metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m455-m456

Aqua­chlorido{6,6′-dimeth­­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­­idene)]diphenolato-κ2O1,N,N′,O1′}cobalt(III) di­methyl­formamide monosolvate

aCollege of Chemistry and Chemical Engineering, Key Laboratory of Eco-Environment-Related Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu, Northwest Normal University, Lanzhou 730070, People's Republic of China
*Correspondence e-mail: jcliu8@nwnu.edu.cn

(Received 2 March 2012; accepted 15 March 2012; online 21 March 2012)

In the title compound, [Co(C18H18N2O4)Cl(H2O)]·C3H7NO, the CoIII ion is six-coordinated by a tetra­dentate 6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphenolate ligand, with a chloride ion and an aqua ligand in the apical positions. The compound crystallized as a dimethyl­formamide (DMF) monosolvate. In the crystal, complex mol­ecules are linked via O—Hwater⋯O hydrogen bonds to form a dimer-like arrangement. These dimers are linked via a C—H⋯Cl inter­action, and the DMF mol­ecule is linked to the complex mol­ecule by C—H⋯O inter­actions.

Related literature

For related literature on metal complexes of Schiff bases, see: Aurangzeb et al. (1994[Aurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193-2195.]); Hulme et al. (1997[Hulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805-1814.]); Li et al. (2008[Li, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141-3143.]); Wang et al. (1979[Wang, B.-C., Huie, B. T. & Schaefer, W. P. (1979). Acta Cryst. B35, 1232-1234.]); Xing (2009[Xing, J. (2009). Acta Cryst. E65, m468.]). For transition metal complexes of Schiff bases derived from o-vanillin, with anti­bacterial activity, see: Liu et al. (1990[Liu, G. F., Na, C. W., Li, B. & Mao, K. Y. (1990). Polyhedron, 9, 2019-2022.]); Viswanathamurthi et al. (2000[Viswanathamurthi, P., Dharmaraj, N. & Natarajan, K. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1273-1285.]); Yeap et al. (2003[Yeap, G. Y., Ha, S. T., Ishizawa, N., Suda, K., Boey, P. L. & Mahmood, W. A. K. (2003). J. Mol. Struct. 658, 87-99.]). For the crystal structure of the ligand, see: Xia et al. (2006[Xia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5864-o5865.]). For the crystal structure of the monohydrate form of the title complex, see: Xing (2009[Xing, J. (2009). Acta Cryst. E65, m468.]).

[Scheme 1]

Experimental

Crystal data
  • [Co(C18H18N2O4)Cl(H2O)]·C3H7NO

  • Mr = 511.84

  • Monoclinic, P 21 /c

  • a = 13.1384 (13) Å

  • b = 13.3144 (19) Å

  • c = 14.0120 (9) Å

  • β = 110.198 (6)°

  • V = 2300.4 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 293 K

  • 0.24 × 0.22 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.812, Tmax = 0.840

  • 12275 measured reflections

  • 4034 independent reflections

  • 2827 reflections with I > 2σ(I)

  • Rint = 0.087

Refinement
  • R[F2 > 2σ(F2)] = 0.058

  • wR(F2) = 0.140

  • S = 1.01

  • 4034 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 0.70 e Å−3

  • Δρmin = −0.39 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O2i 0.96 1.98 2.830 (3) 146
O5—H5A⋯O4i 0.96 2.22 2.964 (4) 134
O5—H5B⋯O1i 0.96 2.11 2.840 (3) 131
O5—H5B⋯O3i 0.96 1.97 2.854 (3) 151
C9—H9B⋯O6ii 0.97 2.47 3.355 (7) 152
C10—H10⋯O6ii 0.93 2.56 3.287 (7) 135
C17—H17A⋯Cl5iii 0.96 2.79 3.744 (4) 175
Symmetry codes: (i) -x+2, -y, -z+2; (ii) -x+1, -y+1, -z+1; (iii) [x, -y+{\script{1\over 2}}, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Polydentate Schiff base ligands and their metal complexes have been studied for decades (Aurangzeb et al., 1994, Hulme et al., 1997; Li et al., 2008; Wang et al., 1979; Xing, 2009). Transition metal complexes of Schiff bases derived from o-vanillin have attracted more attention during past years due to their antibacterial activity (Liu et al., 1990; Viswanathamurthi et al., 2000; Yeap et al., 2003). Herein, we report on the synthesis and crystal structure of the title cobalt(III) complex.

The molecular structure of the title compound is illustrated in Fig. 1. The CoIII ion is coordinated to two N and two O atoms of the tetradentate 6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolate ligand, a Cl- ion and one water molecule. The compound crystallized with a molecule of dimethylformamide, used as solvent. The crystal structure of the ligand has been reported previously (Xia et al., 2006), as has the monohydrate form of the title complex (Xing, 2009). The Cl5—Co1—O5 bond angle is 178.77 (7)° suggesting that the CoIII ion has a slightly distorted octahedral environment, with atoms N1, N2, O1 and O2 occupying the equatorial positions, while atoms Cl5 and O5water occupy the axial positions.

In the crystal, complex molecules are linked via O-Hwater···O hydrogen bonds to form a dimer-like arrangement. These dimers are linked via a C-H···Cl interaction, and the DMF molecule is linked to the complex molecule by C-H···O interactions (Table 1).

Related literature top

For related literature on metal complexes of Schiff bases, see: Aurangzeb et al. (1994); Hulme et al. (1997); Li et al. (2008); Wang et al. (1979); Xing (2009). For transition metal complexes of Schiff bases derived from o-vanillin, with antibacterial activity, see: Liu et al. (1990); Viswanathamurthi et al. (2000); Yeap et al. (2003). For the crystal structure of the ligand, see: Xia et al. (2006). For the crystal structure of the monohydrate form of the title complex, see: Xing (2009).

Experimental top

A colourless solution of 6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenol (54.5 mg,0.2 mmol) in DMF (3 ml) was slowly added to a solution of CoCl2 (64 mg, 0.2 mmol) in CH3CN(15 ml), forming a dark red solution that was stirred for 30 min at room temperature. Slow evaporation of the solvent at room temperature gave red block-like crystals of the title compound, suitable for X-ray analysis. The crystals were collected by filtration, washed with cold acetonitrile, and dried under vacuum (yield 77%).

Refinement top

The water H atoms were located in an difference electron-density map and allowed to ride on the O atom with O-H = 0.96 Å. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH2, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(O,C), where k = 1.5 for OH and CH3 H-atoms, and k = 1.2 for other H-atoms.

Structure description top

Polydentate Schiff base ligands and their metal complexes have been studied for decades (Aurangzeb et al., 1994, Hulme et al., 1997; Li et al., 2008; Wang et al., 1979; Xing, 2009). Transition metal complexes of Schiff bases derived from o-vanillin have attracted more attention during past years due to their antibacterial activity (Liu et al., 1990; Viswanathamurthi et al., 2000; Yeap et al., 2003). Herein, we report on the synthesis and crystal structure of the title cobalt(III) complex.

The molecular structure of the title compound is illustrated in Fig. 1. The CoIII ion is coordinated to two N and two O atoms of the tetradentate 6,6'-dimethoxy-2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolate ligand, a Cl- ion and one water molecule. The compound crystallized with a molecule of dimethylformamide, used as solvent. The crystal structure of the ligand has been reported previously (Xia et al., 2006), as has the monohydrate form of the title complex (Xing, 2009). The Cl5—Co1—O5 bond angle is 178.77 (7)° suggesting that the CoIII ion has a slightly distorted octahedral environment, with atoms N1, N2, O1 and O2 occupying the equatorial positions, while atoms Cl5 and O5water occupy the axial positions.

In the crystal, complex molecules are linked via O-Hwater···O hydrogen bonds to form a dimer-like arrangement. These dimers are linked via a C-H···Cl interaction, and the DMF molecule is linked to the complex molecule by C-H···O interactions (Table 1).

For related literature on metal complexes of Schiff bases, see: Aurangzeb et al. (1994); Hulme et al. (1997); Li et al. (2008); Wang et al. (1979); Xing (2009). For transition metal complexes of Schiff bases derived from o-vanillin, with antibacterial activity, see: Liu et al. (1990); Viswanathamurthi et al. (2000); Yeap et al. (2003). For the crystal structure of the ligand, see: Xia et al. (2006). For the crystal structure of the monohydrate form of the title complex, see: Xing (2009).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Aquachlorido{6,6'-dimethoxy-2,2'-[ethane-1,2- diylbis(nitrilomethanylylidene)]diphenolato- κ2O1,N,N',O1'}cobalt(III) dimethylformamide monosolvate top
Crystal data top
[Co(C18H18N2O4)Cl(H2O)]·C3H7NOF(000) = 1064
Mr = 511.84Dx = 1.478 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2594 reflections
a = 13.1384 (13) Åθ = 2.3–22.5°
b = 13.3144 (19) ŵ = 0.90 mm1
c = 14.0120 (9) ÅT = 293 K
β = 110.198 (6)°Block, red
V = 2300.4 (4) Å30.24 × 0.22 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
4034 independent reflections
Radiation source: fine-focus sealed tube2827 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
φ and ω scansθmax = 25.0°, θmin = 3.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 1515
Tmin = 0.812, Tmax = 0.840k = 1514
12275 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
4034 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 0.70 e Å3
0 restraintsΔρmin = 0.39 e Å3
Crystal data top
[Co(C18H18N2O4)Cl(H2O)]·C3H7NOV = 2300.4 (4) Å3
Mr = 511.84Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.1384 (13) ŵ = 0.90 mm1
b = 13.3144 (19) ÅT = 293 K
c = 14.0120 (9) Å0.24 × 0.22 × 0.20 mm
β = 110.198 (6)°
Data collection top
Bruker APEXII CCD
diffractometer
4034 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2827 reflections with I > 2σ(I)
Tmin = 0.812, Tmax = 0.840Rint = 0.087
12275 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.140H-atom parameters constrained
S = 1.01Δρmax = 0.70 e Å3
4034 reflectionsΔρmin = 0.39 e Å3
293 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.90848 (4)0.14998 (3)0.92275 (3)0.0496 (2)
Cl50.92093 (9)0.30523 (7)0.98338 (7)0.0715 (4)
O10.90866 (18)0.09840 (17)1.04805 (16)0.0522 (8)
O21.06060 (18)0.13508 (17)0.97448 (17)0.0539 (8)
O30.94754 (18)0.02362 (19)1.22469 (16)0.0611 (9)
O41.26159 (19)0.1281 (2)1.08943 (19)0.0673 (10)
O50.89466 (17)0.01086 (16)0.86955 (15)0.0533 (8)
N10.9079 (2)0.1957 (2)0.7953 (2)0.0535 (10)
N20.7567 (2)0.1638 (2)0.8674 (2)0.0569 (10)
C11.1284 (3)0.1773 (2)0.9372 (3)0.0515 (11)
C21.2396 (3)0.1745 (3)0.9968 (3)0.0606 (14)
C31.3174 (3)0.2134 (3)0.9619 (3)0.0751 (17)
C41.2861 (4)0.2591 (4)0.8665 (4)0.0822 (17)
C51.1799 (4)0.2652 (3)0.8074 (3)0.0737 (17)
C61.0988 (3)0.2252 (3)0.8418 (3)0.0578 (12)
C70.9889 (3)0.2273 (3)0.7741 (3)0.0594 (14)
C80.7993 (3)0.1895 (3)0.7181 (3)0.0698 (16)
C90.7199 (3)0.2143 (3)0.7682 (3)0.0743 (16)
C100.6880 (3)0.1424 (3)0.9111 (3)0.0586 (12)
C110.7150 (3)0.1020 (3)1.0106 (3)0.0541 (12)
C120.6303 (3)0.0808 (3)1.0478 (3)0.0663 (14)
C130.6511 (3)0.0418 (3)1.1417 (3)0.0727 (17)
C140.7565 (3)0.0214 (3)1.2036 (3)0.0665 (16)
C150.8411 (3)0.0409 (3)1.1708 (2)0.0543 (11)
C160.8231 (3)0.0820 (2)1.0729 (2)0.0499 (11)
C170.9757 (3)0.0122 (3)1.3268 (2)0.0700 (16)
C181.3706 (3)0.1101 (4)1.1502 (3)0.0778 (17)
O60.5199 (4)0.9040 (5)0.2962 (4)0.192 (3)
N30.6662 (5)0.9626 (6)0.4178 (4)0.134 (3)
C190.7766 (5)0.9485 (6)0.4778 (4)0.168 (4)
C200.6114 (8)1.0463 (11)0.4401 (8)0.236 (8)
C210.6116 (6)0.9002 (6)0.3479 (5)0.141 (3)
H31.390400.209201.001800.0900*
H41.338600.285700.843100.0980*
H51.160200.295900.744000.0890*
H5A0.879800.033700.917000.0800*
H5B0.961300.008600.860800.0800*
H70.975600.253800.709500.0710*
H8A0.786200.122300.689700.0840*
H8B0.792800.236600.663400.0840*
H9A0.716800.286400.777000.0890*
H9B0.648200.190900.727300.0890*
H100.615100.154200.874900.0700*
H120.558900.093901.007100.0790*
H130.594200.028601.164800.0870*
H140.769900.005701.268000.0800*
H17A0.958800.038301.368000.0840*
H17B1.051900.026801.353600.0840*
H17C0.935400.072101.327500.0840*
H18A1.404900.070701.112500.0940*
H18B1.373000.074301.210400.0940*
H18C1.408000.172901.168900.0940*
H19A0.802500.887300.458000.2020*
H19B0.783600.944600.548200.2020*
H19C0.818501.004000.468000.2020*
H20A0.537201.046200.395300.3540*
H20B0.646101.107100.430800.3540*
H20C0.613901.042000.509200.3540*
H210.650200.845300.337300.1690*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0578 (3)0.0354 (3)0.0523 (3)0.0018 (2)0.0148 (2)0.0031 (2)
Cl50.0952 (8)0.0478 (5)0.0697 (6)0.0027 (5)0.0262 (5)0.0019 (4)
O10.0540 (13)0.0457 (14)0.0556 (13)0.0024 (11)0.0173 (11)0.0083 (10)
O20.0593 (14)0.0420 (13)0.0586 (14)0.0011 (11)0.0179 (11)0.0085 (10)
O30.0649 (16)0.0616 (16)0.0533 (14)0.0079 (13)0.0158 (12)0.0069 (11)
O40.0587 (16)0.0688 (18)0.0702 (16)0.0024 (13)0.0171 (13)0.0054 (13)
O50.0599 (14)0.0371 (12)0.0615 (13)0.0006 (11)0.0192 (11)0.0021 (10)
N10.0674 (19)0.0372 (16)0.0520 (16)0.0020 (14)0.0157 (15)0.0019 (12)
N20.0667 (19)0.0432 (17)0.0551 (17)0.0056 (14)0.0136 (16)0.0072 (13)
C10.064 (2)0.0339 (18)0.060 (2)0.0031 (16)0.0259 (19)0.0050 (15)
C20.069 (3)0.050 (2)0.067 (2)0.0035 (19)0.029 (2)0.0060 (17)
C30.072 (3)0.070 (3)0.087 (3)0.008 (2)0.032 (2)0.006 (2)
C40.083 (3)0.082 (3)0.095 (3)0.016 (3)0.048 (3)0.003 (3)
C50.097 (3)0.059 (3)0.074 (3)0.012 (2)0.041 (3)0.0032 (19)
C60.070 (2)0.044 (2)0.062 (2)0.0035 (18)0.026 (2)0.0028 (16)
C70.086 (3)0.041 (2)0.052 (2)0.0026 (19)0.025 (2)0.0048 (15)
C80.082 (3)0.066 (3)0.052 (2)0.002 (2)0.011 (2)0.0086 (17)
C90.069 (3)0.074 (3)0.067 (2)0.006 (2)0.007 (2)0.017 (2)
C100.055 (2)0.046 (2)0.066 (2)0.0043 (17)0.0098 (19)0.0027 (16)
C110.056 (2)0.044 (2)0.059 (2)0.0013 (17)0.0158 (17)0.0028 (15)
C120.056 (2)0.069 (3)0.072 (2)0.0048 (19)0.0197 (19)0.002 (2)
C130.070 (3)0.080 (3)0.075 (3)0.001 (2)0.034 (2)0.001 (2)
C140.077 (3)0.066 (3)0.060 (2)0.002 (2)0.028 (2)0.0043 (18)
C150.064 (2)0.0418 (19)0.056 (2)0.0031 (17)0.0192 (18)0.0021 (15)
C160.060 (2)0.0353 (18)0.056 (2)0.0043 (16)0.0222 (17)0.0025 (14)
C170.083 (3)0.067 (3)0.054 (2)0.010 (2)0.016 (2)0.0007 (18)
C180.061 (3)0.076 (3)0.086 (3)0.004 (2)0.012 (2)0.002 (2)
O60.128 (4)0.242 (7)0.143 (4)0.093 (4)0.033 (3)0.061 (4)
N30.121 (4)0.159 (6)0.096 (3)0.056 (4)0.005 (3)0.032 (3)
C190.148 (6)0.189 (8)0.115 (4)0.095 (6)0.021 (4)0.057 (5)
C200.215 (11)0.292 (18)0.224 (11)0.008 (10)0.105 (8)0.032 (11)
C210.138 (6)0.134 (6)0.103 (4)0.075 (5)0.019 (4)0.041 (4)
Geometric parameters (Å, º) top
Co1—Cl52.2193 (11)C11—C121.411 (6)
Co1—O11.885 (2)C11—C161.412 (5)
Co1—O21.887 (3)C12—C131.352 (6)
Co1—O51.982 (2)C13—C141.384 (6)
Co1—N11.884 (3)C14—C151.366 (6)
Co1—N21.883 (3)C15—C161.419 (4)
O1—C161.305 (5)C3—H30.9300
O2—C11.305 (5)C4—H40.9300
O3—C151.360 (4)C5—H50.9300
O3—C171.430 (4)C7—H70.9300
O4—C21.375 (5)C8—H8B0.9700
O4—C181.411 (5)C8—H8A0.9700
O5—H5A0.9600C9—H9B0.9700
O5—H5B0.9600C9—H9A0.9700
O6—C211.173 (9)C10—H100.9300
N1—C71.271 (5)C12—H120.9300
N1—C81.465 (5)C13—H130.9300
N2—C101.286 (5)C14—H140.9300
N2—C91.468 (5)C17—H17A0.9600
N3—C191.416 (9)C17—H17B0.9600
N3—C201.419 (15)C17—H17C0.9600
N3—C211.296 (10)C18—H18B0.9600
C1—C61.409 (5)C18—H18C0.9600
C1—C21.411 (6)C18—H18A0.9600
C2—C31.378 (6)C19—H19A0.9600
C3—C41.395 (7)C19—H19B0.9600
C4—C51.357 (7)C19—H19C0.9600
C5—C61.416 (7)C20—H20A0.9600
C6—C71.428 (6)C20—H20B0.9600
C8—C91.482 (6)C20—H20C0.9600
C10—C111.420 (6)C21—H210.9300
Cl5—Co1—O190.38 (7)C11—C16—C15117.8 (4)
Cl5—Co1—O291.29 (8)O1—C16—C15116.8 (3)
Cl5—Co1—O5178.77 (8)O1—C16—C11125.4 (3)
Cl5—Co1—N192.15 (9)C2—C3—H3120.00
Cl5—Co1—N289.67 (9)C4—C3—H3120.00
O1—Co1—O286.75 (10)C5—C4—H4120.00
O1—Co1—O588.87 (9)C3—C4—H4120.00
O1—Co1—N1177.47 (11)C4—C5—H5120.00
O1—Co1—N294.58 (11)C6—C5—H5120.00
O2—Co1—O589.63 (10)N1—C7—H7118.00
O2—Co1—N193.16 (11)C6—C7—H7117.00
O2—Co1—N2178.35 (11)C9—C8—H8B110.00
O5—Co1—N188.60 (10)H8A—C8—H8B108.00
O5—Co1—N289.42 (11)C9—C8—H8A110.00
N1—Co1—N285.46 (12)N1—C8—H8A110.00
Co1—O1—C16125.8 (2)N1—C8—H8B110.00
Co1—O2—C1125.4 (2)N2—C9—H9A110.00
C15—O3—C17118.2 (3)N2—C9—H9B110.00
C2—O4—C18119.0 (3)C8—C9—H9A110.00
Co1—O5—H5A109.00C8—C9—H9B110.00
Co1—O5—H5B109.00H9A—C9—H9B109.00
H5A—O5—H5B110.00C11—C10—H10117.00
Co1—N1—C7126.8 (3)N2—C10—H10118.00
Co1—N1—C8111.5 (2)C11—C12—H12120.00
C7—N1—C8121.8 (3)C13—C12—H12119.00
C9—N2—C10119.8 (3)C12—C13—H13120.00
Co1—N2—C10126.9 (3)C14—C13—H13120.00
Co1—N2—C9113.0 (2)C15—C14—H14120.00
C19—N3—C21123.4 (7)C13—C14—H14120.00
C20—N3—C21118.7 (8)O3—C17—H17B109.00
C19—N3—C20117.9 (7)H17A—C17—H17C109.00
C2—C1—C6117.6 (4)O3—C17—H17C110.00
O2—C1—C2117.5 (3)H17A—C17—H17B109.00
O2—C1—C6124.9 (4)O3—C17—H17A110.00
O4—C2—C1114.1 (3)H17B—C17—H17C109.00
O4—C2—C3124.4 (4)O4—C18—H18C110.00
C1—C2—C3121.6 (4)H18A—C18—H18C109.00
C2—C3—C4119.7 (4)H18B—C18—H18C110.00
C3—C4—C5120.8 (5)H18A—C18—H18B109.00
C4—C5—C6120.4 (4)O4—C18—H18A109.00
C5—C6—C7118.3 (4)O4—C18—H18B109.00
C1—C6—C5120.0 (4)O6—C21—N3128.4 (8)
C1—C6—C7121.6 (4)N3—C19—H19A109.00
N1—C7—C6125.1 (4)N3—C19—H19B109.00
N1—C8—C9107.6 (3)N3—C19—H19C110.00
N2—C9—C8106.9 (3)H19A—C19—H19B109.00
N2—C10—C11125.0 (4)H19A—C19—H19C110.00
C12—C11—C16119.2 (3)H19B—C19—H19C109.00
C10—C11—C16122.4 (4)N3—C20—H20A109.00
C10—C11—C12118.5 (4)N3—C20—H20B109.00
C11—C12—C13121.1 (4)N3—C20—H20C109.00
C12—C13—C14120.5 (4)H20A—C20—H20B110.00
C13—C14—C15120.4 (4)H20A—C20—H20C109.00
O3—C15—C14125.5 (3)H20B—C20—H20C110.00
C14—C15—C16121.0 (3)O6—C21—H21116.00
O3—C15—C16113.5 (3)N3—C21—H21116.00
Cl5—Co1—O1—C1690.4 (2)Co1—N2—C10—C111.2 (6)
O2—Co1—O1—C16178.3 (2)C10—N2—C9—C8155.7 (3)
O5—Co1—O1—C1688.6 (2)C19—N3—C21—O6178.1 (8)
N2—Co1—O1—C160.7 (2)C20—N3—C21—O62.1 (13)
Cl5—Co1—O2—C173.5 (2)O2—C1—C6—C5177.6 (3)
O1—Co1—O2—C1163.8 (3)C2—C1—C6—C7176.8 (4)
O5—Co1—O2—C1107.3 (3)O2—C1—C2—O41.3 (5)
N1—Co1—O2—C118.7 (3)O2—C1—C6—C73.0 (6)
Cl5—Co1—N1—C775.7 (3)O2—C1—C2—C3177.3 (3)
Cl5—Co1—N1—C8105.3 (2)C2—C1—C6—C52.2 (5)
O2—Co1—N1—C715.8 (3)C6—C1—C2—C32.6 (5)
O2—Co1—N1—C8163.3 (2)C6—C1—C2—O4178.9 (3)
O5—Co1—N1—C7105.3 (3)C1—C2—C3—C41.7 (6)
O5—Co1—N1—C873.7 (2)O4—C2—C3—C4180.0 (4)
N2—Co1—N1—C7165.2 (3)C2—C3—C4—C50.4 (7)
N2—Co1—N1—C815.8 (2)C3—C4—C5—C60.1 (7)
Cl5—Co1—N2—C983.4 (2)C4—C5—C6—C7175.8 (4)
Cl5—Co1—N2—C1089.9 (3)C4—C5—C6—C11.0 (6)
O1—Co1—N2—C9173.8 (2)C5—C6—C7—N1178.8 (4)
O1—Co1—N2—C100.5 (3)C1—C6—C7—N16.6 (6)
O5—Co1—N2—C997.4 (2)N1—C8—C9—N241.8 (4)
O5—Co1—N2—C1089.3 (3)N2—C10—C11—C160.7 (6)
N1—Co1—N2—C98.8 (2)N2—C10—C11—C12179.0 (4)
N1—Co1—N2—C10177.9 (3)C10—C11—C12—C13179.7 (4)
Co1—O1—C16—C111.3 (4)C16—C11—C12—C130.0 (6)
Co1—O1—C16—C15178.8 (2)C12—C11—C16—C150.1 (5)
Co1—O2—C1—C2167.5 (2)C12—C11—C16—O1179.7 (3)
Co1—O2—C1—C612.7 (5)C10—C11—C16—O10.6 (5)
C17—O3—C15—C16176.4 (3)C10—C11—C16—C15179.5 (3)
C17—O3—C15—C144.1 (5)C11—C12—C13—C140.2 (6)
C18—O4—C2—C36.1 (6)C12—C13—C14—C150.3 (6)
C18—O4—C2—C1172.4 (3)C13—C14—C15—C160.2 (6)
Co1—N1—C8—C936.3 (3)C13—C14—C15—O3179.7 (4)
C7—N1—C8—C9144.6 (4)O3—C15—C16—C11179.6 (3)
Co1—N1—C7—C66.2 (6)C14—C15—C16—O1179.8 (3)
C8—N1—C7—C6172.7 (4)C14—C15—C16—C110.0 (5)
Co1—N2—C9—C830.5 (4)O3—C15—C16—O10.6 (4)
C9—N2—C10—C11174.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.961.982.830 (3)146
O5—H5A···O4i0.962.222.964 (4)134
O5—H5B···O1i0.962.112.840 (3)131
O5—H5B···O3i0.961.972.854 (3)151
C9—H9B···O6ii0.972.473.355 (7)152
C10—H10···O6ii0.932.563.287 (7)135
C17—H17A···Cl5iii0.962.793.744 (4)175
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C18H18N2O4)Cl(H2O)]·C3H7NO
Mr511.84
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)13.1384 (13), 13.3144 (19), 14.0120 (9)
β (°) 110.198 (6)
V3)2300.4 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.24 × 0.22 × 0.20
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.812, 0.840
No. of measured, independent and
observed [I > 2σ(I)] reflections
12275, 4034, 2827
Rint0.087
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.140, 1.01
No. of reflections4034
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.70, 0.39

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O2i0.961.982.830 (3)146
O5—H5A···O4i0.962.222.964 (4)134
O5—H5B···O1i0.962.112.840 (3)131
O5—H5B···O3i0.961.972.854 (3)151
C9—H9B···O6ii0.972.473.355 (7)152
C10—H10···O6ii0.932.563.287 (7)135
C17—H17A···Cl5iii0.962.793.744 (4)175
Symmetry codes: (i) x+2, y, z+2; (ii) x+1, y+1, z+1; (iii) x, y+1/2, z+1/2.
 

Acknowledgements

The authors thank the National Natural Science Foundation of China (grant No. 20871099) and the Natural Science Foundation of Gansu Province (grant No. 0710RJZA113) for financial support. The authors also thank the Key Laboratory of Eco-Environment-Related Polymer Materials (Northwest Normal University), Ministry of Education, for financial support.

References

First citationAurangzeb, N., Hulme, C. E., McAuliffe, C. A., Pritchard, R. G., Watkinson, M., Bermejo, M. R. & Sousa, A. (1994). J. Chem. Soc. Chem. Commun. pp. 2193–2195.  CrossRef Web of Science Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHulme, C. E., Watkinson, M., Haynes, M., Pritchard, R. G., McAuliffe, C. A., Jaiboon, N., Beagley, B., Sousa, A., Bermejo, M. R. & Fondo, M. (1997). J. Chem. Soc. Dalton Trans. pp. 1805–1814.  CSD CrossRef Web of Science Google Scholar
First citationLi, C. H., Huang, K. L., Dou, J. M., Chi, Y. N., Xu, Y. Q., Shen, L., Wang, D. Q. & Hu, C. W. (2008). CrystEngComm, 8, 3141–3143.  CAS Google Scholar
First citationLiu, G. F., Na, C. W., Li, B. & Mao, K. Y. (1990). Polyhedron, 9, 2019–2022.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationViswanathamurthi, P., Dharmaraj, N. & Natarajan, K. (2000). Synth. React. Inorg. Met. Org. Chem. 30, 1273–1285.  CrossRef CAS Google Scholar
First citationWang, B.-C., Huie, B. T. & Schaefer, W. P. (1979). Acta Cryst. B35, 1232–1234.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationXia, H.-T., Liu, Y.-F., Yang, S.-P. & Wang, D.-Q. (2006). Acta Cryst. E62, o5864–o5865.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXing, J. (2009). Acta Cryst. E65, m468.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationYeap, G. Y., Ha, S. T., Ishizawa, N., Suda, K., Boey, P. L. & Mahmood, W. A. K. (2003). J. Mol. Struct. 658, 87–99.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 68| Part 4| April 2012| Pages m455-m456
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds