metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m377-m378

Sodium (1R)-D-glucit-1-yl­sulfonate monohydrate

aSchool of Chemistry, University of East Anglia, Norwich NR4 7TJ, England
*Correspondence e-mail: a.haines@uea.ac.uk, d.l.hughes@uea.ac.uk

(Received 8 February 2012; accepted 17 February 2012; online 7 March 2012)

The title salt, Na+·C6H13O9S·H2O, crystallizes with three independent cations, molecular anions and solvent water molecules in the asymmetric unit. This crystalline monohydrate addition product, formed by reaction of D-glucose and sodium hydrogen sulfite in water, forms a three-dimensional network through complex cation coordination and extensive inter­molecular hydrogen bonding. Each of the independent mol­ecules has an open-chain structure with the carbon chains adopting a sickle-like conformation, similar to that found in the potassium salt [Cole et al. (2001[Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.]). Carbohydr. Res. 335, 1–10], but there are significant differences in the patterns of complexation.

Related literature

For the first syntheses of the title compound, see: Braverman (1953[Braverman, J. B. S. (1953). J. Sci. Food Agric. 4, 540-547.]); Ingles (1959[Ingles, D. L. (1959). Aust. J. Chem. 12, 97-101.]). For evidence of the acyclic nature of such compounds, see: Ingles (1959[Ingles, D. L. (1959). Aust. J. Chem. 12, 97-101.], 1969[Ingles, D. L. (1969). Chem. Ind. pp. 50-51.]). For the synthesis and crystallographic properties of the corresponding potassium salts of D-glucose and D-mannose, see: Cole et al. (2001[Cole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1-10.]). For an additional discussion on the potassium salt, see: Haines & Hughes (2010[Haines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705-2708.]). For the crystallographic study of potassium (1S)-D-galactit-1-yl­sulfonate, see: Haines & Hughes (2010[Haines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705-2708.]).

[Scheme 1]

Experimental

Crystal data
  • Na+·C6H13O9S·H2O

  • Mr = 302.23

  • Orthorhombic, P 21 21 21

  • a = 8.81958 (9) Å

  • b = 16.8420 (2) Å

  • c = 22.7304 (3) Å

  • V = 3376.37 (7) Å3

  • Z = 12

  • Mo Kα radiation

  • μ = 0.37 mm−1

  • T = 140 K

  • 0.30 × 0.19 × 0.13 mm

Data collection
  • Oxford Diffraction Xcalibur 3/Sapphire3 CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]) Tmin = 0.908, Tmax = 1.000

  • 68733 measured reflections

  • 9835 independent reflections

  • 8207 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.028

  • wR(F2) = 0.052

  • S = 0.93

  • 9835 reflections

  • 583 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.46 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4356 Friedel pairs

  • Flack parameter: 0.02 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O13 0.81 (2) 2.21 (2) 2.8719 (17) 139 (2)
O1—H1O⋯O12 0.81 (2) 2.23 (2) 2.9262 (16) 144 (2)
O2—H2O⋯O33i 0.770 (17) 2.243 (19) 2.927 (2) 148.5 (17)
O3—H3O⋯O15ii 0.813 (19) 1.989 (19) 2.7862 (15) 166.9 (19)
O4—H4O⋯O24iii 0.84 (2) 2.24 (2) 3.0150 (16) 153.0 (19)
O5—H5O⋯O16ii 0.79 (2) 1.85 (2) 2.6172 (16) 164 (2)
O6—H6O⋯O7iv 0.76 (2) 2.06 (2) 2.8035 (17) 166 (2)
O11—H11O⋯O22v 0.80 (2) 2.39 (2) 3.0578 (16) 141 (2)
O11—H11O⋯O23v 0.80 (2) 2.12 (2) 2.7906 (17) 142 (2)
O12—H12O⋯O9 0.81 (2) 2.05 (2) 2.8372 (15) 165.7 (19)
O13—H13O⋯O25vi 0.768 (18) 2.082 (19) 2.8027 (16) 156.5 (19)
O14—H14O⋯O4iii 0.77 (2) 2.18 (2) 2.9173 (16) 162 (2)
O15—H15O⋯O25vi 0.805 (19) 1.939 (19) 2.7296 (16) 167 (2)
O16—H16O⋯O32vi 0.74 (2) 2.00 (2) 2.7346 (18) 173 (2)
O21—H21O⋯O2 0.84 (2) 2.13 (2) 2.9010 (16) 153.9 (19)
O21—H21O⋯O3 0.84 (2) 2.28 (2) 2.8810 (17) 129.4 (18)
O22—H22O⋯O19vii 0.765 (18) 1.995 (18) 2.7576 (15) 175 (2)
O23—H23O⋯O5ii 0.83 (2) 2.01 (2) 2.8219 (15) 168 (2)
O24—H24O⋯O14viii 0.76 (2) 2.34 (2) 3.0445 (16) 156.3 (19)
O25—H25O⋯O5ii 0.777 (19) 1.898 (19) 2.6709 (15) 173 (2)
O26—H26O⋯O31ii 0.76 (2) 2.14 (2) 2.8463 (18) 155 (2)
O31—H31A⋯O18ix 0.700 (19) 2.08 (2) 2.7729 (17) 170 (2)
O31—H31B⋯O6vi 0.83 (2) 2.07 (2) 2.8493 (18) 156 (2)
O32—H32A⋯O26vi 0.89 (2) 1.89 (2) 2.7501 (17) 163 (2)
O32—H32B⋯O8ix 0.741 (18) 2.019 (18) 2.7471 (16) 167.1 (17)
O33—H33A⋯O27x 0.833 (19) 2.16 (2) 2.9093 (18) 149.9 (19)
O33—H33B⋯O28ix 0.80 (3) 2.02 (3) 2.7371 (17) 150 (2)
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}]; (v) x, y-1, z; (vi) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (vii) x, y+1, z; (viii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ix) x-1, y, z; (x) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis PRO (Oxford Diffraction, 2010[Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The addition of bisulfite anion to carbonyl compounds has found use in the purification of aldehydes and some ketones. That aldoses, despite existing preponderantly in the hemi-acetal form, also form such adducts, has been known for over a century and evidence was provided by Ingles (1959, 1969) for the acyclic nature of such compounds but the open-chain form of the crystalline sulfonic salts derived from D-glucose and D-mannose with potassium bisulfite was only proved conclusively more recently by X-ray crystallographic studies (Cole et al., 2001). A study on the D-galactose compound (Haines & Hughes, 2010) also proved its acyclic nature.

Storage of a concentrated aqueous solution of D-glucose and equimolar sodium bisulfite (generated in the aqueous solution from sodium metabisulfite) at 277 K for several months, gave crystals of sodium (1R)-D-glucit-1-ylsulfonate monohydrate, 1, with properties (mp and [α]D) in agreement with those reported (Braverman, 1953; Ingles, 1959). HRESIMS (negative ion mode) indicated a peak at 261.0284 (calcd for [C6H13O9S]-: m/z 261.0286).

The title adduct (Fig. 1) crystallizes with three independent molecules per asymmetric unit; in contrast, the potassium adduct, also a monohydrate, has only one (Cole et al., 2001). Each of the three molecules adopts a sickle-like conformation with gauche conformations in the region C1—C2—C3—C4. Other torsion angles in the chains (which include the sulfur atom), all have values close to 180°, i.e. with anti conformations. Molecule B differs from A and C in having atom O16 approximately anti to H15; in A and C, atoms O6 and H5 adopt a gauche relationship about the C5–C6 bond.

In the crystal, the groups of three molecules, A, B, and C, are repeated by translation parallel to the b axis (Fig. 1).

The potassium compound also has the R configuration at C1 (Cole et al., 2001) but coordination of the sodium cation is distinctly different from that around the potassium ion. The sodium ions are each hexa-coordinated with oxygen atoms in the title compound [see Fig. 2 for the coordination pattern of Na2], with three different carbohydrate ligands providing five O atoms and a water molecule the sixth. For each sodium ion, one carbohydrate residue provides three of these O atoms, O1, O2 and a sulfonate oxygen O7; the other two oxygen atoms are provided by sulfonate O atoms from the two other residues. In contrast, the potassium compound has the cation coordinated to seven O atoms which are provided by four different carbohydrate molecules and a water molecule (Cole et al., 2001; Haines & Hughes, 2010).

Extensive intermolecular hydrogen bonding involves all three of the distinct anions, and this is indicated for one anion in Fig. 2. Every hydroxyl group is involved as a donor group in a hydrogen bond, and all except those at C1 (which are coordinated to sodium ions) are acceptors. The hydrogen atom H1O, of the hydroxy group at C1 of each anion (see Table 1), is involved in a bifurcated hydrogen bond to oxygen atoms of the hydroxy groups at C2 and C3 in an adjacent molecule (Figs. 1 and 2). The hydrogen bonds of the OH groups at C3 and C4 in each molecule are directed to oxygen atoms O5 and O4 in adjacent molecules. From molecules B and C, the hydrogen bonds involving atoms O3 and O5 are both accepted by O5 of an adjacent molecule, whereas the corresponding bonds from O3 and O5 of molecule A are accepted by O5 and O6, respectively, of the adjacent molecule. The remaining OH groups are linked less regularly, but all are involved in hydrogen bonds to main-chain OH groups, sulfonate O atoms or water molecules.

The three water molecules all have an approximately tetrahedral bonding pattern. Each water O atom is coordinated with a sodium ion and bonded to two hydrogen atoms, one of which forms a hydrogen bond to an O8 sulfonate atom, the other to either an O6 atom or an O7 sulfonate atom; the fourth site is the acceptor end of a hydrogen bond. This is shown for atom O32 in Fig. 2.

A simplified view along the crystallographic c axis (Fig. 3) shows the remarkable way in which a network of sulfonate residues is linearly linked (parallel to the b axis) through two of their oxygen atoms, O8 and O9, by rows of sodium atoms; cross-links, parallel to the a axis, between these chains are made through the third of the sulfonate oxygen atoms, O7. The complex coordination and hydrogen bonding leads to a complex, extensive, three-dimensional network.

Related literature top

For the first syntheses of the title compound, see: Braverman (1953); Ingles (1959). For evidence of the acyclic nature of such compounds, see: Ingles (1959, 1969) . For the synthesis and crystallographic properties of the corresponding potassium salts of D-glucose and D-mannose, see: Cole et al. (2001). For an additional discussion on the potassium salt, see: Haines & Hughes (2010). For the crystallographic study of potassium (1S)-D-galactit-1-ylsulfonate, see: Haines & Hughes (2010).

Experimental top

The title compound was prepared by a modification of previous procedures (Braverman, 1953; Ingles, 1959). Crystals of the title compound were obtained by storage of a solution of D-glucose (1.8 g) and sodium metabisulfite (0.95 g) in water (2 ml) at ~277 K for several weeks. The crystals, washed with MeOH:H2O (4:1) and dried over P2O5, had a non-sharp m.p. of 366-369 K [lit. 365-366 K (Braverman, 1953) and 372 K (Ingles, 1959)]; [α]D25 -5.2 (c 2.22, 9:1 H2O:HOAc), (lit. [α]D25 -3.9 (c 3.8, 9:1 H2O:HOAc); Ingles 1959). HRESIMS (negative ion mode) indicated a peak at 261.0284 (calcd for [C6H13O9S]-: m/z 261.0286). Further spectroscopic data are given in the archived CIF.

Refinement top

The hydroxyl H atoms were located in difference Fourier maps and were freely refined. The C-bound H atoms were included in calculated positions and treated as riding atoms: C-H = 0.98 and 0.97 Å for CH and CH2 H atoms, respectively, with Uiso(H)= 1.2Ueq(C).

Structure description top

The addition of bisulfite anion to carbonyl compounds has found use in the purification of aldehydes and some ketones. That aldoses, despite existing preponderantly in the hemi-acetal form, also form such adducts, has been known for over a century and evidence was provided by Ingles (1959, 1969) for the acyclic nature of such compounds but the open-chain form of the crystalline sulfonic salts derived from D-glucose and D-mannose with potassium bisulfite was only proved conclusively more recently by X-ray crystallographic studies (Cole et al., 2001). A study on the D-galactose compound (Haines & Hughes, 2010) also proved its acyclic nature.

Storage of a concentrated aqueous solution of D-glucose and equimolar sodium bisulfite (generated in the aqueous solution from sodium metabisulfite) at 277 K for several months, gave crystals of sodium (1R)-D-glucit-1-ylsulfonate monohydrate, 1, with properties (mp and [α]D) in agreement with those reported (Braverman, 1953; Ingles, 1959). HRESIMS (negative ion mode) indicated a peak at 261.0284 (calcd for [C6H13O9S]-: m/z 261.0286).

The title adduct (Fig. 1) crystallizes with three independent molecules per asymmetric unit; in contrast, the potassium adduct, also a monohydrate, has only one (Cole et al., 2001). Each of the three molecules adopts a sickle-like conformation with gauche conformations in the region C1—C2—C3—C4. Other torsion angles in the chains (which include the sulfur atom), all have values close to 180°, i.e. with anti conformations. Molecule B differs from A and C in having atom O16 approximately anti to H15; in A and C, atoms O6 and H5 adopt a gauche relationship about the C5–C6 bond.

In the crystal, the groups of three molecules, A, B, and C, are repeated by translation parallel to the b axis (Fig. 1).

The potassium compound also has the R configuration at C1 (Cole et al., 2001) but coordination of the sodium cation is distinctly different from that around the potassium ion. The sodium ions are each hexa-coordinated with oxygen atoms in the title compound [see Fig. 2 for the coordination pattern of Na2], with three different carbohydrate ligands providing five O atoms and a water molecule the sixth. For each sodium ion, one carbohydrate residue provides three of these O atoms, O1, O2 and a sulfonate oxygen O7; the other two oxygen atoms are provided by sulfonate O atoms from the two other residues. In contrast, the potassium compound has the cation coordinated to seven O atoms which are provided by four different carbohydrate molecules and a water molecule (Cole et al., 2001; Haines & Hughes, 2010).

Extensive intermolecular hydrogen bonding involves all three of the distinct anions, and this is indicated for one anion in Fig. 2. Every hydroxyl group is involved as a donor group in a hydrogen bond, and all except those at C1 (which are coordinated to sodium ions) are acceptors. The hydrogen atom H1O, of the hydroxy group at C1 of each anion (see Table 1), is involved in a bifurcated hydrogen bond to oxygen atoms of the hydroxy groups at C2 and C3 in an adjacent molecule (Figs. 1 and 2). The hydrogen bonds of the OH groups at C3 and C4 in each molecule are directed to oxygen atoms O5 and O4 in adjacent molecules. From molecules B and C, the hydrogen bonds involving atoms O3 and O5 are both accepted by O5 of an adjacent molecule, whereas the corresponding bonds from O3 and O5 of molecule A are accepted by O5 and O6, respectively, of the adjacent molecule. The remaining OH groups are linked less regularly, but all are involved in hydrogen bonds to main-chain OH groups, sulfonate O atoms or water molecules.

The three water molecules all have an approximately tetrahedral bonding pattern. Each water O atom is coordinated with a sodium ion and bonded to two hydrogen atoms, one of which forms a hydrogen bond to an O8 sulfonate atom, the other to either an O6 atom or an O7 sulfonate atom; the fourth site is the acceptor end of a hydrogen bond. This is shown for atom O32 in Fig. 2.

A simplified view along the crystallographic c axis (Fig. 3) shows the remarkable way in which a network of sulfonate residues is linearly linked (parallel to the b axis) through two of their oxygen atoms, O8 and O9, by rows of sodium atoms; cross-links, parallel to the a axis, between these chains are made through the third of the sulfonate oxygen atoms, O7. The complex coordination and hydrogen bonding leads to a complex, extensive, three-dimensional network.

For the first syntheses of the title compound, see: Braverman (1953); Ingles (1959). For evidence of the acyclic nature of such compounds, see: Ingles (1959, 1969) . For the synthesis and crystallographic properties of the corresponding potassium salts of D-glucose and D-mannose, see: Cole et al. (2001). For an additional discussion on the potassium salt, see: Haines & Hughes (2010). For the crystallographic study of potassium (1S)-D-galactit-1-ylsulfonate, see: Haines & Hughes (2010).

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO (Oxford Diffraction, 2010); data reduction: CrysAlis PRO (Oxford Diffraction, 2010); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the three, unique, linked complexes A, B, C (plus an adjacent group, B1) of the title compound, indicating the atom numbering scheme. The groups of three complexes are repeated by translation parallel to the b axis. Thermal ellipsoids are drawn at the 50% probability level. Symmetry code: (x) x, y+1, z.
[Figure 2] Fig. 2. One of the three sugar units, A, with all its sodium ion contacts and hydrogen bond interactions (dashed double lines). The atom numbering scheme is shown; the atoms of the other molecules are numbered correspondingly, with C, O and S atom numbers n+10 and n+20. The water molecules are labelled O31, O32 and O33. Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) x+1/2, -y+3/2, -z+1; (iii) x+1/2, -y+1/2, -z+1; (iv) x-1/2, -y+3/2, -z+1; (v) -x, y+1/2, -z+1/2; (vi) -x+1, y-1/2, -z+1/2; (vii) -x+1/2, -y+1, z-1/2; (ix) -x, y-1/2, -z+1/2; (xii) x-1, y, z; (xiii) x+1, y, z; (xiv) -x+1, y+1/2, -z+1/2; (xv) -x+1/2, -y+1, z+1/2.
[Figure 3] Fig. 3. View down the c axis, showing the sodium ions, lying in a sheet parallel to (001), with all their coordinated atoms linked by bridging sulfonate groups. Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (iv) x-1/2, -y+3/2, -z+1; (viii) x, y-1, z; (x) x, y+1, z.
Sodium (1R,2R,3S,4R,5R)-1,2,3,4,5,6-hexahydroxyhexane-1-sulfonate monohydrate top
Crystal data top
Na+·C6H13O9S·H2OF(000) = 1896
Mr = 302.23Dx = 1.784 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 27478 reflections
a = 8.81958 (9) Åθ = 3.5–32.6°
b = 16.8420 (2) ŵ = 0.37 mm1
c = 22.7304 (3) ÅT = 140 K
V = 3376.37 (7) Å3Prism, colourless
Z = 120.30 × 0.19 × 0.13 mm
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
9835 independent reflections
Radiation source: Enhance (Mo) X-ray Source8207 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 16.0050 pixels mm-1θmax = 30°, θmin = 3.5°
Thin slice φ and ω scansh = 1212
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2323
Tmin = 0.908, Tmax = 1.000l = 3131
68733 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0248P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max = 0.001
9835 reflectionsΔρmax = 0.53 e Å3
583 parametersΔρmin = 0.46 e Å3
0 restraintsAbsolute structure: Flack (1983), 4356 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.02 (3)
Crystal data top
Na+·C6H13O9S·H2OV = 3376.37 (7) Å3
Mr = 302.23Z = 12
Orthorhombic, P212121Mo Kα radiation
a = 8.81958 (9) ŵ = 0.37 mm1
b = 16.8420 (2) ÅT = 140 K
c = 22.7304 (3) Å0.30 × 0.19 × 0.13 mm
Data collection top
Oxford Diffraction Xcalibur 3/Sapphire3 CCD
diffractometer
9835 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
8207 reflections with I > 2σ(I)
Tmin = 0.908, Tmax = 1.000Rint = 0.044
68733 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.052Δρmax = 0.53 e Å3
S = 0.93Δρmin = 0.46 e Å3
9835 reflectionsAbsolute structure: Flack (1983), 4356 Friedel pairs
583 parametersAbsolute structure parameter: 0.02 (3)
0 restraints
Special details top

Experimental. Absorption correction: CrysAlis RED (Oxford Diffraction, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Spectroscopic data for the title compound:

1H NMR (D2O, 300 MHz, measured 5 min after dissolution, reference Me3COH at δH 1.24): δ 5.23 (d, J 2.8 Hz, OCHO of α-pyranose), 4.64 (d, J 8.2 Hz, OCHO of β-pyranose), 4.53 (br s, CH[SO3-]), δ 4.48 (d, J 6.9 Hz, CH[SO3-]), 4.25–3.30 (complex), 3.23 (dd, J3,4 = J4,5 = 8.3 Hz, H-4); after 24 h the spectrum was of a mixture of the α- and β-pyranoses.

13C NMR (D2O, 75 MHz, scan time 17 min, referenced to Me3COH at δC 30.29): δ 96.62 (β-pyranose C1), 92.82 (α-pyranose C1), 84.10 (CH[SO3-]), 82.87 (CH[SO3-]), 76.63 - 61.27 (16 signals).

HRESIMS (negative ion mode): calcd for [C6H13O9S]-: m/z 261.0286; found 261.0284; predominant peaks were also observed at m/z 179.0567 ([C6H11O6]-), 243.0181 ([C6H13SO9 - H2O]-) and 359.1196 ([C12H23O12]-). The latter corresponds to the ion of the product formed by reaction between the sulfonate and D-glucose with displacement of sodium bisulfite; some decomposition of the sulfonate to afford D-glucose undoubtedly occurs in aqueous solution.

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Na10.13614 (6)0.20117 (4)0.48122 (3)0.01344 (14)
C10.37924 (17)0.49133 (9)0.38737 (7)0.0089 (3)
H10.43070.46490.35450.011*
O10.23320 (11)0.45878 (7)0.39417 (5)0.0107 (2)
C20.36436 (16)0.57970 (9)0.37396 (7)0.0091 (3)
H20.46430.60220.36510.011*
O20.29707 (13)0.62124 (6)0.42243 (5)0.0121 (2)
C30.25670 (16)0.59384 (9)0.32241 (7)0.0090 (3)
H30.1540.5790.33470.011*
O30.25886 (13)0.67734 (7)0.31079 (5)0.0125 (2)
C40.29518 (15)0.54829 (9)0.26626 (7)0.0089 (3)
H40.29910.49140.27520.011*
O40.44056 (12)0.57338 (7)0.24505 (5)0.0145 (2)
C50.17485 (16)0.56284 (9)0.21839 (7)0.0086 (3)
H50.17010.61970.20930.01*
O50.02947 (11)0.53644 (7)0.23940 (5)0.0112 (2)
C60.20478 (17)0.51686 (9)0.16275 (7)0.0130 (3)
H6A0.29870.53440.14480.016*
H6B0.21310.46060.17130.016*
O60.08016 (13)0.53109 (8)0.12399 (5)0.0186 (3)
S10.48430 (4)0.47327 (2)0.454827 (17)0.00845 (7)
O70.38035 (12)0.48990 (6)0.50260 (5)0.0141 (2)
O80.61356 (11)0.52732 (6)0.45317 (5)0.0129 (2)
O90.52894 (11)0.38984 (6)0.45184 (5)0.0134 (2)
O310.07200 (14)0.19093 (8)0.41695 (6)0.0182 (3)
Na20.12042 (7)0.52742 (4)0.47754 (3)0.01419 (14)
C110.37470 (16)0.16002 (8)0.38419 (7)0.0085 (3)
H110.42210.13160.35140.01*
O110.23253 (12)0.12558 (7)0.39667 (5)0.0117 (2)
C120.35304 (16)0.24679 (9)0.36746 (7)0.0099 (3)
H120.45150.27010.35750.012*
O120.28739 (12)0.28985 (7)0.41568 (5)0.0130 (2)
C130.24380 (16)0.25754 (9)0.31569 (7)0.0089 (3)
H130.14170.24180.32810.011*
O130.24430 (14)0.34098 (6)0.30291 (6)0.0146 (3)
C140.28632 (15)0.21128 (9)0.26046 (7)0.0097 (3)
H140.28340.15420.26890.012*
O140.43666 (12)0.23329 (7)0.24221 (5)0.0150 (2)
C150.17976 (17)0.22993 (9)0.20861 (7)0.0107 (3)
H150.20490.28290.19370.013*
O150.02371 (12)0.23051 (7)0.22733 (5)0.0141 (2)
C160.19286 (17)0.17162 (9)0.15842 (7)0.0132 (3)
H16A0.13210.18960.12540.016*
H16B0.29760.16820.14560.016*
O160.14154 (13)0.09536 (7)0.17724 (6)0.0153 (3)
S20.49099 (4)0.14863 (2)0.449704 (18)0.00980 (8)
O170.39821 (12)0.17128 (7)0.49950 (5)0.0190 (3)
O180.62086 (11)0.20125 (6)0.44188 (5)0.0163 (2)
O190.53301 (11)0.06453 (6)0.45018 (5)0.0135 (2)
O320.09392 (14)0.49853 (7)0.41754 (6)0.0157 (3)
Na30.18414 (7)0.86152 (4)0.48930 (3)0.01404 (14)
C210.41018 (15)0.82810 (9)0.38808 (7)0.0103 (3)
H210.45170.80110.35350.012*
O210.27321 (12)0.79143 (7)0.40507 (5)0.0130 (2)
C220.37895 (16)0.91475 (9)0.37330 (7)0.0097 (3)
H220.47410.94110.36260.012*
O220.31453 (13)0.95299 (7)0.42371 (5)0.0125 (2)
C230.26528 (16)0.92370 (9)0.32343 (7)0.0100 (3)
H230.16580.90560.33720.012*
O230.25714 (14)1.00715 (7)0.31134 (5)0.0136 (2)
C240.30638 (16)0.87809 (9)0.26775 (7)0.0094 (3)
H240.31060.82120.27670.011*
O240.45210 (12)0.90377 (7)0.24678 (5)0.0156 (2)
C250.19041 (16)0.89229 (9)0.21883 (7)0.0093 (3)
H250.20310.94610.20320.011*
O250.03936 (11)0.88392 (7)0.24267 (5)0.0117 (2)
C260.20396 (17)0.83301 (9)0.16940 (7)0.0140 (3)
H26A0.3010.83890.14980.017*
H26B0.19680.77940.18470.017*
O260.08309 (13)0.84798 (7)0.12910 (5)0.0176 (3)
S30.54392 (4)0.82111 (2)0.448640 (17)0.01092 (8)
O270.45870 (12)0.83333 (6)0.50307 (5)0.0156 (2)
O280.65285 (11)0.88547 (7)0.43851 (5)0.0175 (3)
O290.61220 (12)0.74280 (6)0.44472 (5)0.0186 (3)
O330.06144 (15)0.83394 (8)0.46595 (7)0.0323 (4)
H1O0.234 (2)0.4124 (14)0.3846 (10)0.041 (7)*
H2O0.3615 (19)0.6249 (10)0.4451 (8)0.015 (5)*
H3O0.172 (2)0.6912 (11)0.3051 (8)0.023 (5)*
H4O0.497 (2)0.5334 (12)0.2423 (9)0.031 (6)*
H5O0.011 (3)0.5613 (14)0.2642 (10)0.050 (8)*
H6O0.099 (2)0.5188 (12)0.0927 (9)0.028 (6)*
H31A0.148 (2)0.1898 (12)0.4262 (9)0.020 (6)*
H31B0.048 (3)0.1479 (14)0.4021 (11)0.056 (8)*
H11O0.240 (2)0.0802 (14)0.3868 (10)0.045 (7)*
H12O0.357 (2)0.3131 (12)0.4310 (9)0.028 (6)*
H13O0.161 (2)0.3537 (11)0.3003 (8)0.018 (5)*
H14O0.484 (2)0.1952 (13)0.2408 (9)0.030 (6)*
H15O0.002 (2)0.2767 (12)0.2307 (8)0.023 (6)*
H16O0.136 (2)0.0694 (12)0.1511 (10)0.031 (7)*
H32A0.078 (2)0.4475 (12)0.4088 (9)0.036 (6)*
H32B0.171 (2)0.5006 (9)0.4305 (8)0.005 (5)*
H21O0.273 (2)0.7427 (13)0.3984 (9)0.031 (6)*
H22O0.375 (2)0.9831 (11)0.4333 (8)0.020 (6)*
H23O0.170 (2)1.0184 (12)0.3015 (10)0.037 (7)*
H24O0.503 (2)0.8676 (12)0.2473 (9)0.024 (6)*
H25O0.013 (2)0.9270 (11)0.2492 (9)0.017 (5)*
H26O0.078 (3)0.8135 (13)0.1074 (10)0.050 (8)*
H33A0.073 (2)0.7851 (12)0.4627 (9)0.028 (6)*
H33B0.130 (3)0.8490 (14)0.4458 (12)0.060 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Na10.0146 (3)0.0141 (3)0.0116 (3)0.0019 (2)0.0030 (2)0.0002 (3)
C10.0093 (7)0.0095 (7)0.0079 (8)0.0004 (5)0.0027 (6)0.0001 (6)
O10.0106 (5)0.0085 (5)0.0131 (6)0.0017 (4)0.0014 (4)0.0009 (5)
C20.0109 (7)0.0089 (7)0.0075 (8)0.0001 (5)0.0008 (6)0.0011 (6)
O20.0163 (6)0.0113 (6)0.0086 (6)0.0035 (4)0.0051 (5)0.0047 (4)
C30.0092 (6)0.0076 (7)0.0101 (8)0.0004 (5)0.0008 (6)0.0003 (6)
O30.0143 (5)0.0065 (5)0.0167 (6)0.0021 (5)0.0058 (5)0.0003 (5)
C40.0088 (6)0.0075 (7)0.0103 (8)0.0001 (5)0.0007 (5)0.0006 (6)
O40.0082 (5)0.0168 (6)0.0184 (6)0.0011 (5)0.0028 (5)0.0010 (5)
C50.0082 (6)0.0089 (7)0.0085 (8)0.0008 (6)0.0011 (6)0.0009 (6)
O50.0089 (5)0.0150 (5)0.0096 (6)0.0028 (4)0.0019 (4)0.0036 (5)
C60.0146 (8)0.0153 (8)0.0092 (8)0.0012 (6)0.0001 (6)0.0002 (6)
O60.0208 (6)0.0286 (7)0.0064 (6)0.0041 (5)0.0028 (5)0.0042 (6)
S10.00888 (16)0.00855 (16)0.00793 (18)0.00076 (13)0.00175 (15)0.00017 (15)
O70.0145 (5)0.0194 (6)0.0085 (6)0.0036 (4)0.0002 (5)0.0009 (5)
O80.0108 (5)0.0141 (5)0.0136 (6)0.0004 (4)0.0026 (5)0.0014 (5)
O90.0169 (5)0.0096 (5)0.0136 (6)0.0016 (4)0.0055 (5)0.0008 (5)
O310.0137 (6)0.0186 (7)0.0224 (7)0.0022 (5)0.0010 (5)0.0006 (5)
Na20.0138 (3)0.0165 (3)0.0122 (3)0.0020 (3)0.0009 (3)0.0005 (3)
C110.0094 (6)0.0094 (8)0.0068 (7)0.0010 (5)0.0014 (6)0.0004 (6)
O110.0111 (5)0.0088 (6)0.0151 (6)0.0023 (4)0.0003 (4)0.0020 (5)
C120.0089 (7)0.0091 (7)0.0116 (8)0.0006 (5)0.0013 (6)0.0020 (6)
O120.0137 (6)0.0117 (6)0.0134 (6)0.0010 (4)0.0023 (4)0.0062 (5)
C130.0086 (6)0.0075 (7)0.0107 (8)0.0002 (5)0.0008 (6)0.0003 (6)
O130.0139 (6)0.0077 (6)0.0223 (7)0.0021 (5)0.0075 (5)0.0007 (5)
C140.0082 (6)0.0076 (7)0.0133 (8)0.0014 (5)0.0015 (6)0.0005 (6)
O140.0081 (5)0.0169 (6)0.0199 (7)0.0008 (5)0.0025 (5)0.0009 (5)
C150.0102 (7)0.0109 (7)0.0110 (8)0.0010 (6)0.0003 (6)0.0025 (6)
O150.0082 (5)0.0133 (6)0.0207 (6)0.0011 (4)0.0031 (5)0.0048 (5)
C160.0156 (7)0.0149 (8)0.0091 (8)0.0027 (6)0.0008 (6)0.0029 (7)
O160.0229 (6)0.0110 (6)0.0120 (6)0.0034 (5)0.0055 (5)0.0026 (5)
S20.01007 (16)0.00945 (16)0.00987 (19)0.00082 (13)0.00216 (16)0.00123 (16)
O170.0206 (6)0.0279 (7)0.0086 (6)0.0064 (5)0.0010 (5)0.0031 (5)
O180.0131 (5)0.0137 (6)0.0221 (7)0.0024 (4)0.0055 (5)0.0000 (5)
O190.0141 (5)0.0113 (5)0.0149 (6)0.0011 (4)0.0042 (5)0.0014 (5)
O320.0116 (6)0.0181 (6)0.0174 (7)0.0014 (5)0.0025 (5)0.0010 (5)
Na30.0128 (3)0.0131 (3)0.0162 (4)0.0009 (2)0.0038 (3)0.0015 (3)
C210.0110 (7)0.0105 (7)0.0094 (8)0.0020 (6)0.0017 (6)0.0008 (6)
O210.0134 (5)0.0083 (6)0.0172 (6)0.0023 (4)0.0010 (5)0.0011 (5)
C220.0103 (7)0.0093 (7)0.0097 (8)0.0004 (6)0.0008 (6)0.0013 (6)
O220.0144 (5)0.0106 (6)0.0124 (6)0.0003 (5)0.0011 (5)0.0059 (5)
C230.0111 (7)0.0068 (7)0.0121 (8)0.0000 (5)0.0017 (6)0.0001 (6)
O230.0158 (6)0.0078 (5)0.0172 (7)0.0020 (4)0.0090 (5)0.0013 (5)
C240.0088 (6)0.0070 (7)0.0122 (8)0.0007 (6)0.0001 (6)0.0002 (6)
O240.0083 (5)0.0176 (6)0.0208 (7)0.0008 (5)0.0023 (5)0.0004 (5)
C250.0084 (6)0.0083 (7)0.0112 (8)0.0014 (6)0.0004 (6)0.0005 (6)
O250.0087 (5)0.0105 (6)0.0160 (6)0.0007 (4)0.0002 (4)0.0021 (5)
C260.0158 (7)0.0147 (8)0.0115 (8)0.0018 (6)0.0016 (6)0.0016 (6)
O260.0220 (6)0.0181 (6)0.0127 (6)0.0012 (5)0.0083 (5)0.0061 (5)
S30.01138 (16)0.01143 (17)0.00994 (19)0.00368 (14)0.00212 (15)0.00099 (16)
O270.0182 (5)0.0174 (6)0.0112 (6)0.0044 (5)0.0012 (5)0.0022 (5)
O280.0118 (5)0.0207 (6)0.0200 (7)0.0007 (4)0.0050 (4)0.0019 (5)
O290.0243 (6)0.0182 (6)0.0133 (6)0.0117 (5)0.0026 (5)0.0001 (5)
O330.0161 (6)0.0170 (7)0.0638 (11)0.0002 (5)0.0121 (7)0.0021 (7)
Geometric parameters (Å, º) top
Na1—O312.3524 (14)O13—H13O0.768 (18)
Na1—O9i2.3577 (12)C14—O141.4379 (17)
Na1—O172.4017 (12)C14—C151.540 (2)
Na1—O18i2.4031 (13)C14—H140.98
Na1—O112.4570 (14)O14—H14O0.77 (2)
Na1—O122.4958 (13)C15—O151.4406 (18)
Na1—C113.1258 (16)C15—C161.510 (2)
Na1—S2i3.2410 (7)C15—H150.98
Na1—S23.3303 (7)O15—H15O0.805 (19)
Na1—H31B2.58 (2)C16—O161.4275 (18)
C1—O11.4083 (18)C16—H16A0.97
C1—C21.525 (2)C16—H16B0.97
C1—S11.8172 (15)O16—H16O0.74 (2)
C1—Na23.1275 (17)S2—O171.4479 (11)
C1—H10.98S2—O181.4591 (11)
O1—Na22.4325 (13)S2—O191.4640 (10)
O1—H1O0.81 (2)S2—Na1iii3.2410 (7)
C2—O21.4335 (18)O18—Na1iii2.4031 (13)
C2—C31.527 (2)O19—Na2iii2.3857 (12)
C2—H20.98O32—H32A0.89 (2)
O2—Na22.5483 (13)O32—H32B0.741 (18)
O2—H2O0.770 (17)Na3—O332.2778 (14)
C3—O31.4311 (18)Na3—O8iv2.3669 (12)
C3—C41.527 (2)Na3—O212.3824 (13)
C3—H30.98Na3—O29iv2.3955 (12)
O3—H3O0.813 (19)Na3—O222.4329 (13)
C4—O41.4336 (17)Na3—O272.4874 (12)
C4—C51.540 (2)Na3—C213.0959 (16)
C4—H40.98Na3—S33.3744 (7)
O4—H4O0.84 (2)Na3—H33A2.678 (19)
C5—O51.4386 (17)C21—O211.4106 (17)
C5—C61.506 (2)C21—C221.523 (2)
C5—H50.98C21—S31.8166 (14)
O5—H5O0.79 (2)C21—H210.98
C6—O61.4290 (19)O21—H21O0.84 (2)
C6—H6A0.97C22—O221.4319 (18)
C6—H6B0.97C22—C231.521 (2)
O6—H6O0.76 (2)C22—H220.98
S1—O71.4484 (12)O22—H22O0.765 (18)
S1—O81.4595 (10)C23—O231.4339 (17)
S1—O91.4608 (10)C23—C241.524 (2)
S1—Na23.3760 (7)C23—H230.98
O7—Na22.4452 (12)O23—H23O0.83 (2)
O8—Na3ii2.3669 (12)C24—O241.4374 (17)
O9—Na1iii2.3577 (12)C24—C251.530 (2)
O31—H31A0.700 (19)C24—H240.98
O31—H31B0.83 (2)O24—H24O0.76 (2)
Na2—O322.3812 (14)C25—O251.4449 (17)
Na2—O19i2.3857 (12)C25—C261.508 (2)
Na2—O28iv2.4239 (13)C25—H250.98
Na2—O27iv2.7802 (12)O25—H25O0.777 (19)
Na2—S3iv3.1271 (7)C26—O261.4280 (19)
C11—O111.4103 (17)C26—H26A0.97
C11—C121.522 (2)C26—H26B0.97
C11—S21.8183 (15)O26—H26O0.76 (2)
C11—H110.98S3—O291.4526 (11)
O11—H11O0.80 (2)S3—O271.4621 (11)
C12—O121.4363 (18)S3—O281.4666 (11)
C12—C131.532 (2)S3—Na2ii3.1271 (7)
C12—H120.98O27—Na2ii2.7802 (12)
O12—H12O0.81 (2)O28—Na2ii2.4239 (13)
C13—O131.4351 (18)O29—Na3ii2.3955 (12)
C13—C141.524 (2)O33—H33A0.833 (19)
C13—H130.98O33—H33B0.80 (3)
O31—Na1—O9i92.30 (5)Na1—O11—H11O137.9 (17)
O31—Na1—O17147.47 (5)O12—C12—C11110.16 (12)
O9i—Na1—O1797.93 (4)O12—C12—C13105.85 (11)
O31—Na1—O18i117.27 (5)C11—C12—C13112.61 (12)
O9i—Na1—O18i87.29 (4)O12—C12—H12109.4
O17—Na1—O18i94.09 (4)C11—C12—H12109.4
O31—Na1—O1175.30 (4)C13—C12—H12109.4
O9i—Na1—O11107.86 (4)C12—O12—Na1111.64 (8)
O17—Na1—O1172.17 (4)C12—O12—H12O105.7 (14)
O18i—Na1—O11160.51 (4)Na1—O12—H12O116.0 (14)
O31—Na1—O1295.18 (5)O13—C13—C14109.46 (12)
O9i—Na1—O12171.33 (5)O13—C13—C12105.62 (12)
O17—Na1—O1273.40 (4)C14—C13—C12114.68 (12)
O18i—Na1—O1293.14 (4)O13—C13—H13109
O11—Na1—O1270.02 (4)C14—C13—H13109
O31—Na1—C1194.06 (5)C12—C13—H13109
O9i—Na1—C11125.53 (4)C13—O13—H13O106.6 (14)
O17—Na1—C1155.10 (4)O14—C14—C13109.43 (12)
O18i—Na1—C11134.63 (4)O14—C14—C15106.83 (12)
O11—Na1—C1125.89 (4)C13—C14—C15112.08 (12)
O12—Na1—C1149.59 (4)O14—C14—H14109.5
O31—Na1—S2i92.86 (4)C13—C14—H14109.5
O9i—Na1—S2i92.08 (3)C15—C14—H14109.5
O17—Na1—S2i117.38 (4)C14—O14—H14O107.3 (15)
O18i—Na1—S2i24.72 (3)O15—C15—C16107.50 (12)
O11—Na1—S2i156.93 (4)O15—C15—C14111.01 (13)
O12—Na1—S2i91.90 (3)C16—C15—C14113.51 (13)
C11—Na1—S2i141.33 (3)O15—C15—H15108.2
O31—Na1—S2125.47 (4)C16—C15—H15108.2
O9i—Na1—S2110.06 (3)C14—C15—H15108.2
O17—Na1—S222.65 (3)C15—O15—H15O105.4 (13)
O18i—Na1—S2113.01 (3)O16—C16—C15109.55 (13)
O11—Na1—S250.87 (3)O16—C16—H16A109.8
O12—Na1—S261.86 (3)C15—C16—H16A109.8
C11—Na1—S232.52 (3)O16—C16—H16B109.8
S2i—Na1—S2133.06 (2)C15—C16—H16B109.8
O31—Na1—H31B18.6 (6)H16A—C16—H16B108.2
O9i—Na1—H31B88.4 (5)C16—O16—H16O108.1 (17)
O17—Na1—H31B130.7 (6)O17—S2—O18112.27 (7)
O18i—Na1—H31B135.2 (6)O17—S2—O19113.09 (7)
O11—Na1—H31B59.5 (6)O18—S2—O19112.94 (6)
O12—Na1—H31B97.3 (5)O17—S2—C11107.07 (6)
C11—Na1—H31B81.6 (6)O18—S2—C11106.19 (7)
S2i—Na1—H31B111.1 (6)O19—S2—C11104.54 (7)
S2—Na1—H31B110.4 (6)O17—S2—Na1iii68.83 (5)
O1—C1—C2108.85 (12)O18—S2—Na1iii43.52 (5)
O1—C1—S1107.98 (10)O19—S2—Na1iii130.66 (5)
C2—C1—S1112.08 (10)C11—S2—Na1iii122.49 (5)
O1—C1—Na248.41 (7)O17—S2—Na139.71 (5)
C2—C1—Na283.02 (9)O18—S2—Na1127.05 (5)
S1—C1—Na281.47 (6)O19—S2—Na1119.56 (4)
O1—C1—H1109.3C11—S2—Na167.54 (5)
C2—C1—H1109.3Na1iii—S2—Na193.415 (13)
S1—C1—H1109.3S2—O17—Na1117.64 (6)
Na2—C1—H1157.7S2—O18—Na1iii111.76 (6)
C1—O1—Na2105.93 (9)S2—O19—Na2iii135.63 (7)
C1—O1—H1O109.7 (15)Na2—O32—H32A101.7 (13)
Na2—O1—H1O132.2 (15)Na2—O32—H32B119.5 (13)
O2—C2—C1111.00 (13)H32A—O32—H32B105.9 (18)
O2—C2—C3104.85 (12)O33—Na3—O8iv92.29 (5)
C1—C2—C3111.04 (12)O33—Na3—O2191.45 (5)
O2—C2—H2109.9O8iv—Na3—O21157.31 (5)
C1—C2—H2109.9O33—Na3—O29iv75.20 (5)
C3—C2—H2109.9O8iv—Na3—O29iv99.47 (4)
C2—O2—Na2109.17 (8)O21—Na3—O29iv103.12 (5)
C2—O2—H2O104.4 (13)O33—Na3—O22115.83 (6)
Na2—O2—H2O99.8 (14)O8iv—Na3—O2287.82 (4)
O3—C3—C2106.65 (12)O21—Na3—O2270.45 (4)
O3—C3—C4109.67 (12)O29iv—Na3—O22166.73 (5)
C2—C3—C4115.14 (12)O33—Na3—O27156.36 (5)
O3—C3—H3108.4O8iv—Na3—O27109.72 (4)
C2—C3—H3108.4O21—Na3—O2771.67 (4)
C4—C3—H3108.4O29iv—Na3—O2792.24 (4)
C3—O3—H3O107.4 (13)O22—Na3—O2774.80 (4)
O4—C4—C3109.37 (12)O33—Na3—C21113.71 (5)
O4—C4—C5109.38 (12)O8iv—Na3—C21136.36 (4)
C3—C4—C5110.95 (12)O21—Na3—C2125.89 (4)
O4—C4—H4109O29iv—Na3—C21120.16 (4)
C3—C4—H4109O22—Na3—C2149.86 (4)
C5—C4—H4109O27—Na3—C2155.38 (4)
C4—O4—H4O108.6 (14)O33—Na3—S3142.11 (5)
O5—C5—C6106.02 (12)O8iv—Na3—S3123.93 (3)
O5—C5—C4109.30 (12)O21—Na3—S350.94 (3)
C6—C5—C4113.00 (12)O29iv—Na3—S3105.82 (3)
O5—C5—H5109.5O22—Na3—S361.01 (3)
C6—C5—H5109.5O27—Na3—S323.14 (3)
C4—C5—H5109.5C21—Na3—S332.25 (3)
C5—O5—H5O118.7 (18)O33—Na3—H33A17.0 (4)
O6—C6—C5107.26 (12)O8iv—Na3—H33A106.4 (4)
O6—C6—H6A110.3O21—Na3—H33A81.9 (4)
C5—C6—H6A110.3O29iv—Na3—H33A64.2 (4)
O6—C6—H6B110.3O22—Na3—H33A124.5 (4)
C5—C6—H6B110.3O27—Na3—H33A139.6 (4)
H6A—C6—H6B108.5C21—Na3—H33A106.9 (4)
C6—O6—H6O111.3 (16)S3—Na3—H33A129.6 (4)
O7—S1—O8113.15 (7)O21—C21—C22108.97 (12)
O7—S1—O9113.05 (7)O21—C21—S3108.68 (10)
O8—S1—O9112.85 (6)C22—C21—S3110.29 (10)
O7—S1—C1106.11 (7)O21—C21—Na347.52 (7)
O8—S1—C1105.79 (7)C22—C21—Na382.72 (8)
O9—S1—C1105.02 (7)S3—C21—Na382.35 (6)
O7—S1—Na239.78 (5)O21—C21—H21109.6
O8—S1—Na2125.31 (5)C22—C21—H21109.6
O9—S1—Na2121.54 (4)S3—C21—H21109.6
C1—S1—Na266.37 (5)Na3—C21—H21157.1
S1—O7—Na2117.95 (7)C21—O21—Na3106.59 (9)
S1—O8—Na3ii133.20 (7)C21—O21—H21O112.5 (14)
S1—O9—Na1iii134.70 (7)Na3—O21—H21O129.3 (14)
Na1—O31—H31A124.0 (17)O22—C22—C23106.87 (12)
Na1—O31—H31B96.7 (17)O22—C22—C21109.05 (12)
H31A—O31—H31B110 (2)C23—C22—C21112.26 (12)
O32—Na2—O19i90.30 (5)O22—C22—H22109.5
O32—Na2—O28iv131.93 (5)C23—C22—H22109.5
O19i—Na2—O28iv83.62 (4)C21—C22—H22109.5
O32—Na2—O177.37 (4)C22—O22—Na3113.14 (9)
O19i—Na2—O1111.11 (4)C22—O22—H22O104.5 (14)
O28iv—Na2—O1148.51 (4)Na3—O22—H22O125.0 (15)
O32—Na2—O7145.58 (5)O23—C23—C22105.85 (12)
O19i—Na2—O788.56 (4)O23—C23—C24110.29 (13)
O28iv—Na2—O782.09 (4)C22—C23—C24114.34 (12)
O1—Na2—O771.05 (4)O23—C23—H23108.7
O32—Na2—O2109.30 (5)C22—C23—H23108.7
O19i—Na2—O2159.82 (5)C24—C23—H23108.7
O28iv—Na2—O286.53 (4)C23—O23—H23O108.9 (15)
O1—Na2—O270.22 (4)O24—C24—C23109.66 (12)
O7—Na2—O272.63 (4)O24—C24—C25108.04 (12)
O32—Na2—O27iv81.71 (4)C23—C24—C25111.46 (12)
O19i—Na2—O27iv105.82 (4)O24—C24—H24109.2
O28iv—Na2—O27iv54.91 (4)C23—C24—H24109.2
O1—Na2—O27iv137.24 (4)C25—C24—H24109.2
O7—Na2—O27iv131.45 (4)C24—O24—H24O106.5 (15)
O2—Na2—O27iv82.44 (4)O25—C25—C26106.73 (12)
O32—Na2—S3iv107.62 (4)O25—C25—C24109.19 (12)
O19i—Na2—S3iv95.18 (3)C26—C25—C24112.65 (12)
O28iv—Na2—S3iv27.03 (3)O25—C25—H25109.4
O1—Na2—S3iv153.37 (4)C26—C25—H25109.4
O7—Na2—S3iv106.74 (3)C24—C25—H25109.4
O2—Na2—S3iv83.68 (3)C25—O25—H25O105.1 (14)
O27iv—Na2—S3iv27.87 (2)O26—C26—C25107.57 (12)
O32—Na2—C199.46 (5)O26—C26—H26A110.2
O19i—Na2—C1124.12 (4)C25—C26—H26A110.2
O28iv—Na2—C1123.19 (4)O26—C26—H26B110.2
O1—Na2—C125.66 (4)C25—C26—H26B110.2
O7—Na2—C154.42 (4)H26A—C26—H26B108.5
O2—Na2—C149.61 (4)C26—O26—H26O108.7 (18)
O27iv—Na2—C1129.96 (4)O29—S3—O27113.12 (7)
S3iv—Na2—C1131.89 (3)O29—S3—O28112.95 (7)
O32—Na2—S1127.73 (4)O27—S3—O28111.44 (7)
O19i—Na2—S1103.72 (3)O29—S3—C21106.35 (7)
O28iv—Na2—S199.89 (3)O27—S3—C21107.35 (7)
O1—Na2—S150.49 (3)O28—S3—C21104.98 (7)
O7—Na2—S122.27 (3)O29—S3—Na2ii133.17 (5)
O2—Na2—S160.73 (3)O27—S3—Na2ii62.75 (5)
O27iv—Na2—S1137.71 (3)O28—S3—Na2ii48.70 (5)
S3iv—Na2—S1120.50 (2)C21—S3—Na2ii119.59 (5)
C1—Na2—S132.16 (3)O29—S3—Na3126.14 (5)
O11—C11—C12109.48 (11)O27—S3—Na341.97 (4)
O11—C11—S2107.06 (10)O28—S3—Na3120.66 (5)
C12—C11—S2112.14 (10)C21—S3—Na365.41 (5)
O11—C11—Na149.53 (7)Na2ii—S3—Na383.765 (17)
C12—C11—Na183.05 (8)S3—O27—Na3114.89 (6)
S2—C11—Na179.94 (5)S3—O27—Na2ii89.38 (5)
O11—C11—H11109.4Na3—O27—Na2ii111.00 (4)
C12—C11—H11109.4S3—O28—Na2ii104.27 (6)
S2—C11—H11109.4S3—O29—Na3ii137.50 (7)
Na1—C11—H11158.8Na3—O33—H33A109.9 (13)
C11—O11—Na1104.58 (9)Na3—O33—H33B142.1 (18)
C11—O11—H11O105.5 (16)H33A—O33—H33B100 (2)
C2—C1—O1—Na261.66 (12)C12—C11—S2—O19165.44 (10)
S1—C1—O1—Na260.24 (9)Na1—C11—S2—O19116.38 (5)
O1—C1—C2—O263.89 (15)O11—C11—S2—Na1iii121.15 (8)
S1—C1—C2—O255.48 (14)C12—C11—S2—Na1iii1.05 (13)
Na2—C1—C2—O222.35 (10)Na1—C11—S2—Na1iii79.23 (4)
O1—C1—C2—C352.32 (16)O11—C11—S2—Na141.92 (8)
S1—C1—C2—C3171.69 (10)C12—C11—S2—Na178.18 (10)
Na2—C1—C2—C393.86 (11)O31—Na1—S2—O17168.66 (9)
C1—C2—O2—Na229.37 (13)O9i—Na1—S2—O1760.44 (8)
C3—C2—O2—Na290.61 (11)O18i—Na1—S2—O1735.31 (9)
O2—C2—C3—O364.02 (14)O11—Na1—S2—O17157.56 (9)
C1—C2—C3—O3176.03 (12)O12—Na1—S2—O17116.13 (8)
O2—C2—C3—C4174.09 (12)C11—Na1—S2—O17174.23 (9)
C1—C2—C3—C454.14 (17)S2i—Na1—S2—O1752.77 (8)
O3—C3—C4—O457.66 (15)O31—Na1—S2—O18110.89 (8)
C2—C3—C4—O462.60 (16)O9i—Na1—S2—O18140.89 (7)
O3—C3—C4—C563.10 (15)O17—Na1—S2—O1880.45 (10)
C2—C3—C4—C5176.65 (12)O18i—Na1—S2—O1845.14 (9)
O4—C4—C5—O5179.08 (12)O11—Na1—S2—O18121.99 (7)
C3—C4—C5—O560.17 (15)O12—Na1—S2—O1835.68 (7)
O4—C4—C5—C661.28 (16)C11—Na1—S2—O1893.79 (8)
C3—C4—C5—C6177.98 (12)S2i—Na1—S2—O1827.68 (7)
O5—C5—C6—O656.17 (15)O31—Na1—S2—O1977.36 (7)
C4—C5—C6—O6175.88 (12)O9i—Na1—S2—O1930.86 (7)
O1—C1—S1—O742.71 (11)O17—Na1—S2—O1991.31 (10)
C2—C1—S1—O777.17 (11)O18i—Na1—S2—O19126.62 (6)
Na2—C1—S1—O71.68 (6)O11—Na1—S2—O1966.26 (7)
O1—C1—S1—O8163.17 (9)O12—Na1—S2—O19152.56 (7)
C2—C1—S1—O843.29 (12)C11—Na1—S2—O1994.46 (7)
Na2—C1—S1—O8122.13 (5)S2i—Na1—S2—O19144.08 (6)
O1—C1—S1—O977.25 (11)O31—Na1—S2—C1117.10 (7)
C2—C1—S1—O9162.87 (10)O9i—Na1—S2—C11125.32 (6)
Na2—C1—S1—O9118.28 (5)O17—Na1—S2—C11174.23 (9)
O1—C1—S1—Na241.03 (8)O18i—Na1—S2—C11138.92 (6)
C2—C1—S1—Na278.85 (10)O11—Na1—S2—C1128.20 (6)
O8—S1—O7—Na2117.97 (7)O12—Na1—S2—C1158.10 (6)
O9—S1—O7—Na2112.18 (7)S2i—Na1—S2—C11121.46 (6)
C1—S1—O7—Na22.40 (8)O31—Na1—S2—Na1iii141.00 (5)
O7—S1—O8—Na3ii2.09 (11)O9i—Na1—S2—Na1iii110.78 (4)
O9—S1—O8—Na3ii132.04 (8)O17—Na1—S2—Na1iii50.34 (8)
C1—S1—O8—Na3ii113.67 (9)O18i—Na1—S2—Na1iii15.03 (3)
Na2—S1—O8—Na3ii41.74 (11)O11—Na1—S2—Na1iii152.10 (4)
O7—S1—O9—Na1iii54.52 (10)O12—Na1—S2—Na1iii65.79 (3)
O8—S1—O9—Na1iii75.48 (10)C11—Na1—S2—Na1iii123.89 (5)
C1—S1—O9—Na1iii169.76 (8)S2i—Na1—S2—Na1iii2.430 (15)
Na2—S1—O9—Na1iii98.56 (8)O18—S2—O17—Na1121.74 (7)
C1—O1—Na2—O32148.82 (9)O19—S2—O17—Na1109.03 (7)
C1—O1—Na2—O19i125.81 (8)C11—S2—O17—Na15.57 (9)
C1—O1—Na2—O28iv12.09 (14)Na1iii—S2—O17—Na1124.50 (7)
C1—O1—Na2—O745.08 (8)O31—Na1—O17—S217.32 (14)
C1—O1—Na2—O232.68 (8)O9i—Na1—O17—S2124.41 (8)
C1—O1—Na2—O27iv86.20 (10)O18i—Na1—O17—S2147.76 (8)
C1—O1—Na2—S3iv44.62 (13)O11—Na1—O17—S218.12 (7)
C1—O1—Na2—S135.18 (7)O12—Na1—O17—S255.70 (7)
S1—O7—Na2—O3245.00 (12)C11—Na1—O17—S23.78 (6)
S1—O7—Na2—O19i133.42 (7)S2i—Na1—O17—S2139.07 (6)
S1—O7—Na2—O28iv142.81 (7)O17—S2—O18—Na1iii3.74 (9)
S1—O7—Na2—O120.50 (7)O19—S2—O18—Na1iii125.57 (7)
S1—O7—Na2—O253.99 (7)C11—S2—O18—Na1iii120.43 (7)
S1—O7—Na2—O27iv116.60 (7)Na1—S2—O18—Na1iii46.64 (8)
S1—O7—Na2—S3iv131.60 (6)O17—S2—O19—Na2iii43.70 (10)
S1—O7—Na2—C11.65 (6)O18—S2—O19—Na2iii85.18 (10)
C2—O2—Na2—O3268.99 (10)C11—S2—O19—Na2iii159.82 (8)
C2—O2—Na2—O19i96.70 (15)Na1iii—S2—O19—Na2iii37.59 (11)
C2—O2—Na2—O28iv157.53 (9)Na1—S2—O19—Na2iii87.68 (8)
C2—O2—Na2—O10.83 (8)O33—Na3—C21—O2132.71 (10)
C2—O2—Na2—O774.74 (9)O8iv—Na3—C21—O21154.29 (9)
C2—O2—Na2—O27iv147.42 (9)O29iv—Na3—C21—O2153.42 (10)
C2—O2—Na2—S3iv175.48 (9)O22—Na3—C21—O21137.32 (10)
C2—O2—Na2—C117.04 (8)O27—Na3—C21—O21123.16 (10)
C2—O2—Na2—S154.17 (8)S3—Na3—C21—O21124.14 (11)
O1—C1—Na2—O3230.81 (9)O33—Na3—C21—C2291.45 (9)
C2—C1—Na2—O3292.14 (8)O8iv—Na3—C21—C2230.14 (10)
S1—C1—Na2—O32154.20 (5)O21—Na3—C21—C22124.15 (12)
O1—C1—Na2—O19i66.05 (10)O29iv—Na3—C21—C22177.58 (8)
C2—C1—Na2—O19i171.00 (8)O22—Na3—C21—C2213.16 (7)
S1—C1—Na2—O19i57.34 (7)O27—Na3—C21—C22112.68 (9)
O1—C1—Na2—O28iv172.48 (9)S3—Na3—C21—C22111.71 (10)
C2—C1—Na2—O28iv64.56 (9)O33—Na3—C21—S3156.84 (6)
S1—C1—Na2—O28iv49.09 (7)O8iv—Na3—C21—S381.57 (8)
C2—C1—Na2—O1122.95 (13)O21—Na3—C21—S3124.14 (11)
S1—C1—Na2—O1123.39 (11)O29iv—Na3—C21—S370.71 (6)
O1—C1—Na2—O7124.56 (10)O22—Na3—C21—S398.55 (6)
C2—C1—Na2—O7112.48 (9)O27—Na3—C21—S30.97 (4)
S1—C1—Na2—O71.17 (4)C22—C21—O21—Na360.23 (12)
O1—C1—Na2—O2138.15 (10)S3—C21—O21—Na359.99 (10)
C2—C1—Na2—O215.20 (7)O33—Na3—O21—C21150.34 (9)
S1—C1—Na2—O298.46 (6)O8iv—Na3—O21—C2150.90 (16)
O1—C1—Na2—O27iv117.89 (9)O29iv—Na3—O21—C21134.53 (9)
C2—C1—Na2—O27iv5.06 (10)O22—Na3—O21—C2133.36 (8)
S1—C1—Na2—O27iv118.72 (6)O27—Na3—O21—C2146.53 (8)
O1—C1—Na2—S3iv154.98 (8)S3—Na3—O21—C2134.66 (7)
C2—C1—Na2—S3iv32.03 (10)O21—C21—C22—O2258.43 (15)
S1—C1—Na2—S3iv81.63 (6)S3—C21—C22—O2260.79 (13)
O1—C1—Na2—S1123.39 (11)Na3—C21—C22—O2218.23 (10)
C2—C1—Na2—S1113.66 (10)O21—C21—C22—C2359.80 (16)
O7—S1—Na2—O32149.65 (9)S3—C21—C22—C23179.02 (10)
O8—S1—Na2—O32125.98 (7)Na3—C21—C22—C23100.00 (11)
O9—S1—Na2—O3260.76 (8)C23—C22—O22—Na396.13 (11)
C1—S1—Na2—O3232.87 (7)C21—C22—O22—Na325.44 (13)
O7—S1—Na2—O19i48.36 (8)O33—Na3—O22—C2285.00 (10)
O8—S1—Na2—O19i132.74 (7)O8iv—Na3—O22—C22176.49 (9)
O9—S1—Na2—O19i40.52 (7)O21—Na3—O22—C223.17 (9)
C1—S1—Na2—O19i134.16 (6)O29iv—Na3—O22—C2259.7 (2)
O7—S1—Na2—O28iv37.42 (7)O27—Na3—O22—C2272.39 (9)
O8—S1—Na2—O28iv46.95 (7)C21—Na3—O22—C2215.14 (8)
O9—S1—Na2—O28iv126.31 (6)S3—Na3—O22—C2252.24 (8)
C1—S1—Na2—O28iv140.06 (6)O22—C22—C23—O2365.17 (15)
O7—S1—Na2—O1154.58 (8)C21—C22—C23—O23175.32 (12)
O8—S1—Na2—O1121.05 (7)O22—C22—C23—C24173.24 (12)
O9—S1—Na2—O165.69 (7)C21—C22—C23—C2453.72 (17)
C1—S1—Na2—O127.94 (6)O23—C23—C24—O2460.83 (15)
O8—S1—Na2—O784.38 (9)C22—C23—C24—O2458.29 (16)
O9—S1—Na2—O788.89 (9)O23—C23—C24—C2558.75 (15)
C1—S1—Na2—O7177.48 (8)C22—C23—C24—C25177.88 (12)
O7—S1—Na2—O2117.75 (8)O24—C24—C25—O25167.35 (12)
O8—S1—Na2—O233.37 (7)C23—C24—C25—O2546.81 (16)
O9—S1—Na2—O2153.36 (7)O24—C24—C25—C2674.26 (15)
C1—S1—Na2—O259.73 (6)C23—C24—C25—C26165.20 (13)
O7—S1—Na2—O27iv84.91 (8)O25—C25—C26—O2655.48 (15)
O8—S1—Na2—O27iv0.54 (8)C24—C25—C26—O26175.30 (12)
O9—S1—Na2—O27iv173.80 (7)O21—C21—S3—O2982.67 (11)
C1—S1—Na2—O27iv92.56 (7)C22—C21—S3—O29157.93 (10)
O7—S1—Na2—S3iv56.22 (7)Na3—C21—S3—O29122.79 (6)
O8—S1—Na2—S3iv28.16 (7)O21—C21—S3—O2738.69 (11)
O9—S1—Na2—S3iv145.10 (6)C22—C21—S3—O2780.71 (11)
C1—S1—Na2—S3iv121.26 (6)Na3—C21—S3—O271.43 (6)
O7—S1—Na2—C1177.48 (8)O21—C21—S3—O28157.38 (10)
O8—S1—Na2—C193.10 (8)C22—C21—S3—O2837.98 (12)
O9—S1—Na2—C193.63 (8)Na3—C21—S3—O28117.26 (5)
O31—Na1—C11—O1143.20 (9)O21—C21—S3—Na2ii106.71 (9)
O9i—Na1—C11—O1152.55 (10)C22—C21—S3—Na2ii12.69 (12)
O17—Na1—C11—O11125.61 (10)Na3—C21—S3—Na2ii66.59 (5)
O18i—Na1—C11—O11178.89 (9)O21—C21—S3—Na340.12 (8)
O12—Na1—C11—O11136.56 (10)C22—C21—S3—Na379.28 (10)
S2i—Na1—C11—O11142.92 (8)O33—Na3—S3—O2956.93 (10)
S2—Na1—C11—O11122.90 (10)O8iv—Na3—S3—O29142.54 (7)
O31—Na1—C11—C1279.87 (8)O21—Na3—S3—O2965.08 (7)
O9i—Na1—C11—C12175.62 (8)O29iv—Na3—S3—O2929.16 (9)
O17—Na1—C11—C12111.32 (9)O22—Na3—S3—O29152.62 (7)
O18i—Na1—C11—C1255.82 (10)O27—Na3—S3—O2985.14 (9)
O11—Na1—C11—C12123.07 (12)C21—Na3—S3—O2992.82 (8)
O12—Na1—C11—C1213.48 (7)O33—Na3—S3—O27142.06 (10)
S2i—Na1—C11—C1219.85 (10)O8iv—Na3—S3—O2757.40 (8)
S2—Na1—C11—C12114.03 (10)O21—Na3—S3—O27150.22 (8)
O31—Na1—C11—S2166.11 (5)O29iv—Na3—S3—O2755.98 (7)
O9i—Na1—C11—S270.35 (7)O22—Na3—S3—O27122.24 (7)
O17—Na1—C11—S22.70 (4)C21—Na3—S3—O27177.96 (9)
O18i—Na1—C11—S258.20 (8)O33—Na3—S3—O28129.29 (9)
O11—Na1—C11—S2122.90 (10)O8iv—Na3—S3—O2831.25 (8)
O12—Na1—C11—S2100.54 (6)O21—Na3—S3—O28121.14 (7)
S2i—Na1—C11—S294.18 (6)O29iv—Na3—S3—O28144.62 (6)
C12—C11—O11—Na161.93 (12)O22—Na3—S3—O2833.60 (7)
S2—C11—O11—Na159.85 (9)O27—Na3—S3—O2888.65 (9)
O31—Na1—O11—C11135.09 (9)C21—Na3—S3—O2893.39 (8)
O9i—Na1—O11—C11137.25 (8)O33—Na3—S3—C2135.89 (9)
O17—Na1—O11—C1144.46 (8)O8iv—Na3—S3—C21124.64 (7)
O18i—Na1—O11—C112.36 (19)O21—Na3—S3—C2127.74 (6)
O12—Na1—O11—C1133.86 (8)O29iv—Na3—S3—C21121.98 (6)
S2i—Na1—O11—C1174.06 (12)O22—Na3—S3—C2159.80 (6)
S2—Na1—O11—C1135.58 (7)O27—Na3—S3—C21177.96 (9)
O11—C11—C12—O1261.73 (15)O33—Na3—S3—Na2ii162.50 (8)
S2—C11—C12—O1256.95 (13)O8iv—Na3—S3—Na2ii1.97 (4)
Na1—C11—C12—O1219.19 (10)O21—Na3—S3—Na2ii154.35 (4)
O11—C11—C12—C1356.18 (16)O29iv—Na3—S3—Na2ii111.41 (4)
S2—C11—C12—C13174.86 (10)O22—Na3—S3—Na2ii66.81 (4)
Na1—C11—C12—C1398.72 (11)O27—Na3—S3—Na2ii55.43 (7)
C11—C12—O12—Na126.08 (13)C21—Na3—S3—Na2ii126.61 (5)
C13—C12—O12—Na195.93 (11)O29—S3—O27—Na3118.96 (7)
O31—Na1—O12—C1275.63 (9)O28—S3—O27—Na3112.49 (7)
O9i—Na1—O12—C1274.0 (3)C21—S3—O27—Na31.94 (8)
O17—Na1—O12—C1273.28 (9)Na2ii—S3—O27—Na3112.96 (6)
O18i—Na1—O12—C12166.62 (9)O29—S3—O27—Na2ii128.09 (6)
O11—Na1—O12—C123.33 (9)O28—S3—O27—Na2ii0.46 (6)
C11—Na1—O12—C1215.30 (8)C21—S3—O27—Na2ii114.90 (6)
S2i—Na1—O12—C12168.67 (8)Na3—S3—O27—Na2ii112.96 (6)
S2—Na1—O12—C1252.13 (8)O33—Na3—O27—S370.30 (16)
O12—C12—C13—O1363.56 (14)O8iv—Na3—O27—S3132.05 (6)
C11—C12—C13—O13176.01 (12)O21—Na3—O27—S323.97 (6)
O12—C12—C13—C14175.82 (12)O29iv—Na3—O27—S3127.06 (7)
C11—C12—C13—C1455.40 (16)O22—Na3—O27—S350.05 (6)
O13—C13—C14—O1461.49 (15)C21—Na3—O27—S31.32 (6)
C12—C13—C14—O1456.99 (16)O33—Na3—O27—Na2ii169.81 (13)
O13—C13—C14—C1556.83 (15)O8iv—Na3—O27—Na2ii32.54 (6)
C12—C13—C14—C15175.31 (12)O21—Na3—O27—Na2ii123.48 (5)
O14—C14—C15—O15164.40 (12)O29iv—Na3—O27—Na2ii133.43 (5)
C13—C14—C15—O1544.55 (16)O22—Na3—O27—Na2ii49.46 (5)
O14—C14—C15—C1674.38 (15)C21—Na3—O27—Na2ii100.83 (6)
C13—C14—C15—C16165.77 (12)S3—Na3—O27—Na2ii99.51 (8)
O15—C15—C16—O1657.27 (16)O29—S3—O28—Na2ii128.10 (6)
C14—C15—C16—O1665.90 (16)O27—S3—O28—Na2ii0.55 (8)
O11—C11—S2—O1745.77 (11)C21—S3—O28—Na2ii116.45 (6)
C12—C11—S2—O1774.33 (12)Na3—S3—O28—Na2ii46.46 (6)
Na1—C11—S2—O173.85 (6)O27—S3—O29—Na3ii21.01 (12)
O11—C11—S2—O18165.90 (9)O28—S3—O29—Na3ii106.76 (11)
C12—C11—S2—O1845.80 (12)C21—S3—O29—Na3ii138.61 (10)
Na1—C11—S2—O18123.98 (5)Na2ii—S3—O29—Na3ii52.60 (13)
O11—C11—S2—O1974.46 (10)Na3—S3—O29—Na3ii67.44 (11)
Symmetry codes: (i) x1/2, y+1/2, z+1; (ii) x+1/2, y+3/2, z+1; (iii) x+1/2, y+1/2, z+1; (iv) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O130.81 (2)2.21 (2)2.8719 (17)139 (2)
O1—H1O···O120.81 (2)2.23 (2)2.9262 (16)144 (2)
O2—H2O···O33ii0.770 (17)2.243 (19)2.927 (2)148.5 (17)
O3—H3O···O15v0.813 (19)1.989 (19)2.7862 (15)166.9 (19)
O4—H4O···O24vi0.84 (2)2.24 (2)3.0150 (16)153.0 (19)
O5—H5O···O16v0.79 (2)1.85 (2)2.6172 (16)164 (2)
O6—H6O···O7vii0.76 (2)2.06 (2)2.8035 (17)166 (2)
O11—H11O···O22viii0.80 (2)2.39 (2)3.0578 (16)141 (2)
O11—H11O···O23viii0.80 (2)2.12 (2)2.7906 (17)142 (2)
O12—H12O···O90.81 (2)2.05 (2)2.8372 (15)165.7 (19)
O13—H13O···O25ix0.768 (18)2.082 (19)2.8027 (16)156.5 (19)
O14—H14O···O4vi0.77 (2)2.18 (2)2.9173 (16)162 (2)
O15—H15O···O25ix0.805 (19)1.939 (19)2.7296 (16)167 (2)
O16—H16O···O32ix0.74 (2)2.00 (2)2.7346 (18)173 (2)
O21—H21O···O20.84 (2)2.13 (2)2.9010 (16)153.9 (19)
O21—H21O···O30.84 (2)2.28 (2)2.8810 (17)129.4 (18)
O22—H22O···O19x0.765 (18)1.995 (18)2.7576 (15)175 (2)
O23—H23O···O5v0.83 (2)2.01 (2)2.8219 (15)168 (2)
O24—H24O···O14xi0.76 (2)2.34 (2)3.0445 (16)156.3 (19)
O25—H25O···O5v0.777 (19)1.898 (19)2.6709 (15)173 (2)
O26—H26O···O31v0.76 (2)2.14 (2)2.8463 (18)155 (2)
O31—H31A···O18xii0.700 (19)2.08 (2)2.7729 (17)170 (2)
O31—H31B···O6ix0.83 (2)2.07 (2)2.8493 (18)156 (2)
O32—H32A···O26ix0.89 (2)1.89 (2)2.7501 (17)163 (2)
O32—H32B···O8xii0.741 (18)2.019 (18)2.7471 (16)167.1 (17)
O33—H33A···O27iv0.833 (19)2.16 (2)2.9093 (18)149.9 (19)
O33—H33B···O28xii0.80 (3)2.02 (3)2.7371 (17)150 (2)
Symmetry codes: (ii) x+1/2, y+3/2, z+1; (iv) x1/2, y+3/2, z+1; (v) x, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x+1/2, y+1, z1/2; (viii) x, y1, z; (ix) x, y1/2, z+1/2; (x) x, y+1, z; (xi) x+1, y+1/2, z+1/2; (xii) x1, y, z.

Experimental details

Crystal data
Chemical formulaNa+·C6H13O9S·H2O
Mr302.23
Crystal system, space groupOrthorhombic, P212121
Temperature (K)140
a, b, c (Å)8.81958 (9), 16.8420 (2), 22.7304 (3)
V3)3376.37 (7)
Z12
Radiation typeMo Kα
µ (mm1)0.37
Crystal size (mm)0.30 × 0.19 × 0.13
Data collection
DiffractometerOxford Diffraction Xcalibur 3/Sapphire3 CCD
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.908, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
68733, 9835, 8207
Rint0.044
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.052, 0.93
No. of reflections9835
No. of parameters583
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.53, 0.46
Absolute structureFlack (1983), 4356 Friedel pairs
Absolute structure parameter0.02 (3)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2010), SHELXS97 (Sheldrick, 2008), ORTEPII (Johnson, 1976) and ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O130.81 (2)2.21 (2)2.8719 (17)139 (2)
O1—H1O···O120.81 (2)2.23 (2)2.9262 (16)144 (2)
O2—H2O···O33i0.770 (17)2.243 (19)2.927 (2)148.5 (17)
O3—H3O···O15ii0.813 (19)1.989 (19)2.7862 (15)166.9 (19)
O4—H4O···O24iii0.84 (2)2.24 (2)3.0150 (16)153.0 (19)
O5—H5O···O16ii0.79 (2)1.85 (2)2.6172 (16)164 (2)
O6—H6O···O7iv0.76 (2)2.06 (2)2.8035 (17)166 (2)
O11—H11O···O22v0.80 (2)2.39 (2)3.0578 (16)141 (2)
O11—H11O···O23v0.80 (2)2.12 (2)2.7906 (17)142 (2)
O12—H12O···O90.81 (2)2.05 (2)2.8372 (15)165.7 (19)
O13—H13O···O25vi0.768 (18)2.082 (19)2.8027 (16)156.5 (19)
O14—H14O···O4iii0.77 (2)2.18 (2)2.9173 (16)162 (2)
O15—H15O···O25vi0.805 (19)1.939 (19)2.7296 (16)167 (2)
O16—H16O···O32vi0.74 (2)2.00 (2)2.7346 (18)173 (2)
O21—H21O···O20.84 (2)2.13 (2)2.9010 (16)153.9 (19)
O21—H21O···O30.84 (2)2.28 (2)2.8810 (17)129.4 (18)
O22—H22O···O19vii0.765 (18)1.995 (18)2.7576 (15)175 (2)
O23—H23O···O5ii0.83 (2)2.01 (2)2.8219 (15)168 (2)
O24—H24O···O14viii0.76 (2)2.34 (2)3.0445 (16)156.3 (19)
O25—H25O···O5ii0.777 (19)1.898 (19)2.6709 (15)173 (2)
O26—H26O···O31ii0.76 (2)2.14 (2)2.8463 (18)155 (2)
O31—H31A···O18ix0.700 (19)2.08 (2)2.7729 (17)170 (2)
O31—H31B···O6vi0.83 (2)2.07 (2)2.8493 (18)156 (2)
O32—H32A···O26vi0.89 (2)1.89 (2)2.7501 (17)163 (2)
O32—H32B···O8ix0.741 (18)2.019 (18)2.7471 (16)167.1 (17)
O33—H33A···O27x0.833 (19)2.16 (2)2.9093 (18)149.9 (19)
O33—H33B···O28ix0.80 (3)2.02 (3)2.7371 (17)150 (2)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+1/2, z+1/2; (iii) x+1, y1/2, z+1/2; (iv) x+1/2, y+1, z1/2; (v) x, y1, z; (vi) x, y1/2, z+1/2; (vii) x, y+1, z; (viii) x+1, y+1/2, z+1/2; (ix) x1, y, z; (x) x1/2, y+3/2, z+1.
 

Acknowledgements

We thank the EPSRC National Mass Spectrometry Service Centre at Swansea for determination of the low- and high-resolution mass spectra.

References

First citationBraverman, J. B. S. (1953). J. Sci. Food Agric. 4, 540–547.  CrossRef CAS Web of Science Google Scholar
First citationCole, E. R., Craig, D. C., Fitzpatrick, L. J., Hibbert, D. B. & Stevens, J. D. (2001). Carbohydr. Res. 335, 1–10.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHaines, A. H. & Hughes, D. L. (2010). Carbohydr. Res. 345, 2705–2708.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationIngles, D. L. (1959). Aust. J. Chem. 12, 97–101.  CAS Google Scholar
First citationIngles, D. L. (1969). Chem. Ind. pp. 50–51.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationOxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationOxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m377-m378
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds