.0298 (11)0.0222 (9)0.0030 (7)0.0002 (7)0.0048 (8)
N30.0257 (9)0.0278 (10)0.0300 (10)0.0031 (7)0.0065 (8)0.0015 (9)
C10.0304 (11)0.0185 (11)0.0196 (10)0.0063 (8)0.0040 (8)0.0041 (9)
C20.0353 (12)0.0265 (12)0.0266 (11)0.0058 (9)0.0111 (9)0.0031 (10)
C30.0497 (15)0.0289 (13)0.0306 (12)0.0118 (10)0.0193 (11)0.0060 (10)
C40.0641 (17)0.0315 (14)0.0255 (12)0.0142 (12)0.0170 (11)0.0022 (11)
C50.0537 (15)0.0264 (13)0.0213 (11)0.0054 (11)0.0016 (10)0.0002 (10)
C60.0400 (13)0.0228 (12)0.0179 (10)0.0055 (9)0.0008 (9)0.0011 (9)
C70.0355 (12)0.0286 (13)0.0232 (11)0.0008 (9)0.0063 (9)0.0025 (10)
C80.0278 (11)0.0302 (12)0.0203 (10)0.0025 (9)0.0020 (8)0.0014 (10)
C90.0222 (10)0.0198 (11)0.0200 (10)0.0011 (8)0.0001 (8)0.0023 (9)
C100.0229 (10)0.0191 (11)0.0196 (10)0.0005 (8)0.0038 (8)0.0020 (9)
C110.0161 (9)0.0168 (10)0.0221 (9)0.0009 (7)0.0049 (7)0.0037 (8)
C120.0163 (9)0.0192 (10)0.0202 (9)0.0017 (7)0.0025 (7)0.0024 (8)
C130.0164 (9)0.0177 (10)0.0221 (10)0.0003 (7)0.0055 (7)0.0015 (8)
C140.0163 (9)0.0206 (10)0.0223 (10)0.0021 (8)0.0036 (8)0.0048 (9)
C150.0241 (10)0.0220 (11)0.0215 (10)0.0001 (8)0.0080 (8)0.0011 (9)
C160.0165 (10)0.0221 (11)0.0234 (10)0.0007 (8)0.0026 (8)0.0029 (9)
C170.0155 (9)0.0217 (10)0.0206 (10)0.0007 (8)0.0001 (7)0.0006 (9)
C180.0152 (9)0.0264 (11)0.0229 (10)0.0026 (8)0.0042 (8)0.0011 (9)
C190.0188 (10)0.0190 (10)0.0185 (9)0.0019 (8)0.0009 (7)0.0034 (8)
C200.0132 (9)0.0200 (10)0.0203 (10)0.0014 (7)0.0013 (7)0.0023 (8)
C210.0177 (10)0.0292 (12)0.0266 (11)0.0009 (8)0.0078 (8)0.0060 (9)
C220.0206 (10)0.0298 (12)0.0232 (10)0.0008 (8)0.0030 (8)0.0078 (9)
C230.0241 (11)0.0366 (14)0.0410 (13)0.0009 (9)0.0109 (9)0.0171 (11)
C240.0177 (10)0.0287 (12)0.0323 (11)0.0027 (8)0.0087 (8)0.0074 (10)
Geometric parameters (Å, º) top
O1—C191.367 (2)C8—H8B0.9900
O1—C231.437 (2)C9—C141.394 (3)
O2—C201.371 (2)C9—C101.410 (3)
O2—C241.436 (2)C10—C111.408 (2)
N1—C151.149 (2)C11—C121.414 (3)
N2—C121.354 (2)C11—C151.440 (3)
N2—H10.95 (2)C12—C131.413 (3)
N2—H20.90 (3)C13—C141.406 (2)
N3—C161.149 (3)C13—C161.435 (3)
C1—C21.400 (3)C14—C171.496 (3)
C1—C61.408 (3)C17—C221.377 (3)
C1—C101.479 (3)C17—C181.400 (3)
C2—C31.390 (3)C18—C191.390 (3)
C2—H2A0.9500C18—H180.9500
C3—C41.384 (3)C19—C201.405 (3)
C3—H30.9500C20—C211.374 (3)
C4—C51.387 (3)C21—C221.398 (3)
C4—H40.9500C21—H210.9500
C5—C61.391 (3)C22—H220.9500
C5—H50.9500C23—H23A0.9800
C6—C71.504 (3)C23—H23B0.9800
C7—C81.526 (3)C23—H23C0.9800
C7—H7A0.9900C24—H24A0.9800
C7—H7B0.9900C24—H24B0.9800
C8—C91.518 (2)C24—H24C0.9800
C8—H8A0.9900
C19—O1—C23115.90 (15)C12—C11—C15115.13 (16)
C20—O2—C24116.20 (15)N2—C12—C13121.33 (19)
C12—N2—H1120.6 (15)N2—C12—C11121.24 (17)
C12—N2—H2120.2 (15)C13—C12—C11117.39 (16)
H1—N2—H2119 (2)C14—C13—C12121.20 (18)
C2—C1—C6119.1 (2)C14—C13—C16120.53 (17)
C2—C1—C10122.94 (18)C12—C13—C16118.26 (16)
C6—C1—C10117.84 (19)C9—C14—C13120.14 (17)
C3—C2—C1120.6 (2)C9—C14—C17120.47 (16)
C3—C2—H2A119.7C13—C14—C17119.35 (18)
C1—C2—H2A119.7N1—C15—C11173.3 (2)
C4—C3—C2119.9 (2)N3—C16—C13177.17 (19)
C4—C3—H3120.0C22—C17—C18119.25 (18)
C2—C3—H3120.0C22—C17—C14121.31 (18)
C3—C4—C5120.0 (2)C18—C17—C14119.43 (18)
C3—C4—H4120.0C19—C18—C17120.58 (19)
C5—C4—H4120.0C19—C18—H18119.7
C4—C5—C6120.8 (2)C17—C18—H18119.7
C4—C5—H5119.6O1—C19—C18124.16 (18)
C6—C5—H5119.6O1—C19—C20116.35 (16)
C5—C6—C1119.4 (2)C18—C19—C20119.49 (18)
C5—C6—C7122.66 (19)O2—C20—C21124.66 (18)
C1—C6—C7117.94 (19)O2—C20—C19115.86 (17)
C6—C7—C8108.65 (18)C21—C20—C19119.47 (17)
C6—C7—H7A110.0C20—C21—C22120.66 (19)
C8—C7—H7A110.0C20—C21—H21119.7
C6—C7—H7B110.0C22—C21—H21119.7
C8—C7—H7B110.0C17—C22—C21120.35 (19)
H7A—C7—H7B108.3C17—C22—H22119.8
C9—C8—C7109.05 (16)C21—C22—H22119.8
C9—C8—H8A109.9O1—C23—H23A109.5
C7—C8—H8A109.9O1—C23—H23B109.5
C9—C8—H8B109.9H23A—C23—H23B109.5
C7—C8—H8B109.9O1—C23—H23C109.5
H8A—C8—H8B108.3H23A—C23—H23C109.5
C14—C9—C10120.23 (16)H23B—C23—H23C109.5
C14—C9—C8121.98 (17)O2—C24—H24A109.5
C10—C9—C8117.78 (18)O2—C24—H24B109.5
C11—C10—C9118.79 (18)H24A—C24—H24B109.5
C11—C10—C1122.85 (17)O2—C24—H24C109.5
C9—C10—C1118.33 (16)H24A—C24—H24C109.5
C10—C11—C12122.02 (16)H24B—C24—H24C109.5
C10—C11—C15122.79 (18)
C6—C1—C2—C32.5 (3)C11—C12—C13—C141.5 (3)
C10—C1—C2—C3178.78 (19)N2—C12—C13—C160.1 (3)
C1—C2—C3—C40.1 (3)C11—C12—C13—C16178.12 (18)
C2—C3—C4—C51.5 (3)C10—C9—C14—C134.1 (3)
C3—C4—C5—C60.4 (3)C8—C9—C14—C13174.73 (19)
C4—C5—C6—C12.2 (3)C10—C9—C14—C17173.87 (19)
C4—C5—C6—C7175.3 (2)C8—C9—C14—C177.3 (3)
C2—C1—C6—C53.6 (3)C12—C13—C14—C90.4 (3)
C10—C1—C6—C5179.94 (18)C16—C13—C14—C9179.99 (19)
C2—C1—C6—C7174.09 (19)C12—C13—C14—C17177.60 (18)
C10—C1—C6—C72.4 (3)C16—C13—C14—C172.0 (3)
C5—C6—C7—C8135.7 (2)C9—C14—C17—C22107.8 (2)
C1—C6—C7—C841.9 (2)C13—C14—C17—C2274.2 (3)
C6—C7—C8—C959.5 (2)C9—C14—C17—C1871.0 (3)
C7—C8—C9—C14143.2 (2)C13—C14—C17—C18106.9 (2)
C7—C8—C9—C1035.7 (3)C22—C17—C18—C190.9 (3)
C14—C9—C10—C115.8 (3)C14—C17—C18—C19177.97 (18)
C8—C9—C10—C11173.11 (18)C23—O1—C19—C1813.7 (3)
C14—C9—C10—C1172.40 (19)C23—O1—C19—C20165.87 (18)
C8—C9—C10—C18.7 (3)C17—C18—C19—O1176.45 (17)
C2—C1—C10—C1131.5 (3)C17—C18—C19—C203.1 (3)
C6—C1—C10—C11152.19 (19)C24—O2—C20—C215.0 (3)
C2—C1—C10—C9146.6 (2)C24—O2—C20—C19176.54 (17)
C6—C1—C10—C929.7 (3)O1—C19—C20—O24.2 (2)
C9—C10—C11—C123.9 (3)C18—C19—C20—O2176.20 (17)
C1—C10—C11—C12174.20 (19)O1—C19—C20—C21174.28 (17)
C9—C10—C11—C15173.50 (19)C18—C19—C20—C215.3 (3)
C1—C10—C11—C158.4 (3)O2—C20—C21—C22178.03 (18)
C10—C11—C12—N2177.79 (19)C19—C20—C21—C223.6 (3)
C15—C11—C12—N24.6 (3)C18—C17—C22—C212.6 (3)
C10—C11—C12—C130.3 (3)C14—C17—C22—C21176.20 (18)
C15—C11—C12—C13177.29 (18)C20—C21—C22—C170.4 (3)
N2—C12—C13—C14179.56 (19)
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.95 (2)2.23 (2)2.921 (2)129 (2)
N2—H2···O2i0.90 (3)2.28 (3)2.984 (2)135 (2)
C24—H24B···Cg1ii0.982.783.538 (2)135
C7—H7A···Cg4iii0.992.923.792 (2)147
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formulaC24H19N3O2
Mr381.42
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)8.9360 (7), 14.5007 (11), 14.8074 (11)
β (°) 103.471 (8)
V3)1865.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer with an Atlas detector
Absorption correctionMulti-scan
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.983, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
8105, 4272, 2851
Rint0.037
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.136, 1.03
No. of reflections4272
No. of parameters270
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.23

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C1–C6 and C17–C22 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H1···O1i0.95 (2)2.23 (2)2.921 (2)129 (2)
N2—H2···O2i0.90 (3)2.28 (3)2.984 (2)135 (2)
C24—H24B···Cg1ii0.982.783.538 (2)135
C7—H7A···Cg4iii0.992.923.792 (2)147
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y+1/2, z+3/2; (iii) x+1, y1/2, z+3/2.
 

Footnotes

Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

Acknowledgements

The authors are grateful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing the research facilities. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAl-Youbi, A. O., Asiri, A. M., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o1027–o1028.  CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M. & Ng, S. W. (2011b). Acta Cryst. E67, o2873.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationAsiri, A. M., Al-Youbi, A. O., Faidallah, H. M., Ng, S. W. & Tiekink, E. R. T. (2011a). Acta Cryst. E67, o2449.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationRostom, S. A. F., Faidallah, S. M. & Al Saadi, M. S. (2011). Med. Chem. Res. 20, 1260–1272.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, K., Hu, Y., Liu, Y., Mi, N., Fan, Z., Liu, Y. & Wang, Q. (2010). J. Agric. Food Chem. 58, 12337–12342.  Web of Science CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages o1118-o1119
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds