organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Bi­pyridine–trans,trans-hexa-2,4-dienedioic acid (1/1)

aDepartment of Food and Nutrition, Kyungnam College of Information and Technology, Busan 617-701, Republic of Korea, and bDepartment of Chemistry and Research Institute of Natural Sciences, Gyeongsang, National University, Jinju 660-701, Republic of Korea
*Correspondence e-mail: kmpark@gnu.ac.kr

(Received 20 March 2012; accepted 22 March 2012; online 28 March 2012)

The title cocrystal, C10H8N2·C6H6O4, crystallizes with half-mol­ecules of 4,4′-bipyridine and trans,trans-hexa-2,4-dienedioic acid in the asymmetric unit, as each is located about a crystallographic inversion center. The bipyridine molecule is planar from symmetry. In the dicarboxylic acid molecule, the O—C—C—C torsion angle is −13.0 (2)°. In the crystal, O—H⋯N and C—H⋯O hydrogen bonds generate a three-dimensional network.

Related literature

For cocrystals of carb­oxy­lic acid and pyridine, see: Bhogala & Nangia (2003[Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.]); Hou et al. (2008[Hou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, o997.]); Jiang & Hou (2012[Jiang, Y.-K. & Hou, G.-G. (2012). Acta Cryst. E68, o6.]). For background to the applications of cocrystals, see: Bhogala & Nangia (2003[Bhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547-554.]); Gao et al. (2004[Gao, X. C., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232-236.]); Hori et al. (2009[Hori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). CrystEngComm, 11, 567-569.]); Weyna et al. (2009[Weyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106-1123.]).

[Scheme 1]

Experimental

Crystal data
  • C10H8N2·C6H6O4

  • Mr = 298.29

  • Triclinic, [P \overline 1]

  • a = 5.8481 (5) Å

  • b = 7.6348 (6) Å

  • c = 8.4677 (7) Å

  • α = 91.837 (5)°

  • β = 92.584 (5)°

  • γ = 111.907 (4)°

  • V = 349.93 (5) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 173 K

  • 0.40 × 0.26 × 0.24 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.960, Tmax = 0.976

  • 5973 measured reflections

  • 1517 independent reflections

  • 1336 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.116

  • S = 1.04

  • 1517 reflections

  • 104 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 1.06 (2) 1.58 (2) 2.6148 (14) 164 (2)
C2—H2⋯O2i 0.95 2.65 3.5130 (15) 151
C3—H3⋯O2ii 0.95 2.58 3.4457 (16) 152
C4—H4⋯O1iii 0.95 2.58 3.4848 (17) 160
C8—H8⋯O2iv 0.95 2.56 3.3555 (17) 141
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y+3, -z; (iii) -x, -y+2, -z+1; (iv) -x+1, -y+2, -z.

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998[Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Considerable effort has been devoted to form co-crystals made up of two or more components because of their potential applications in pharmaceutical chemisty (Weyna et al., 2009), supramolecular chemistry (Bhogala & Nangia, 2003; Gao et al., 2004) and materials chemistry (Hori et al., 2009). In particular, numerous studies have focused on hydrogen bonding between carboxylic acid and pyridine molecules (Bhogala & Nangia, 2003; Hou et al., 2008; Jiang & Hou, 2012). We report here the structure of a co-crystal of trans, trans-hexa-2,4-dienedioic acid with 4,4'-bipyridine in the solid state.

The title compound is shown in Fig. 1. The asymmetric unit contains half-molecules of 4,4'-bipyridine and trans,trans-1,3 -butadiene-1,4-dicarboxylic acid each located on crystallographic inversion centers. Both components are planar by symmetry and tilted by 32.02 (7)° with respect to each other.

In the crystal, the dicarboxylic acid molecules are arranged side by side by intermolecular C—H···O hydrogen bonds between the dicarboxylic acid molecules, leading to the formation of a one dimensional chain. Moreover, intermolecular O—H···N and C—H···O hydrogen bonds between dicarboxylic acid and 4,4'-bipyridine molecules generate a three-dimensional network (Fig. 2, Table 1).

Related literature top

For cocrystals of carboxylic acid and pyridine, see: Bhogala & Nangia (2003); Hou et al. (2008); Jiang & Hou (2012). For background to the applications of co-crystals, see: Bhogala & Nangia (2003); Gao et al. (2004); Hori et al. (2009); Weyna et al. (2009).

Experimental top

A mixture of stoichiometric amounts of trans, trans-hexa-2,4-dienedioic acid and 4,4'-bipyridine in DMF (in a 1:1 volume ratio) was heated until the two components dissolved and was then kept at room temperature. Upon slow evaporation of the solvent, X–ray quality single crystals were obtained.

Refinement top

The carboxyl-H atom was located in a difference Fourier map and refined isotropically. Csp2 H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å and Uiso(H) = 1.2Ueq(C).

Structure description top

Considerable effort has been devoted to form co-crystals made up of two or more components because of their potential applications in pharmaceutical chemisty (Weyna et al., 2009), supramolecular chemistry (Bhogala & Nangia, 2003; Gao et al., 2004) and materials chemistry (Hori et al., 2009). In particular, numerous studies have focused on hydrogen bonding between carboxylic acid and pyridine molecules (Bhogala & Nangia, 2003; Hou et al., 2008; Jiang & Hou, 2012). We report here the structure of a co-crystal of trans, trans-hexa-2,4-dienedioic acid with 4,4'-bipyridine in the solid state.

The title compound is shown in Fig. 1. The asymmetric unit contains half-molecules of 4,4'-bipyridine and trans,trans-1,3 -butadiene-1,4-dicarboxylic acid each located on crystallographic inversion centers. Both components are planar by symmetry and tilted by 32.02 (7)° with respect to each other.

In the crystal, the dicarboxylic acid molecules are arranged side by side by intermolecular C—H···O hydrogen bonds between the dicarboxylic acid molecules, leading to the formation of a one dimensional chain. Moreover, intermolecular O—H···N and C—H···O hydrogen bonds between dicarboxylic acid and 4,4'-bipyridine molecules generate a three-dimensional network (Fig. 2, Table 1).

For cocrystals of carboxylic acid and pyridine, see: Bhogala & Nangia (2003); Hou et al. (2008); Jiang & Hou (2012). For background to the applications of co-crystals, see: Bhogala & Nangia (2003); Gao et al. (2004); Hori et al. (2009); Weyna et al. (2009).

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines. (Symmetry codes: i) -x + 1, -y + 1, -z + 1; ii) -x, -y + 3, -z.)
[Figure 2] Fig. 2. Crystal packing of the title compound with intermolecular O—H···N and C—H···O hydrogen bonds shown as dashed lines. (Symmetry codes: i) -x + 1, -y + 1, -z + 1; ii) -x, -y + 2, -z + 1; iii) x, y - 1, z + 1; iv) -x + 1, -y + 2, -z + 1; v) x + 1, y + 1, z + 1; vi) -x + 1, -y + 2, -z.)
4,4'-Bipyridine–trans,trans-hexa-2,4-dienedioic acid (1/1) top
Crystal data top
C10H8N2·C6H6O4Z = 1
Mr = 298.29F(000) = 156
Triclinic, P1Dx = 1.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.8481 (5) ÅCell parameters from 4151 reflections
b = 7.6348 (6) Åθ = 2.4–28.4°
c = 8.4677 (7) ŵ = 0.10 mm1
α = 91.837 (5)°T = 173 K
β = 92.584 (5)°Block, colourless
γ = 111.907 (4)°0.40 × 0.26 × 0.24 mm
V = 349.93 (5) Å3
Data collection top
Bruker APEXII CCD
diffractometer
1517 independent reflections
Radiation source: fine-focus sealed tube1336 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 27.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 77
Tmin = 0.960, Tmax = 0.976k = 99
5973 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0688P)2 + 0.0753P]
where P = (Fo2 + 2Fc2)/3
1517 reflections(Δ/σ)max < 0.001
104 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C10H8N2·C6H6O4γ = 111.907 (4)°
Mr = 298.29V = 349.93 (5) Å3
Triclinic, P1Z = 1
a = 5.8481 (5) ÅMo Kα radiation
b = 7.6348 (6) ŵ = 0.10 mm1
c = 8.4677 (7) ÅT = 173 K
α = 91.837 (5)°0.40 × 0.26 × 0.24 mm
β = 92.584 (5)°
Data collection top
Bruker APEXII CCD
diffractometer
1517 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1336 reflections with I > 2σ(I)
Tmin = 0.960, Tmax = 0.976Rint = 0.031
5973 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.24 e Å3
1517 reflectionsΔρmin = 0.25 e Å3
104 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.05949 (18)1.05053 (14)0.23387 (13)0.0414 (3)
H10.184 (4)0.987 (3)0.271 (3)0.084 (7)*
O20.37461 (17)1.23144 (14)0.09959 (12)0.0394 (3)
C10.1653 (2)1.18769 (18)0.13952 (14)0.0285 (3)
C20.0033 (2)1.28402 (18)0.09016 (15)0.0299 (3)
H20.17401.22620.10770.036*
C30.0786 (2)1.44912 (17)0.02208 (14)0.0288 (3)
H30.24851.50310.00130.035*
N10.3031 (2)0.85144 (15)0.34658 (13)0.0331 (3)
C40.2266 (3)0.7745 (2)0.48325 (17)0.0374 (3)
H40.11610.81500.53890.045*
C50.3007 (3)0.6385 (2)0.54775 (16)0.0350 (3)
H50.24190.58820.64580.042*
C60.4615 (2)0.57572 (16)0.46878 (14)0.0262 (3)
C70.5464 (3)0.6613 (2)0.32875 (16)0.0351 (3)
H70.66110.62700.27190.042*
C80.4627 (3)0.79683 (19)0.27252 (16)0.0362 (3)
H80.52240.85320.17660.043*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0346 (5)0.0401 (6)0.0593 (7)0.0222 (4)0.0127 (5)0.0259 (5)
O20.0314 (5)0.0469 (6)0.0488 (6)0.0229 (4)0.0109 (4)0.0174 (5)
C10.0283 (6)0.0293 (6)0.0319 (6)0.0148 (5)0.0032 (5)0.0056 (5)
C20.0260 (6)0.0327 (7)0.0355 (6)0.0156 (5)0.0037 (5)0.0077 (5)
C30.0270 (6)0.0324 (6)0.0316 (6)0.0156 (5)0.0042 (5)0.0067 (5)
N10.0322 (6)0.0287 (6)0.0407 (6)0.0141 (5)0.0015 (5)0.0074 (4)
C40.0397 (7)0.0387 (7)0.0434 (7)0.0248 (6)0.0073 (6)0.0078 (6)
C50.0406 (7)0.0390 (7)0.0339 (7)0.0234 (6)0.0080 (5)0.0106 (5)
C60.0253 (6)0.0255 (6)0.0291 (6)0.0110 (5)0.0015 (5)0.0030 (5)
C70.0372 (7)0.0377 (7)0.0373 (7)0.0205 (6)0.0084 (5)0.0114 (6)
C80.0395 (7)0.0351 (7)0.0382 (7)0.0176 (6)0.0055 (6)0.0135 (6)
Geometric parameters (Å, º) top
O1—C11.3162 (15)C4—C51.3839 (18)
O1—H11.06 (2)C4—H40.9500
O2—C11.2096 (16)C5—C61.3907 (17)
C1—C21.4873 (16)C5—H50.9500
C2—C31.3310 (18)C6—C71.3929 (18)
C2—H20.9500C6—C6ii1.492 (2)
C3—C3i1.452 (2)C7—C81.3872 (17)
C3—H30.9500C7—H70.9500
N1—C81.3286 (17)C8—H80.9500
N1—C41.3337 (18)
C1—O1—H1110.3 (13)C5—C4—H4118.5
O2—C1—O1124.23 (11)C4—C5—C6119.86 (12)
O2—C1—C2124.24 (11)C4—C5—H5120.1
O1—C1—C2111.52 (10)C6—C5—H5120.1
C3—C2—C1121.76 (12)C5—C6—C7116.57 (11)
C3—C2—H2119.1C5—C6—C6ii121.53 (14)
C1—C2—H2119.1C7—C6—C6ii121.90 (14)
C2—C3—C3i123.31 (15)C8—C7—C6119.78 (12)
C2—C3—H3118.3C8—C7—H7120.1
C3i—C3—H3118.3C6—C7—H7120.1
C8—N1—C4117.62 (11)N1—C8—C7123.05 (12)
N1—C4—C5123.05 (12)N1—C8—H8118.5
N1—C4—H4118.5C7—C8—H8118.5
O2—C1—C2—C313.0 (2)C4—C5—C6—C6ii177.69 (14)
O1—C1—C2—C3166.14 (12)C5—C6—C7—C82.2 (2)
C1—C2—C3—C3i177.53 (14)C6ii—C6—C7—C8177.72 (14)
C8—N1—C4—C51.8 (2)C4—N1—C8—C71.8 (2)
N1—C4—C5—C60.3 (2)C6—C7—C8—N10.2 (2)
C4—C5—C6—C72.3 (2)
Symmetry codes: (i) x, y+3, z; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.06 (2)1.58 (2)2.6148 (14)164 (2)
C2—H2···O2iii0.952.653.5130 (15)151
C3—H3···O2iv0.952.583.4457 (16)152
C4—H4···O1v0.952.583.4848 (17)160
C8—H8···O2vi0.952.563.3555 (17)141
Symmetry codes: (iii) x1, y, z; (iv) x+1, y+3, z; (v) x, y+2, z+1; (vi) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC10H8N2·C6H6O4
Mr298.29
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)5.8481 (5), 7.6348 (6), 8.4677 (7)
α, β, γ (°)91.837 (5), 92.584 (5), 111.907 (4)
V3)349.93 (5)
Z1
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.40 × 0.26 × 0.24
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.960, 0.976
No. of measured, independent and
observed [I > 2σ(I)] reflections
5973, 1517, 1336
Rint0.031
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.116, 1.04
No. of reflections1517
No. of parameters104
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.24, 0.25

Computer programs: APEX2 (Bruker, 2006), SAINT (Bruker, 2006), SHELXTL (Sheldrick, 2008), SHELXTL and DIAMOND (Brandenburg, 1998).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N11.06 (2)1.58 (2)2.6148 (14)164 (2)
C2—H2···O2i0.952.653.5130 (15)150.9
C3—H3···O2ii0.952.583.4457 (16)152.1
C4—H4···O1iii0.952.583.4848 (17)159.7
C8—H8···O2iv0.952.563.3555 (17)141.0
Symmetry codes: (i) x1, y, z; (ii) x+1, y+3, z; (iii) x, y+2, z+1; (iv) x+1, y+2, z.
 

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (grant No. 2011-0026744).

References

First citationBhogala, B. R. & Nangia, A. (2003). Cryst. Growth Des. 3, 547–554.  Web of Science CSD CrossRef CAS Google Scholar
First citationBrandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, X. C., Friscic, T. & MacGillivray, L. R. (2004). Angew. Chem. Int. Ed. 43, 232–236.  Web of Science CSD CrossRef CAS Google Scholar
First citationHori, A., Takatani, S., Miyamoto, T. K. & Hasegawa, M. (2009). CrystEngComm, 11, 567–569.  Web of Science CSD CrossRef CAS Google Scholar
First citationHou, G.-G., Liu, L.-L., Ma, J.-P., Huang, R.-Q. & Dong, Y.-B. (2008). Acta Cryst. E64, o997.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationJiang, Y.-K. & Hou, G.-G. (2012). Acta Cryst. E68, o6.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeyna, D. R., Shattock, T., Vishweshwar, P. & Zaworotko, M. J. (2009). Cryst. Growth Des. 9, 1106–1123.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds