organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-3-[(3-Eth­­oxy-2-hy­dr­oxy­benzyl­­idene)amino]­benzoic acid

aDepartment of Chemistry, Payame Noor University, PO BOX 19395-3697 Tehran, I. R. of IRAN, bDepartment of Chemistry, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran, cDepartment of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, and dDepartment of Physics, University of Sargodha, Punjab, Pakistan
*Correspondence e-mail: h.kargar@pnu.ac.ir, dmntahir_uos@yahoo.com

(Received 4 March 2012; accepted 6 March 2012; online 10 March 2012)

In the title compound, C16H15NO4, a potential bidentate N,O-donor Schiff base ligand, the benzene rings are inclined to one another by 4.24 (12)°. The mol­ecule has an E conformation about the C=N bond. An intra­molecular O—H⋯N hydrogen bond makes an S(6) ring motif. In the crystal, pairs of O—H⋯O hydrogen bonds link the mol­ecules, forming inversion dimers with R22(8) ring motifs. These dimers are further connected by C—H⋯O inter­actions, forming a sheet in (104). There is also a C—H⋯π inter­action present involving neighbouring mol­ecules.

Related literature

For background to Schiff bases ligands and their metal complexes, see: Kargar et al. (2011[Kargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.], 2012[Kargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68 m182.]); Kia et al. (2010[Kia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO4

  • Mr = 285.29

  • Triclinic, [P \overline 1]

  • a = 5.0306 (3) Å

  • b = 7.1847 (4) Å

  • c = 19.6856 (13) Å

  • α = 94.956 (4)°

  • β = 93.310 (4)°

  • γ = 102.299 (4)°

  • V = 690.45 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.22 × 0.12 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.979, Tmax = 0.992

  • 11954 measured reflections

  • 3331 independent reflections

  • 1429 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.061

  • wR(F2) = 0.150

  • S = 0.95

  • 3331 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.20 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C9–C14 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯N1 0.99 1.75 2.570 (3) 138
O1—H1A⋯O2i 0.99 1.63 2.610 (2) 174
C3—H3B⋯O1ii 0.93 2.58 3.453 (3) 157
C4—H4A⋯O2iii 0.93 2.53 3.341 (3) 146
C15—H15ACg2iv 0.97 2.75 3.610 (3) 148
Symmetry codes: (i) -x-2, -y+1, -z+2; (ii) -x-2, -y, -z+2; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

In continuation of our work on the crystal structure analysis of Schiff base ligands (Kargar et al., 2011, 2012; Kia et al., 2010), we synthesized and determined the crystal structure of the new title potential bidentate N,O-donor Schiff base.

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O3—H3A···N1 hydrogen bond (Table 1) makes an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the benzene rings is 4.24 (12)°. The molecule has an E conformation about the C8N1 bond.

In the crystal, pairs of O—H···O hydrogen bonds (Table 1) link molecules to form inversion dimers with an R22(8) ring motif. These dimers are connected further by C—H···O interactions along the b axis direction, forming a sheet (Fig. 2). There is also a C-H···π interaction present involving neighbouring molecules (Table 1).

Related literature top

For background to Schiff bases ligands and their metal complexes, see: Kargar et al. (2011, 2012); Kia et al. (2010). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The title compound was synthesized by adding 3-ethoxysalicylaldehyde (2 mmol) to a solution of 3-carboxyaniline (2 mmol) in ethanol (30 ml). The mixture was refluxed with stirring for 30 min. The resultant solution was filtered. Pale yellow single crystals of the title compound, suitable for X-ray structure determination, were obtained by recrystallization from ethanol, by slow evaporation of the solvents at room temperature over several days.

Refinement top

The O-bound hydrogen atoms were located in a difference Fourier map and constrained to ride on the parent atoms with Uiso(H) = 1.5 Ueq(O). The rest of the hydrogen atoms were included in calculated positions and treated as riding atoms: C—H = 0.93, 0.96 and 0.97 Å for CH, CH3 and CH2 H atoms, respectively, with Uiso (H) = k × Ueq(C), where k = 1.5 for CH3 H atoms, and = 1.2 for other H atoms. A rotating group model was applied to the methyl group.

Structure description top

In continuation of our work on the crystal structure analysis of Schiff base ligands (Kargar et al., 2011, 2012; Kia et al., 2010), we synthesized and determined the crystal structure of the new title potential bidentate N,O-donor Schiff base.

The molecular structure of the title compound is illustrated in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within the normal ranges. The intramolecular O3—H3A···N1 hydrogen bond (Table 1) makes an S(6) ring motif (Bernstein et al., 1995). The dihedral angle between the benzene rings is 4.24 (12)°. The molecule has an E conformation about the C8N1 bond.

In the crystal, pairs of O—H···O hydrogen bonds (Table 1) link molecules to form inversion dimers with an R22(8) ring motif. These dimers are connected further by C—H···O interactions along the b axis direction, forming a sheet (Fig. 2). There is also a C-H···π interaction present involving neighbouring molecules (Table 1).

For background to Schiff bases ligands and their metal complexes, see: Kargar et al. (2011, 2012); Kia et al. (2010). For standard bond lengths, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title compound, showing 40% probability displacement ellipsoids and the atomic numbering. The dashed line shows the intramolecular O-H···N hydrogen bond - see Table 1 for details.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c-axis, showing the inversion dimers, with an R22(8) ring motif, which are further connected through C—H···O interactions along the b-axis direction - see Table 1 for details.
(E)-3-[(3-Ethoxy-2-hydroxybenzylidene)amino]benzoic acid top
Crystal data top
C16H15NO4Z = 2
Mr = 285.29F(000) = 300
Triclinic, P1Dx = 1.372 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0306 (3) ÅCell parameters from 2760 reflections
b = 7.1847 (4) Åθ = 2.6–27.7°
c = 19.6856 (13) ŵ = 0.10 mm1
α = 94.956 (4)°T = 296 K
β = 93.310 (4)°Block, pale-yellow
γ = 102.299 (4)°0.22 × 0.12 × 0.08 mm
V = 690.45 (7) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3331 independent reflections
Radiation source: fine-focus sealed tube1429 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
φ and ω scansθmax = 28.1°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 66
Tmin = 0.979, Tmax = 0.992k = 99
11954 measured reflectionsl = 2525
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.061Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0577P)2]
where P = (Fo2 + 2Fc2)/3
3331 reflections(Δ/σ)max < 0.001
191 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C16H15NO4γ = 102.299 (4)°
Mr = 285.29V = 690.45 (7) Å3
Triclinic, P1Z = 2
a = 5.0306 (3) ÅMo Kα radiation
b = 7.1847 (4) ŵ = 0.10 mm1
c = 19.6856 (13) ÅT = 296 K
α = 94.956 (4)°0.22 × 0.12 × 0.08 mm
β = 93.310 (4)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3331 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1429 reflections with I > 2σ(I)
Tmin = 0.979, Tmax = 0.992Rint = 0.058
11954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0610 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.95Δρmax = 0.15 e Å3
3331 reflectionsΔρmin = 0.20 e Å3
191 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7756 (4)0.3599 (4)0.95116 (13)0.0401 (6)
C20.6137 (4)0.2435 (3)0.91234 (12)0.0381 (6)
C30.6380 (5)0.0522 (3)0.92180 (13)0.0491 (7)
H3B0.75560.00440.95260.059*
C40.4873 (5)0.0532 (4)0.88541 (14)0.0581 (8)
H4A0.50240.18180.89160.070*
C50.3131 (5)0.0305 (4)0.83961 (13)0.0514 (7)
H5A0.21320.04290.81490.062*
C60.2848 (5)0.2212 (4)0.82988 (12)0.0394 (6)
C70.4376 (5)0.3274 (3)0.86627 (12)0.0419 (6)
H7A0.42260.45590.85990.050*
C80.0261 (5)0.4639 (4)0.77162 (12)0.0450 (7)
H8A0.10740.55250.79490.054*
C90.1761 (4)0.5293 (3)0.72375 (12)0.0404 (6)
C100.3028 (5)0.3975 (3)0.68892 (13)0.0418 (6)
C110.4947 (5)0.4626 (4)0.64210 (13)0.0461 (7)
C120.5568 (5)0.6515 (4)0.63127 (13)0.0515 (7)
H12A0.68510.69330.60060.062*
C130.4304 (5)0.7824 (4)0.66551 (14)0.0559 (8)
H13A0.47250.91060.65740.067*
C140.2425 (5)0.7208 (4)0.71145 (13)0.0516 (7)
H14A0.15900.80840.73460.062*
C150.7861 (5)0.3715 (4)0.55931 (14)0.0554 (8)
H15A0.94260.47000.57810.067*
H15B0.69470.41960.52210.067*
C160.8758 (6)0.1926 (4)0.53405 (16)0.0740 (9)
H16A1.00430.22170.50020.111*
H16B0.72010.09790.51420.111*
H16C0.96030.14410.57170.111*
N10.0939 (4)0.2889 (3)0.78237 (10)0.0452 (6)
O10.9217 (3)0.2754 (2)0.99589 (9)0.0551 (5)
H1A1.03080.35681.01910.083*
O20.7718 (3)0.5279 (2)0.93998 (9)0.0527 (5)
O30.2460 (3)0.2104 (2)0.69762 (9)0.0583 (5)
H3A0.08150.17690.72290.087*
O40.6037 (4)0.3213 (2)0.61093 (9)0.0613 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0324 (14)0.0490 (16)0.0379 (16)0.0025 (11)0.0121 (11)0.0089 (12)
C20.0340 (14)0.0450 (16)0.0359 (16)0.0074 (11)0.0103 (11)0.0064 (12)
C30.0483 (16)0.0466 (17)0.0541 (19)0.0064 (12)0.0205 (13)0.0137 (14)
C40.0690 (19)0.0396 (16)0.071 (2)0.0141 (14)0.0290 (16)0.0115 (14)
C50.0498 (16)0.0517 (18)0.056 (2)0.0152 (13)0.0189 (13)0.0039 (14)
C60.0334 (13)0.0479 (16)0.0394 (16)0.0106 (11)0.0117 (11)0.0085 (12)
C70.0420 (14)0.0428 (15)0.0440 (17)0.0104 (11)0.0149 (12)0.0104 (12)
C80.0422 (15)0.0557 (18)0.0397 (17)0.0146 (12)0.0152 (12)0.0024 (13)
C90.0340 (14)0.0496 (16)0.0395 (17)0.0100 (11)0.0123 (11)0.0058 (12)
C100.0374 (14)0.0463 (17)0.0442 (17)0.0102 (12)0.0107 (11)0.0119 (13)
C110.0409 (15)0.0562 (18)0.0459 (18)0.0161 (12)0.0183 (12)0.0077 (13)
C120.0415 (16)0.0612 (19)0.0542 (19)0.0099 (13)0.0232 (13)0.0103 (14)
C130.0570 (18)0.0477 (17)0.064 (2)0.0069 (13)0.0199 (15)0.0106 (15)
C140.0528 (17)0.0498 (18)0.054 (2)0.0133 (13)0.0196 (14)0.0005 (14)
C150.0464 (16)0.080 (2)0.0456 (18)0.0209 (14)0.0204 (13)0.0118 (15)
C160.068 (2)0.084 (2)0.073 (2)0.0216 (17)0.0306 (17)0.0062 (17)
N10.0406 (12)0.0528 (15)0.0460 (15)0.0125 (10)0.0169 (10)0.0111 (11)
O10.0545 (11)0.0557 (12)0.0635 (13)0.0175 (8)0.0359 (9)0.0186 (9)
O20.0548 (11)0.0448 (11)0.0638 (13)0.0126 (8)0.0298 (9)0.0149 (9)
O30.0578 (12)0.0537 (12)0.0724 (15)0.0200 (9)0.0338 (10)0.0179 (10)
O40.0587 (12)0.0651 (12)0.0676 (14)0.0196 (9)0.0376 (10)0.0117 (10)
Geometric parameters (Å, º) top
C1—O21.242 (3)C10—O31.342 (2)
C1—O11.289 (3)C10—C111.409 (3)
C1—C21.482 (3)C11—C121.365 (3)
C2—C31.384 (3)C11—O41.370 (3)
C2—C71.389 (3)C12—C131.392 (3)
C3—C41.369 (3)C12—H12A0.9300
C3—H3B0.9300C13—C141.377 (3)
C4—C51.379 (3)C13—H13A0.9300
C4—H4A0.9300C14—H14A0.9300
C5—C61.378 (3)C15—O41.426 (3)
C5—H5A0.9300C15—C161.505 (3)
C6—C71.380 (3)C15—H15A0.9700
C6—N11.420 (3)C15—H15B0.9700
C7—H7A0.9300C16—H16A0.9600
C8—N11.270 (3)C16—H16B0.9600
C8—C91.458 (3)C16—H16C0.9600
C8—H8A0.9300O1—H1A0.9862
C9—C141.391 (3)O3—H3A0.9867
C9—C101.403 (3)
O2—C1—O1122.6 (2)C9—C10—C11119.0 (2)
O2—C1—C2121.30 (19)C12—C11—O4125.9 (2)
O1—C1—C2116.1 (2)C12—C11—C10120.2 (2)
C3—C2—C7120.1 (2)O4—C11—C10113.9 (2)
C3—C2—C1120.2 (2)C11—C12—C13120.8 (2)
C7—C2—C1119.7 (2)C11—C12—H12A119.6
C4—C3—C2119.4 (2)C13—C12—H12A119.6
C4—C3—H3B120.3C14—C13—C12119.6 (2)
C2—C3—H3B120.3C14—C13—H13A120.2
C3—C4—C5120.3 (2)C12—C13—H13A120.2
C3—C4—H4A119.9C13—C14—C9120.9 (2)
C5—C4—H4A119.9C13—C14—H14A119.6
C6—C5—C4121.1 (2)C9—C14—H14A119.6
C6—C5—H5A119.4O4—C15—C16107.0 (2)
C4—C5—H5A119.4O4—C15—H15A110.3
C5—C6—C7118.7 (2)C16—C15—H15A110.3
C5—C6—N1114.9 (2)O4—C15—H15B110.3
C7—C6—N1126.4 (2)C16—C15—H15B110.3
C6—C7—C2120.4 (2)H15A—C15—H15B108.6
C6—C7—H7A119.8C15—C16—H16A109.5
C2—C7—H7A119.8C15—C16—H16B109.5
N1—C8—C9121.7 (2)H16A—C16—H16B109.5
N1—C8—H8A119.2C15—C16—H16C109.5
C9—C8—H8A119.2H16A—C16—H16C109.5
C14—C9—C10119.5 (2)H16B—C16—H16C109.5
C14—C9—C8120.8 (2)C8—N1—C6123.1 (2)
C10—C9—C8119.8 (2)C1—O1—H1A113.1
O3—C10—C9122.6 (2)C10—O3—H3A110.9
O3—C10—C11118.3 (2)C11—O4—C15117.80 (19)
O2—C1—C2—C3174.8 (2)C14—C9—C10—C110.1 (4)
O1—C1—C2—C34.2 (3)C8—C9—C10—C11179.1 (2)
O2—C1—C2—C75.1 (4)O3—C10—C11—C12179.4 (2)
O1—C1—C2—C7175.9 (2)C9—C10—C11—C120.3 (4)
C7—C2—C3—C40.0 (4)O3—C10—C11—O40.6 (3)
C1—C2—C3—C4179.9 (2)C9—C10—C11—O4179.7 (2)
C2—C3—C4—C50.1 (4)O4—C11—C12—C13179.3 (3)
C3—C4—C5—C60.6 (4)C10—C11—C12—C130.7 (4)
C4—C5—C6—C70.9 (4)C11—C12—C13—C140.7 (4)
C4—C5—C6—N1178.6 (2)C12—C13—C14—C90.4 (4)
C5—C6—C7—C20.8 (4)C10—C9—C14—C130.1 (4)
N1—C6—C7—C2178.7 (2)C8—C9—C14—C13179.0 (2)
C3—C2—C7—C60.3 (4)C9—C8—N1—C6178.4 (2)
C1—C2—C7—C6179.8 (2)C5—C6—N1—C8173.9 (2)
N1—C8—C9—C14178.4 (2)C7—C6—N1—C85.6 (4)
N1—C8—C9—C100.7 (4)C12—C11—O4—C154.1 (4)
C14—C9—C10—O3179.1 (2)C10—C11—O4—C15175.9 (2)
C8—C9—C10—O30.0 (4)C16—C15—O4—C11179.8 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.991.752.570 (3)138
O1—H1A···O2i0.991.632.610 (2)174
C3—H3B···O1ii0.932.583.453 (3)157
C4—H4A···O2iii0.932.533.341 (3)146
C15—H15A···Cg2iv0.972.753.610 (3)148
Symmetry codes: (i) x2, y+1, z+2; (ii) x2, y, z+2; (iii) x, y1, z; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC16H15NO4
Mr285.29
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)5.0306 (3), 7.1847 (4), 19.6856 (13)
α, β, γ (°)94.956 (4), 93.310 (4), 102.299 (4)
V3)690.45 (7)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.22 × 0.12 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.979, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
11954, 3331, 1429
Rint0.058
(sin θ/λ)max1)0.663
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.061, 0.150, 0.95
No. of reflections3331
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.20

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
Cg2 is the centroid of the C9–C14 ring.
D—H···AD—HH···AD···AD—H···A
O3—H3A···N10.991.752.570 (3)138
O1—H1A···O2i0.991.632.610 (2)174
C3—H3B···O1ii0.932.583.453 (3)157
C4—H4A···O2iii0.932.533.341 (3)146
C15—H15A···Cg2iv0.972.753.610 (3)148
Symmetry codes: (i) x2, y+1, z+2; (ii) x2, y, z+2; (iii) x, y1, z; (iv) x+1, y, z.
 

Acknowledgements

HK thanks PNU for financial support. MNT thanks GC University of Sargodha, Pakistan, for the research facility.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKargar, H., Kia, R., Abbasian, S. & Tahir, M. N. (2012). Acta Cryst. E68 m182.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKargar, H., Kia, R., Pahlavani, E. & Tahir, M. N. (2011). Acta Cryst. E67, o614.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKia, R., Kargar, H., Tahir, M. N. & Kianoosh, F. (2010). Acta Cryst. E66, o2296.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds