organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N′-[1,3-Phenyl­enebis(methyl­ene)]di-p-toluenesulfonamide

aMaterials Chemistry Laboratory, Department of Chemistry, GC University, Lahore 54000, Pakistan, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland, and cMediways International, 16 Km Multan Road, Lahore, Pakistan
*Correspondence e-mail: iuklodhi@yahoo.com

(Received 16 February 2012; accepted 17 February 2012; online 3 March 2012)

In the title compound, C22H24N2O4S2, the dihedral angles between the central benzene ring and the pendant rings are 66.96 (13) and 69.37 (13)°. The torsion angles for the C—N—S—C fragments are −68.5 (3) and −72.6 (3)°. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds to generate infinite (001) sheets containing R44(28) loops. A weak aromatic ππ stacking contact between one of the terminal benzene rings and its inversion-related partner is also observed [centroid-to-centroid separation = 3.796 (2) Å and slippage = 1.581 Å], as are two possible C—H⋯π contacts.

Related literature

For a related structure, see: Ejaz et al. (2011[Ejaz, Khan, I. U., Ahmad, H. & Harrison, W. T. A. (2011). Acta Cryst. E67, o3037.]). For hydrogen-bonding motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C22H24N2O4S2

  • Mr = 444.55

  • Triclinic, [P \overline 1]

  • a = 7.7562 (3) Å

  • b = 8.7905 (3) Å

  • c = 17.1479 (5) Å

  • α = 87.554 (1)°

  • β = 86.151 (1)°

  • γ = 70.895 (1)°

  • V = 1102.00 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.27 mm−1

  • T = 296 K

  • 0.30 × 0.20 × 0.15 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • 19493 measured reflections

  • 5417 independent reflections

  • 3937 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.062

  • wR(F2) = 0.187

  • S = 1.13

  • 5417 reflections

  • 273 parameters

  • H-atom parameters constrained

  • Δρmax = 0.33 e Å−3

  • Δρmin = −0.41 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.93 2.02 2.896 (4) 156
N2—H2⋯O2ii 0.93 2.09 2.989 (4) 165
C7—H7ACg1iii 0.96 2.74 3.560 (5) 144
C21—H21⋯Cg2iv 0.93 2.74 3.560 (4) 147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y-1, z; (iii) -x+1, -y+2, -z; (iv) x, y-1, z.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of our ongoing structural studies of symmetric aromatic sulfonamides (Ejaz et al., 2011), the synthesis and crystal structure of the title compound are described herein.

In the molecule of the title compound (Fig. 1), the dihedral angle between the central (C9) benzene ring and the C1- and C16-pendant rings are 66.96 (13) and 69.37 (13)°, respectively. The C1- and C16- pendant rings are inclined to one another by 31.8 (2)°. The conformations of the C1—S1—N1—C8 and C16—S2—N2—C15 fragments are both approximately gauche [torsion angles = -68.5 (3) and -72.6 (3)°, respectively], and the molecule has approximate non-crystallographic twofold symmetry about the axis passing through atoms C11 and C14.

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1), to generate (001) sheets (Fig. 2). The smallest identifiable circuit in the sheets is an R44(28) loop. A weak aromatic ππ stacking contact between the C1-benzene ring and its inversion related partner at (-x, 2 - y, -z) is also observed [centroid-centroid separation = 3.796 (2) Å, slippage = 1.581 Å], as are two possible C—H···π contacts (Table 1).

The crystal structure of the diphenyl analogue has been reported on recently (Ejaz et al., 2011). There the complete molecule is generated by crystallographic twofold symmetry, but its intermolecular linkages (a layered network constructed from N—H···O hydrogen bonds supplemented by C—H···π and ππ contacts) are very similar to those seen in the crystal structure of the title compound.

Related literature top

For a related structure, see: Ejaz et al. (2011). For hydrogen-bonding motifs, see: Bernstein et al. (1995).

Experimental top

Benzene-1,3-diyldimethanamine (0.132 ml, 1.0 mmol) was mixed with 25 ml distilled water in a 50 ml round-bottom flask. 4-Methyl benzene sulfonyl chloride (0.38 g, 2.0 mmol) was added while maintaining the pH of the reaction mixture at 9.0 using 3% sodium carbonate solution. The suspension was stirred for about four hours and a white product was filtered, washed, dried and recrystallized from methanol to yield colourless crystalline flakes and chips of the title compound.

Refinement top

The H atoms were placed in calculated positions (N—H = 0.93 Å; C—H = 0.93–0.97 Å) and refined as riding atoms with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(methyl C).

Structure description top

As part of our ongoing structural studies of symmetric aromatic sulfonamides (Ejaz et al., 2011), the synthesis and crystal structure of the title compound are described herein.

In the molecule of the title compound (Fig. 1), the dihedral angle between the central (C9) benzene ring and the C1- and C16-pendant rings are 66.96 (13) and 69.37 (13)°, respectively. The C1- and C16- pendant rings are inclined to one another by 31.8 (2)°. The conformations of the C1—S1—N1—C8 and C16—S2—N2—C15 fragments are both approximately gauche [torsion angles = -68.5 (3) and -72.6 (3)°, respectively], and the molecule has approximate non-crystallographic twofold symmetry about the axis passing through atoms C11 and C14.

In the crystal, the molecules are linked by N—H···O hydrogen bonds (Table 1), to generate (001) sheets (Fig. 2). The smallest identifiable circuit in the sheets is an R44(28) loop. A weak aromatic ππ stacking contact between the C1-benzene ring and its inversion related partner at (-x, 2 - y, -z) is also observed [centroid-centroid separation = 3.796 (2) Å, slippage = 1.581 Å], as are two possible C—H···π contacts (Table 1).

The crystal structure of the diphenyl analogue has been reported on recently (Ejaz et al., 2011). There the complete molecule is generated by crystallographic twofold symmetry, but its intermolecular linkages (a layered network constructed from N—H···O hydrogen bonds supplemented by C—H···π and ππ contacts) are very similar to those seen in the crystal structure of the title compound.

For a related structure, see: Ejaz et al. (2011). For hydrogen-bonding motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, showing the atom numbering and the displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. Fragment of a (001) sheet of molecules of the title compound, linked by N—H···O hydrogen bonds [double dashed lines; C-bound H atoms have been omitted for clarity; O4* and O2# are at symmetry positions (x, y + 1, z) and (x + 1, y - 1, z), respectively].
N,N'-[1,3-Phenylenebis(methylene)]di-p-toluenesulfonamide top
Crystal data top
C22H24N2O4S2Z = 2
Mr = 444.55F(000) = 468
Triclinic, P1Dx = 1.340 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7562 (3) ÅCell parameters from 6272 reflections
b = 8.7905 (3) Åθ = 2.7–27.1°
c = 17.1479 (5) ŵ = 0.27 mm1
α = 87.554 (1)°T = 296 K
β = 86.151 (1)°Chip, colourless
γ = 70.895 (1)°0.30 × 0.20 × 0.15 mm
V = 1102.00 (7) Å3
Data collection top
Bruker APEXII CCD
diffractometer
3937 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
Graphite monochromatorθmax = 28.4°, θmin = 2.7°
ω scansh = 106
19493 measured reflectionsk = 119
5417 independent reflectionsl = 2221
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.187H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0628P)2 + 1.4755P]
where P = (Fo2 + 2Fc2)/3
5417 reflections(Δ/σ)max = 0.002
273 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.41 e Å3
Crystal data top
C22H24N2O4S2γ = 70.895 (1)°
Mr = 444.55V = 1102.00 (7) Å3
Triclinic, P1Z = 2
a = 7.7562 (3) ÅMo Kα radiation
b = 8.7905 (3) ŵ = 0.27 mm1
c = 17.1479 (5) ÅT = 296 K
α = 87.554 (1)°0.30 × 0.20 × 0.15 mm
β = 86.151 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
3937 reflections with I > 2σ(I)
19493 measured reflectionsRint = 0.030
5417 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.13Δρmax = 0.33 e Å3
5417 reflectionsΔρmin = 0.41 e Å3
273 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2038 (4)0.8090 (4)0.09032 (18)0.0368 (7)
C20.2158 (5)0.8022 (4)0.0097 (2)0.0428 (7)
H2A0.20570.71360.01500.051*
C30.2430 (5)0.9293 (4)0.0337 (2)0.0480 (8)
H30.25270.92470.08800.058*
C40.2561 (4)1.0631 (4)0.0017 (2)0.0458 (8)
C50.2419 (5)1.0681 (4)0.0823 (2)0.0522 (9)
H50.25021.15730.10700.063*
C60.2152 (5)0.9410 (4)0.1267 (2)0.0467 (8)
H60.20500.94540.18090.056*
C70.2849 (6)1.2011 (5)0.0458 (3)0.0642 (11)
H7A0.40021.21160.03480.096*
H7B0.18841.29870.03260.096*
H7C0.28461.18140.10040.096*
C80.5167 (5)0.4630 (4)0.1421 (2)0.0448 (8)
H8A0.55830.53660.10810.054*
H8B0.48420.39020.10950.054*
C90.6684 (4)0.3680 (4)0.19293 (19)0.0376 (7)
C100.8289 (5)0.4027 (4)0.1920 (2)0.0486 (9)
H100.84470.48530.15970.058*
C110.9671 (5)0.3151 (5)0.2390 (2)0.0545 (9)
H111.07480.34020.23860.065*
C120.9465 (5)0.1917 (4)0.2862 (2)0.0471 (8)
H121.04060.13220.31710.057*
C130.7851 (5)0.1558 (4)0.2878 (2)0.0407 (7)
C140.6483 (4)0.2438 (4)0.24124 (19)0.0395 (7)
H140.54010.21950.24210.047*
C150.7604 (6)0.0222 (5)0.3412 (2)0.0546 (10)
H15A0.87560.03650.36370.066*
H15B0.67190.06840.38360.066*
C160.6242 (4)0.2929 (4)0.41314 (19)0.0391 (7)
C170.6438 (5)0.2385 (4)0.4858 (2)0.0509 (9)
H170.60700.12860.49470.061*
C180.7171 (6)0.3463 (5)0.5445 (2)0.0563 (10)
H180.73040.30860.59280.068*
C190.7714 (5)0.5093 (5)0.5330 (2)0.0514 (9)
C200.7504 (6)0.5623 (4)0.4604 (2)0.0569 (10)
H200.78650.67230.45180.068*
C210.6772 (6)0.4554 (4)0.4005 (2)0.0506 (9)
H210.66400.49300.35220.061*
C220.8531 (6)0.6281 (6)0.5971 (3)0.0731 (13)
H22A0.96440.61360.61130.110*
H22B0.87890.73570.57910.110*
H22C0.76830.61090.64190.110*
S10.16991 (10)0.64814 (10)0.14733 (5)0.0395 (2)
S20.53793 (12)0.15372 (10)0.33690 (5)0.0422 (2)
N10.3566 (4)0.5539 (3)0.19015 (16)0.0391 (6)
H10.38100.61240.22950.047*
N20.6978 (4)0.0890 (3)0.29893 (18)0.0478 (7)
H20.79070.16230.26980.057*
O10.1399 (4)0.5365 (3)0.09599 (16)0.0537 (6)
O20.0363 (3)0.7163 (3)0.20915 (15)0.0567 (7)
O30.3995 (4)0.0193 (3)0.37070 (17)0.0614 (7)
O40.4957 (4)0.2391 (3)0.27635 (16)0.0632 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0298 (14)0.0401 (17)0.0370 (17)0.0068 (12)0.0034 (12)0.0024 (13)
C20.0409 (17)0.0444 (18)0.0405 (18)0.0102 (14)0.0028 (14)0.0021 (15)
C30.0451 (19)0.057 (2)0.0354 (18)0.0097 (16)0.0012 (14)0.0059 (16)
C40.0320 (16)0.0459 (19)0.054 (2)0.0058 (14)0.0060 (14)0.0135 (16)
C50.058 (2)0.0424 (19)0.057 (2)0.0172 (17)0.0097 (18)0.0017 (17)
C60.055 (2)0.0461 (19)0.0384 (18)0.0157 (16)0.0055 (15)0.0016 (15)
C70.050 (2)0.063 (3)0.078 (3)0.0178 (19)0.012 (2)0.028 (2)
C80.0429 (18)0.0429 (18)0.0425 (19)0.0073 (15)0.0009 (14)0.0094 (15)
C90.0357 (15)0.0313 (15)0.0422 (17)0.0069 (12)0.0005 (13)0.0028 (13)
C100.0463 (19)0.0418 (18)0.060 (2)0.0200 (15)0.0047 (16)0.0113 (16)
C110.0389 (18)0.058 (2)0.072 (3)0.0240 (17)0.0011 (17)0.0060 (19)
C120.0354 (16)0.0439 (19)0.059 (2)0.0074 (14)0.0092 (15)0.0027 (16)
C130.0445 (17)0.0323 (16)0.0450 (18)0.0124 (13)0.0045 (14)0.0063 (14)
C140.0376 (16)0.0388 (17)0.0450 (18)0.0168 (13)0.0029 (13)0.0042 (14)
C150.071 (3)0.049 (2)0.051 (2)0.0285 (19)0.0196 (19)0.0165 (17)
C160.0377 (16)0.0363 (16)0.0417 (18)0.0101 (13)0.0017 (13)0.0024 (14)
C170.061 (2)0.0413 (19)0.043 (2)0.0053 (16)0.0046 (16)0.0032 (15)
C180.066 (2)0.063 (2)0.0352 (19)0.015 (2)0.0035 (17)0.0012 (17)
C190.0461 (19)0.055 (2)0.047 (2)0.0115 (17)0.0017 (16)0.0169 (17)
C200.070 (3)0.0349 (18)0.060 (2)0.0101 (17)0.005 (2)0.0076 (17)
C210.067 (2)0.0373 (18)0.047 (2)0.0151 (17)0.0100 (17)0.0023 (15)
C220.067 (3)0.080 (3)0.062 (3)0.015 (2)0.008 (2)0.032 (2)
S10.0328 (4)0.0434 (5)0.0423 (5)0.0134 (3)0.0019 (3)0.0049 (3)
S20.0466 (5)0.0346 (4)0.0440 (5)0.0101 (3)0.0110 (4)0.0035 (3)
N10.0382 (14)0.0368 (14)0.0392 (15)0.0082 (11)0.0049 (11)0.0043 (11)
N20.0591 (18)0.0344 (14)0.0495 (17)0.0160 (13)0.0012 (14)0.0055 (13)
O10.0555 (15)0.0546 (15)0.0606 (16)0.0288 (12)0.0140 (12)0.0003 (12)
O20.0398 (13)0.0673 (17)0.0541 (15)0.0089 (12)0.0101 (11)0.0076 (13)
O30.0505 (15)0.0505 (15)0.0697 (18)0.0019 (12)0.0049 (13)0.0029 (13)
O40.089 (2)0.0570 (16)0.0530 (16)0.0332 (15)0.0285 (15)0.0058 (13)
Geometric parameters (Å, º) top
C1—C61.371 (5)C13—C151.512 (5)
C1—C21.382 (5)C14—H140.9300
C1—S11.765 (3)C15—N21.461 (5)
C2—C31.382 (5)C15—H15A0.9700
C2—H2A0.9300C15—H15B0.9700
C3—C41.381 (5)C16—C211.374 (5)
C3—H30.9300C16—C171.388 (5)
C4—C51.381 (5)C16—S21.760 (3)
C4—C71.502 (5)C17—C181.370 (5)
C5—C61.389 (5)C17—H170.9300
C5—H50.9300C18—C191.374 (6)
C6—H60.9300C18—H180.9300
C7—H7A0.9600C19—C201.385 (6)
C7—H7B0.9600C19—C221.505 (5)
C7—H7C0.9600C20—C211.381 (5)
C8—N11.459 (4)C20—H200.9300
C8—C91.508 (4)C21—H210.9300
C8—H8A0.9700C22—H22A0.9600
C8—H8B0.9700C22—H22B0.9600
C9—C101.374 (5)C22—H22C0.9600
C9—C141.386 (4)S1—O11.429 (3)
C10—C111.384 (5)S1—O21.434 (3)
C10—H100.9300S1—N11.621 (3)
C11—C121.371 (5)S2—O41.422 (3)
C11—H110.9300S2—O31.424 (3)
C12—C131.386 (5)S2—N21.614 (3)
C12—H120.9300N1—H10.9305
C13—C141.373 (4)N2—H20.9265
C6—C1—C2120.5 (3)N2—C15—C13111.3 (3)
C6—C1—S1119.5 (3)N2—C15—H15A109.4
C2—C1—S1120.0 (3)C13—C15—H15A109.4
C3—C2—C1118.9 (3)N2—C15—H15B109.4
C3—C2—H2A120.5C13—C15—H15B109.4
C1—C2—H2A120.5H15A—C15—H15B108.0
C4—C3—C2121.5 (3)C21—C16—C17119.7 (3)
C4—C3—H3119.2C21—C16—S2120.3 (3)
C2—C3—H3119.2C17—C16—S2120.0 (3)
C3—C4—C5118.6 (3)C18—C17—C16120.2 (3)
C3—C4—C7121.3 (4)C18—C17—H17119.9
C5—C4—C7120.1 (4)C16—C17—H17119.9
C4—C5—C6120.5 (3)C17—C18—C19121.0 (4)
C4—C5—H5119.7C17—C18—H18119.5
C6—C5—H5119.7C19—C18—H18119.5
C1—C6—C5119.8 (3)C18—C19—C20118.3 (3)
C1—C6—H6120.1C18—C19—C22121.2 (4)
C5—C6—H6120.1C20—C19—C22120.5 (4)
C4—C7—H7A109.5C21—C20—C19121.5 (3)
C4—C7—H7B109.5C21—C20—H20119.3
H7A—C7—H7B109.5C19—C20—H20119.3
C4—C7—H7C109.5C16—C21—C20119.3 (4)
H7A—C7—H7C109.5C16—C21—H21120.4
H7B—C7—H7C109.5C20—C21—H21120.4
N1—C8—C9110.5 (3)C19—C22—H22A109.5
N1—C8—H8A109.6C19—C22—H22B109.5
C9—C8—H8A109.6H22A—C22—H22B109.5
N1—C8—H8B109.6C19—C22—H22C109.5
C9—C8—H8B109.6H22A—C22—H22C109.5
H8A—C8—H8B108.1H22B—C22—H22C109.5
C10—C9—C14118.9 (3)O1—S1—O2119.71 (17)
C10—C9—C8120.7 (3)O1—S1—N1106.78 (15)
C14—C9—C8120.4 (3)O2—S1—N1105.48 (15)
C9—C10—C11120.3 (3)O1—S1—C1108.30 (16)
C9—C10—H10119.9O2—S1—C1107.56 (15)
C11—C10—H10119.9N1—S1—C1108.60 (14)
C12—C11—C10120.4 (3)O4—S2—O3119.86 (18)
C12—C11—H11119.8O4—S2—N2105.13 (17)
C10—C11—H11119.8O3—S2—N2107.23 (17)
C11—C12—C13119.9 (3)O4—S2—C16107.55 (16)
C11—C12—H12120.1O3—S2—C16107.40 (17)
C13—C12—H12120.1N2—S2—C16109.40 (16)
C14—C13—C12119.3 (3)C8—N1—S1118.4 (2)
C14—C13—C15120.7 (3)C8—N1—H1114.7
C12—C13—C15120.0 (3)S1—N1—H1113.5
C13—C14—C9121.2 (3)C15—N2—S2120.7 (3)
C13—C14—H14119.4C15—N2—H2113.3
C9—C14—H14119.4S2—N2—H2116.1
C6—C1—C2—C31.3 (5)C17—C18—C19—C200.1 (6)
S1—C1—C2—C3179.8 (3)C17—C18—C19—C22179.6 (4)
C1—C2—C3—C40.8 (5)C18—C19—C20—C210.0 (6)
C2—C3—C4—C50.2 (5)C22—C19—C20—C21179.4 (4)
C2—C3—C4—C7179.8 (3)C17—C16—C21—C200.4 (6)
C3—C4—C5—C60.1 (5)S2—C16—C21—C20177.8 (3)
C7—C4—C5—C6180.0 (3)C19—C20—C21—C160.1 (6)
C2—C1—C6—C51.0 (5)C6—C1—S1—O1172.7 (3)
S1—C1—C6—C5180.0 (3)C2—C1—S1—O16.2 (3)
C4—C5—C6—C10.4 (6)C6—C1—S1—O242.0 (3)
N1—C8—C9—C10114.7 (4)C2—C1—S1—O2136.9 (3)
N1—C8—C9—C1465.5 (4)C6—C1—S1—N171.7 (3)
C14—C9—C10—C110.4 (5)C2—C1—S1—N1109.4 (3)
C8—C9—C10—C11179.8 (3)C21—C16—S2—O414.3 (4)
C9—C10—C11—C120.9 (6)C17—C16—S2—O4167.6 (3)
C10—C11—C12—C131.0 (6)C21—C16—S2—O3144.5 (3)
C11—C12—C13—C140.7 (6)C17—C16—S2—O337.3 (3)
C11—C12—C13—C15178.6 (4)C21—C16—S2—N299.4 (3)
C12—C13—C14—C90.2 (5)C17—C16—S2—N278.8 (3)
C15—C13—C14—C9179.1 (3)C9—C8—N1—S1173.1 (2)
C10—C9—C14—C130.1 (5)O1—S1—N1—C848.1 (3)
C8—C9—C14—C13179.9 (3)O2—S1—N1—C8176.5 (2)
C14—C13—C15—N250.8 (5)C1—S1—N1—C868.5 (3)
C12—C13—C15—N2129.9 (4)C13—C15—N2—S2136.6 (3)
C21—C16—C17—C180.6 (6)O4—S2—N2—C15172.2 (3)
S2—C16—C17—C18177.6 (3)O3—S2—N2—C1543.6 (3)
C16—C17—C18—C190.4 (6)C16—S2—N2—C1572.6 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.932.022.896 (4)156
N2—H2···O2ii0.932.092.989 (4)165
C7—H7A···Cg1iii0.962.743.560 (5)144
C21—H21···Cg2iv0.932.743.560 (4)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x+1, y+2, z; (iv) x, y1, z.

Experimental details

Crystal data
Chemical formulaC22H24N2O4S2
Mr444.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)7.7562 (3), 8.7905 (3), 17.1479 (5)
α, β, γ (°)87.554 (1), 86.151 (1), 70.895 (1)
V3)1102.00 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.27
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerBruker APEXII CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
19493, 5417, 3937
Rint0.030
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.187, 1.13
No. of reflections5417
No. of parameters273
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.41

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring and Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.932.022.896 (4)156
N2—H2···O2ii0.932.092.989 (4)165
C7—H7A···Cg1iii0.962.743.560 (5)144
C21—H21···Cg2iv0.932.743.560 (4)147
Symmetry codes: (i) x, y+1, z; (ii) x+1, y1, z; (iii) x+1, y+2, z; (iv) x, y1, z.
 

Acknowledgements

IUK thanks the Higher Education Commission of Pakistan for financial support under the project `Strengthening the Materials Chemistry Laboratory at GCUL'.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEjaz, Khan, I. U., Ahmad, H. & Harrison, W. T. A. (2011). Acta Cryst. E67, o3037.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds