organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(4R*,5R*)-Di­ethyl 2-(4-nitro­phen­yl)-1,3-dioxolane-4,5-di­carboxyl­ate

aSchool of Pharmaceutical Science, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China, bXinchang Pharmaceutical Factory, Zhejiang Medicine Co. Ltd, Xinchang 312500, People's Republic of China, and cCollege of Materials Science and Engineering, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: ludingqiang@126.com

(Received 25 February 2012; accepted 14 March 2012; online 21 March 2012)

In the title compound, C15H17NO8, the nitro group is essentially coplanar with the aromatic ring [dihedral angle = 6.4 (3) Å]. The five-membered ring has a twist conformation. In the crystal, C—H⋯O inter­actions link the mol­ecules into a helical chain propagating along [010].

Related literature

For the synthesis of the title compound, see: Kim et al. (1994[Kim, D. K., Kim, G., Gam, J. S., Cho, Y. B. & Park, J. G. (1994). J. Med. Chem. 37, 147-1485.]). For the use of (2S,3S)-diethyl 2,3-O-alkyl­tartrate analogues as inter­mediates in organic synthesis, see: Pandey et al. (1997[Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966-5973.]). For typical bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H17NO8

  • Mr = 339.30

  • Monoclinic, P 21

  • a = 12.261 (3) Å

  • b = 4.5200 (9) Å

  • c = 15.656 (3) Å

  • β = 112.27 (3)°

  • V = 802.9 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf-Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.966, Tmax = 0.989

  • 3062 measured reflections

  • 1660 independent reflections

  • 1364 reflections with I > 2σ(I)

  • Rint = 0.017

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.142

  • S = 1.01

  • 1660 reflections

  • 218 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12A⋯O8i 0.96 2.50 3.356 (7) 149
Symmetry code: (i) [-x+1, y-{\script{1\over 2}}, -z].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Antitumor platinum drugs are one of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the synthesis of platinum complexes with antitumor activity (Kim et al., 1994), and they are also important intermediates in organic synthesis (Pandey et al., 1997). As part of our studies of the synthesis and characterization of such compounds, we herein report on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths are within normal ranges (Allen et al., 1987). The nitro group (N1/O1/O2) is essentially coplanar with the aromatic ring (C1-C6) being inclined to it by 6.4 (3)°. The five-membered ring (O3/O4/C7-C9) has a twist conformation on bond O4-C8.

In the crystal, a C—H···O interaction (Table 1) links the molecules to form a a helical chain propagating along the b axis direction (Fig. 2).

Related literature top

For the synthesis of the title compound, see: Kim et al. (1994). For the use of (2S,3S)-diethyl 2,3-O-alkyltartrate analogues as intermediates in organic synthesis, see: Pandey et al. (1997). For typical bond-length data, see: Allen et al. (1987).

Experimental top

4-Nitrobenzaldehyde (299 mg, 1.98 mmol), (2S,3S)-diethyltartrate (378 mg, 1.84 mmol) and cyclohexane (10 ml) were placed in a round-bottomed flask, and 30 mg of 4-methylbenzenesulfonic acid was added. The flask was fitted with a water distributor. The mixture was heated under reflux for 4 h. The reaction mixture was then added dropwise to water (600 ml) with vigorous stirring. A pale yellow precipitate was obtained, filtered off and dried in vacuo. Colourless block-like crystals, suitable for X-ray analysis, were obtained by slow evaporation of a methanol solution after 4 weeks.

Refinement top

The NH and C-bound H-atoms were included in calculated positions and treated as riding atoms: N-H = 0.86 Å, C-H = 0.93, 0.96, 0.97 and 0.98 Å for CH(aromatic), CH3, CH2 and CH(methine) H-atoms, respectively, with Uiso(H) = k × Ueq(N,C), where k = 1.5 for CH3 H-atoms and k = 1.2 for all other H-atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1257 Friedel pairs were merged and Δf " set to zero.

Structure description top

Antitumor platinum drugs are one of the most effective anticancer agents currently available. (2S,3S)-Diethyl 2,3-O-alkyltartrate analogues are starting materials for the synthesis of platinum complexes with antitumor activity (Kim et al., 1994), and they are also important intermediates in organic synthesis (Pandey et al., 1997). As part of our studies of the synthesis and characterization of such compounds, we herein report on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths are within normal ranges (Allen et al., 1987). The nitro group (N1/O1/O2) is essentially coplanar with the aromatic ring (C1-C6) being inclined to it by 6.4 (3)°. The five-membered ring (O3/O4/C7-C9) has a twist conformation on bond O4-C8.

In the crystal, a C—H···O interaction (Table 1) links the molecules to form a a helical chain propagating along the b axis direction (Fig. 2).

For the synthesis of the title compound, see: Kim et al. (1994). For the use of (2S,3S)-diethyl 2,3-O-alkyltartrate analogues as intermediates in organic synthesis, see: Pandey et al. (1997). For typical bond-length data, see: Allen et al. (1987).

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-numbering. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, with the C-H···O interactions shown as dashed lines.
(4R*,5R*)-Diethyl 2-(4-nitrophenyl)-1,3-dioxolane-4,5-dicarboxylate top
Crystal data top
C15H17NO8F(000) = 356
Mr = 339.30Dx = 1.403 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 25 reflections
a = 12.261 (3) Åθ = 9–13°
b = 4.5200 (9) ŵ = 0.12 mm1
c = 15.656 (3) ÅT = 293 K
β = 112.27 (3)°Block, colourless
V = 802.9 (3) Å30.30 × 0.20 × 0.10 mm
Z = 2
Data collection top
Enraf-Nonius CAD-4
diffractometer
1364 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.017
Graphite monochromatorθmax = 25.3°, θmin = 1.4°
ω/2θ scansh = 014
Absorption correction: ψ scan
(North et al., 1968)
k = 55
Tmin = 0.966, Tmax = 0.989l = 1817
3062 measured reflections3 standard reflections every 200 reflections
1660 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.1P)2 + 0.070P]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
1660 reflectionsΔρmax = 0.21 e Å3
218 parametersΔρmin = 0.16 e Å3
1 restraintExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.036 (9)
Crystal data top
C15H17NO8V = 802.9 (3) Å3
Mr = 339.30Z = 2
Monoclinic, P21Mo Kα radiation
a = 12.261 (3) ŵ = 0.12 mm1
b = 4.5200 (9) ÅT = 293 K
c = 15.656 (3) Å0.30 × 0.20 × 0.10 mm
β = 112.27 (3)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1364 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.017
Tmin = 0.966, Tmax = 0.9893 standard reflections every 200 reflections
3062 measured reflections intensity decay: 1%
1660 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0461 restraint
wR(F2) = 0.142H-atom parameters constrained
S = 1.01Δρmax = 0.21 e Å3
1660 reflectionsΔρmin = 0.16 e Å3
218 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.1597 (5)0.1051 (17)0.6035 (3)0.1016 (18)
C10.3496 (4)0.1471 (14)0.4814 (3)0.0770 (14)
H1A0.41540.26700.49320.092*
O10.0820 (6)0.276 (2)0.5904 (4)0.163 (3)
C20.3039 (4)0.1052 (17)0.5489 (3)0.0902 (18)
H2A0.33960.19290.60660.108*
O20.2028 (4)0.0395 (18)0.6735 (3)0.146 (3)
O30.26487 (19)0.1203 (6)0.23682 (14)0.0483 (6)
C30.2075 (4)0.0631 (14)0.5303 (3)0.0703 (12)
O40.40116 (19)0.2240 (6)0.31395 (14)0.0465 (6)
C40.1556 (4)0.2006 (17)0.4495 (3)0.0924 (19)
H4A0.08950.31840.43870.111*
O50.5315 (2)0.1545 (8)0.14859 (18)0.0685 (8)
C50.2020 (4)0.1647 (15)0.3817 (3)0.0855 (17)
H5A0.16750.26160.32540.103*
C60.2981 (3)0.0121 (9)0.3972 (2)0.0490 (9)
O60.5589 (3)0.1270 (9)0.2711 (2)0.0884 (11)
C70.3507 (3)0.0501 (8)0.3259 (2)0.0469 (8)
H7A0.41160.20380.34550.056*
C80.4003 (3)0.2225 (8)0.2239 (2)0.0445 (8)
H8A0.39700.42540.20100.053*
O70.1014 (2)0.2755 (6)0.15578 (16)0.0555 (7)
C90.2829 (3)0.0569 (8)0.1691 (2)0.0452 (8)
H9A0.29420.07090.12260.054*
O80.1850 (2)0.4257 (7)0.05872 (16)0.0650 (8)
C100.5053 (3)0.0613 (9)0.2180 (3)0.0525 (9)
C110.6333 (4)0.0176 (15)0.1381 (3)0.0895 (16)
H11A0.62290.19520.13250.107*
H11B0.70400.05950.19170.107*
C120.6445 (5)0.1387 (18)0.0547 (4)0.107 (2)
H12A0.71000.04690.04570.161*
H12B0.65730.34840.06160.161*
H12C0.57350.10000.00220.161*
C130.1838 (3)0.2735 (8)0.1218 (2)0.0449 (8)
C140.0027 (4)0.4800 (12)0.1144 (3)0.0712 (12)
H14A0.03010.66100.09600.085*
H14B0.05620.39100.06010.085*
C150.0484 (5)0.5452 (19)0.1824 (4)0.117 (2)
H15A0.11320.67990.15630.175*
H15B0.01030.63350.23590.175*
H15C0.07610.36530.19980.175*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.105 (3)0.139 (5)0.084 (3)0.026 (4)0.062 (3)0.016 (3)
C10.071 (2)0.095 (4)0.068 (2)0.019 (3)0.030 (2)0.030 (3)
O10.183 (5)0.223 (8)0.135 (4)0.052 (7)0.119 (4)0.004 (5)
C20.093 (3)0.125 (5)0.056 (2)0.000 (4)0.032 (2)0.028 (3)
O20.176 (4)0.200 (7)0.094 (2)0.031 (5)0.089 (3)0.015 (4)
O30.0611 (13)0.0358 (12)0.0482 (12)0.0079 (12)0.0209 (10)0.0006 (10)
C30.073 (2)0.091 (3)0.056 (2)0.022 (3)0.0355 (19)0.011 (2)
O40.0525 (12)0.0379 (13)0.0504 (12)0.0032 (11)0.0208 (9)0.0071 (11)
C40.088 (3)0.130 (5)0.072 (3)0.036 (4)0.045 (2)0.007 (4)
O50.0702 (16)0.073 (2)0.0773 (16)0.0163 (16)0.0448 (13)0.0028 (16)
C50.090 (3)0.112 (5)0.060 (2)0.045 (3)0.036 (2)0.021 (3)
C60.0488 (17)0.048 (2)0.0468 (17)0.0029 (17)0.0141 (14)0.0011 (16)
O60.090 (2)0.078 (2)0.117 (2)0.034 (2)0.0619 (19)0.033 (2)
C70.0506 (17)0.0374 (18)0.0508 (17)0.0003 (16)0.0169 (14)0.0011 (15)
C80.0494 (17)0.0367 (17)0.0495 (16)0.0036 (16)0.0212 (14)0.0032 (16)
O70.0547 (13)0.0584 (17)0.0582 (13)0.0070 (13)0.0267 (11)0.0119 (13)
C90.0597 (19)0.0338 (17)0.0486 (16)0.0033 (16)0.0279 (15)0.0046 (15)
O80.0735 (16)0.071 (2)0.0550 (13)0.0023 (16)0.0290 (12)0.0172 (15)
C100.058 (2)0.043 (2)0.062 (2)0.0007 (19)0.0291 (17)0.0052 (19)
C110.090 (3)0.095 (4)0.109 (3)0.022 (3)0.066 (3)0.007 (3)
C120.112 (4)0.124 (6)0.118 (4)0.014 (4)0.081 (3)0.009 (4)
C130.0490 (17)0.0425 (19)0.0401 (15)0.0088 (15)0.0135 (14)0.0045 (15)
C140.061 (2)0.073 (3)0.078 (3)0.017 (2)0.0242 (19)0.014 (2)
C150.100 (4)0.136 (7)0.133 (4)0.057 (5)0.065 (3)0.027 (5)
Geometric parameters (Å, º) top
N1—O11.183 (9)C7—H7A0.9800
N1—O21.212 (8)C8—C101.512 (5)
N1—C31.483 (6)C8—C91.560 (4)
C1—C61.370 (5)C8—H8A0.9800
C1—C21.384 (6)O7—C131.309 (4)
C1—H1A0.9300O7—C141.465 (5)
C2—C31.341 (8)C9—C131.517 (5)
C2—H2A0.9300C9—H9A0.9800
O3—C91.411 (4)O8—C131.208 (4)
O3—C71.428 (4)C11—C121.470 (7)
C3—C41.335 (7)C11—H11A0.9700
O4—C81.406 (4)C11—H11B0.9700
O4—C71.428 (4)C12—H12A0.9600
C4—C51.391 (6)C12—H12B0.9600
C4—H4A0.9300C12—H12C0.9600
O5—C101.314 (5)C14—C151.455 (7)
O5—C111.458 (5)C14—H14A0.9700
C5—C61.367 (6)C14—H14B0.9700
C5—H5A0.9300C15—H15A0.9600
C6—C71.497 (5)C15—H15B0.9600
O6—C101.197 (5)C15—H15C0.9600
O1—N1—O2123.7 (5)O3—C9—C13114.1 (3)
O1—N1—C3118.6 (6)O3—C9—C8103.5 (2)
O2—N1—C3117.7 (6)C13—C9—C8111.1 (3)
C6—C1—C2120.0 (5)O3—C9—H9A109.3
C6—C1—H1A120.0C13—C9—H9A109.3
C2—C1—H1A120.0C8—C9—H9A109.3
C3—C2—C1119.4 (4)O6—C10—O5124.1 (4)
C3—C2—H2A120.3O6—C10—C8123.8 (3)
C1—C2—H2A120.3O5—C10—C8112.1 (3)
C9—O3—C7109.9 (3)O5—C11—C12108.3 (4)
C4—C3—C2122.3 (4)O5—C11—H11A110.0
C4—C3—N1119.1 (5)C12—C11—H11A110.0
C2—C3—N1118.6 (5)O5—C11—H11B110.0
C8—O4—C7106.7 (3)C12—C11—H11B110.0
C3—C4—C5118.9 (5)H11A—C11—H11B108.4
C3—C4—H4A120.6C11—C12—H12A109.5
C5—C4—H4A120.6C11—C12—H12B109.5
C10—O5—C11116.5 (4)H12A—C12—H12B109.5
C6—C5—C4120.4 (4)C11—C12—H12C109.5
C6—C5—H5A119.8H12A—C12—H12C109.5
C4—C5—H5A119.8H12B—C12—H12C109.5
C5—C6—C1118.9 (4)O8—C13—O7125.3 (3)
C5—C6—C7121.4 (3)O8—C13—C9120.8 (3)
C1—C6—C7119.7 (3)O7—C13—C9113.9 (3)
O4—C7—O3105.1 (3)C15—C14—O7108.5 (4)
O4—C7—C6109.2 (3)C15—C14—H14A110.0
O3—C7—C6112.8 (3)O7—C14—H14A110.0
O4—C7—H7A109.9C15—C14—H14B110.0
O3—C7—H7A109.9O7—C14—H14B110.0
C6—C7—H7A109.9H14A—C14—H14B108.4
O4—C8—C10112.4 (3)C14—C15—H15A109.5
O4—C8—C9102.0 (2)C14—C15—H15B109.5
C10—C8—C9111.4 (3)H15A—C15—H15B109.5
O4—C8—H8A110.3C14—C15—H15C109.5
C10—C8—H8A110.3H15A—C15—H15C109.5
C9—C8—H8A110.3H15B—C15—H15C109.5
C13—O7—C14117.5 (3)
C6—C1—C2—C31.4 (9)C7—O4—C8—C1083.6 (3)
C1—C2—C3—C42.1 (10)C7—O4—C8—C935.8 (3)
C1—C2—C3—N1179.9 (6)C7—O3—C9—C13114.2 (3)
O1—N1—C3—C45.3 (10)C7—O3—C9—C86.7 (3)
O2—N1—C3—C4174.5 (6)O4—C8—C9—O325.9 (3)
O1—N1—C3—C2172.7 (7)C10—C8—C9—O394.2 (3)
O2—N1—C3—C27.5 (9)O4—C8—C9—C1397.1 (3)
C2—C3—C4—C50.9 (10)C10—C8—C9—C13142.9 (3)
N1—C3—C4—C5178.9 (6)C11—O5—C10—O60.6 (6)
C3—C4—C5—C61.0 (10)C11—O5—C10—C8178.6 (4)
C4—C5—C6—C11.6 (9)O4—C8—C10—O624.7 (5)
C4—C5—C6—C7179.0 (5)C9—C8—C10—O689.0 (4)
C2—C1—C6—C50.5 (8)O4—C8—C10—O5154.5 (3)
C2—C1—C6—C7177.8 (5)C9—C8—C10—O591.7 (4)
C8—O4—C7—O332.8 (3)C10—O5—C11—C12177.1 (5)
C8—O4—C7—C6154.0 (2)C14—O7—C13—O80.4 (5)
C9—O3—C7—O414.8 (3)C14—O7—C13—C9179.6 (3)
C9—O3—C7—C6133.7 (3)O3—C9—C13—O8175.6 (3)
C5—C6—C7—O467.0 (5)C8—C9—C13—O867.8 (4)
C1—C6—C7—O4110.3 (4)O3—C9—C13—O74.4 (4)
C5—C6—C7—O349.4 (5)C8—C9—C13—O7112.2 (3)
C1—C6—C7—O3133.3 (4)C13—O7—C14—C15155.4 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O8i0.962.503.356 (7)149
Symmetry code: (i) x+1, y1/2, z.

Experimental details

Crystal data
Chemical formulaC15H17NO8
Mr339.30
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)12.261 (3), 4.5200 (9), 15.656 (3)
β (°) 112.27 (3)
V3)802.9 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf-Nonius CAD-4
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.966, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
3062, 1660, 1364
Rint0.017
(sin θ/λ)max1)0.602
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.142, 1.01
No. of reflections1660
No. of parameters218
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.21, 0.16

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12A···O8i0.962.503.356 (7)149
Symmetry code: (i) x+1, y1/2, z.
 

Acknowledgements

The authors thank Liu Bo Nian from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for their support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationKim, D. K., Kim, G., Gam, J. S., Cho, Y. B. & Park, J. G. (1994). J. Med. Chem. 37, 147–1485.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds