metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­chloridotris(2-methyl-1H-imidazole-κN3)cadmium

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhurunqiang@163.com

(Received 10 March 2012; accepted 13 March 2012; online 17 March 2012)

In the title compound, [CdCl2(C4H6N2)3], the CdII atom displays a penta­coordinate CdN3Cl2 coordination geometry, being coordinated by an N atom of three 2-methyl­imidazole ligands and two Cl atoms. In the crystal, the mononuclear complexes are linked by N—H⋯Cl hydrogen bonds into a two-dimensional network in the ab plane.

Related literature

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009[Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994-997.]); Ye et al. (2006[Ye, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554-6555.]); Zhang et al. (2008[Zhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468-10469.], 2010[Zhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300-7302.]).

[Scheme 1]

Experimental

Crystal data
  • [CdCl2(C4H6N2)3]

  • Mr = 429.62

  • Monoclinic, P 21 /n

  • a = 8.2983 (17) Å

  • b = 15.069 (3) Å

  • c = 14.266 (3) Å

  • β = 104.76 (3)°

  • V = 1725.1 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.58 mm−1

  • T = 293 K

  • 0.28 × 0.26 × 0.20 mm

Data collection
  • Rigaku SCXmini diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.649, Tmax = 0.729

  • 17235 measured reflections

  • 3919 independent reflections

  • 3608 reflections with I > 2σ(I)

  • Rint = 0.048

  • 2 standard reflections every 150 reflections intensity decay: none

Refinement
  • R[F2 > 2σ(F2)] = 0.027

  • wR(F2) = 0.063

  • S = 1.12

  • 3919 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N6—H6A⋯Cl1i 0.86 2.60 3.387 (2) 152
N4—H4B⋯Cl2ii 0.86 2.59 3.382 (2) 154
N2—H2A⋯Cl1iii 0.86 2.45 3.253 (2) 156
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [-x-{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); data reduction: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 2005[Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

As part of our ongoing studies of potential ferroelectric phase change materials we have determined the structures of several chromium complexes and examined the changes in their dielectric constants with temperature, which is the usual method for detecting such behaviour, as shown by (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). The dielectric constant of the title cadmium(II) compound indicates the onset of a ferroelectric phase change over the range 80–298 K.

As shown in Fig. 1, the CdII ion adopts a pentacoordinate geometry and is coordinated by an N atom from three independent 2-methyl-imidazole ligands and by two Cl atoms. The bond length of the middle Cd1–N3 bond is 2.357 (3) Å, which is longer than the other two Cd—N bond lengths [Cd1—N1= 2.276 (3) Å and Cd1—N5= 2.289 (3) Å].

In the crystal, the mononuclear complexes are linked by N–H···Cl hydrogen bonds to form a two-dimensional network in the ab plane (Fig. 2 and Table 1).

Related literature top

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Experimental top

An aqueous solution of 2-methyl-imidazole (1.64 g, 20 mmol) and hydrochloric acid (10 ml) was treated with CdCl2 (1.35 g, 10 mmol). After the mixture had been stirred for a few minutes, it was left to stans for a few days. Slow evaporation of the solution yielded colourless X-ray quality crystals.

Refinement top

The NH and C-bound H-atoms were included in calculated positions and treated as riding atoms: N-H = 0.86 Å, C-H = 0.93 and 0.96 Å for CH, and CH3 H-atoms, respectively, with Uiso(H) = k × Ueq(N,C), where k = 1.5 for CH3 H-atoms and = 1.2 for other H-atoms.

Structure description top

As part of our ongoing studies of potential ferroelectric phase change materials we have determined the structures of several chromium complexes and examined the changes in their dielectric constants with temperature, which is the usual method for detecting such behaviour, as shown by (Fu et al., 2009; Ye et al., 2006; Zhang et al., 2008; Zhang et al., 2010). The dielectric constant of the title cadmium(II) compound indicates the onset of a ferroelectric phase change over the range 80–298 K.

As shown in Fig. 1, the CdII ion adopts a pentacoordinate geometry and is coordinated by an N atom from three independent 2-methyl-imidazole ligands and by two Cl atoms. The bond length of the middle Cd1–N3 bond is 2.357 (3) Å, which is longer than the other two Cd—N bond lengths [Cd1—N1= 2.276 (3) Å and Cd1—N5= 2.289 (3) Å].

In the crystal, the mononuclear complexes are linked by N–H···Cl hydrogen bonds to form a two-dimensional network in the ab plane (Fig. 2 and Table 1).

For general background to ferroelectric metal-organic frameworks, see: Fu et al. (2009); Ye et al. (2006); Zhang et al. (2008, 2010).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the moolecular structure of the title compound, with the atom numbering. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the c axis of the two-dimensional hydrogen bonded network of the title compound. The N-H···Cl bonds are shown as dashed lines; see Table 1 for details.
Dichloridotris(2-methyl-1H-imidazole-κN3)cadmium top
Crystal data top
[CdCl2(C4H6N2)3]F(000) = 856
Mr = 429.62Dx = 1.654 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3960 reflections
a = 8.2983 (17) Åθ = 2.3–27.5°
b = 15.069 (3) ŵ = 1.58 mm1
c = 14.266 (3) ÅT = 293 K
β = 104.76 (3)°Block, colourless
V = 1725.1 (6) Å30.28 × 0.26 × 0.20 mm
Z = 4
Data collection top
Rigaku SCXmini
diffractometer
3608 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.048
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
CCD_Profile_fitting scansh = 1010
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.649, Tmax = 0.729l = 1818
17235 measured reflections2 standard reflections every 150 reflections
3919 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.063 w = 1/[σ2(Fo2) + (0.0191P)2 + 0.8231P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max = 0.002
3919 reflectionsΔρmax = 0.36 e Å3
191 parametersΔρmin = 0.92 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0486 (9)
Crystal data top
[CdCl2(C4H6N2)3]V = 1725.1 (6) Å3
Mr = 429.62Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.2983 (17) ŵ = 1.58 mm1
b = 15.069 (3) ÅT = 293 K
c = 14.266 (3) Å0.28 × 0.26 × 0.20 mm
β = 104.76 (3)°
Data collection top
Rigaku SCXmini
diffractometer
3608 reflections with I > 2σ(I)
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
Rint = 0.048
Tmin = 0.649, Tmax = 0.7292 standard reflections every 150 reflections
17235 measured reflections intensity decay: none
3919 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0270 restraints
wR(F2) = 0.063H-atom parameters constrained
S = 1.12Δρmax = 0.36 e Å3
3919 reflectionsΔρmin = 0.92 e Å3
191 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1137 (4)0.0341 (2)0.8747 (2)0.0599 (9)
H1A0.04820.08690.89220.090*
H1B0.04300.01710.88990.090*
H1C0.19750.03170.91020.090*
C20.1954 (3)0.03544 (17)0.76864 (19)0.0370 (6)
C30.2860 (3)0.07277 (18)0.6168 (2)0.0416 (6)
H3A0.30380.10500.55950.050*
C40.3544 (4)0.0069 (2)0.6266 (2)0.0533 (8)
H4A0.42620.03960.57830.064*
C50.1447 (5)0.0007 (2)0.6192 (2)0.0643 (10)
H5A0.07550.05100.59500.096*
H5B0.07770.05200.61020.096*
H5C0.22950.00490.58470.096*
C60.2248 (3)0.01344 (17)0.72517 (18)0.0366 (6)
C70.3032 (4)0.06615 (18)0.8714 (2)0.0445 (7)
H7A0.31410.10370.92440.053*
C80.3793 (4)0.0136 (2)0.8729 (2)0.0550 (8)
H8A0.45120.04090.92580.066*
C90.4629 (4)0.2488 (3)0.7356 (2)0.0603 (9)
H9A0.40120.24190.78360.090*
H9B0.52010.30470.74470.090*
H9C0.54260.20150.74180.090*
C100.3461 (3)0.24599 (18)0.63706 (19)0.0359 (6)
C110.2578 (3)0.2484 (2)0.4767 (2)0.0496 (8)
H11A0.25510.25110.41120.060*
C120.1267 (3)0.23813 (19)0.51574 (19)0.0400 (6)
H12A0.01610.23330.48060.048*
N10.1852 (2)0.09900 (13)0.70559 (15)0.0347 (5)
N20.2963 (3)0.02975 (15)0.72257 (17)0.0468 (6)
H2A0.32020.07770.74880.056*
N30.2063 (3)0.08299 (13)0.77834 (15)0.0341 (5)
N40.3283 (3)0.04584 (15)0.78021 (18)0.0483 (6)
H4B0.35770.09580.76050.058*
N50.1816 (2)0.23594 (14)0.61610 (14)0.0319 (4)
N60.3953 (3)0.25409 (17)0.55365 (16)0.0443 (6)
H6A0.49620.26150.54980.053*
Cd10.021838 (19)0.201370 (10)0.720480 (12)0.02453 (8)
Cl10.19805 (7)0.31401 (4)0.62092 (4)0.03134 (14)
Cl20.10468 (9)0.29333 (4)0.87083 (4)0.03570 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.078 (2)0.0542 (18)0.0454 (17)0.0181 (17)0.0111 (15)0.0106 (15)
C20.0358 (13)0.0310 (12)0.0454 (14)0.0048 (10)0.0125 (11)0.0063 (11)
C30.0385 (14)0.0369 (14)0.0437 (15)0.0061 (11)0.0002 (11)0.0096 (12)
C40.0529 (18)0.0442 (16)0.0543 (17)0.0205 (14)0.0020 (14)0.0016 (14)
C50.081 (2)0.0572 (19)0.0457 (17)0.0264 (18)0.0005 (16)0.0192 (16)
C60.0410 (14)0.0294 (12)0.0389 (13)0.0107 (11)0.0096 (11)0.0039 (11)
C70.0497 (16)0.0404 (14)0.0371 (14)0.0117 (12)0.0005 (12)0.0032 (12)
C80.0583 (19)0.0482 (17)0.0493 (17)0.0240 (15)0.0033 (14)0.0036 (14)
C90.0354 (15)0.097 (3)0.0478 (17)0.0058 (17)0.0094 (13)0.0041 (19)
C100.0255 (12)0.0451 (15)0.0395 (14)0.0032 (10)0.0129 (10)0.0050 (12)
C110.0423 (16)0.074 (2)0.0365 (15)0.0036 (15)0.0170 (12)0.0099 (15)
C120.0305 (13)0.0520 (16)0.0368 (14)0.0021 (12)0.0075 (10)0.0060 (13)
N10.0347 (11)0.0240 (10)0.0451 (12)0.0059 (8)0.0099 (9)0.0046 (9)
N20.0512 (14)0.0315 (11)0.0560 (14)0.0151 (10)0.0104 (11)0.0104 (11)
N30.0384 (11)0.0271 (10)0.0360 (11)0.0091 (9)0.0081 (9)0.0033 (9)
N40.0541 (15)0.0296 (11)0.0577 (15)0.0193 (10)0.0076 (12)0.0048 (11)
N50.0235 (10)0.0402 (11)0.0339 (11)0.0018 (8)0.0106 (8)0.0050 (9)
N60.0265 (11)0.0644 (16)0.0465 (13)0.0029 (10)0.0175 (10)0.0086 (12)
Cd10.02507 (11)0.01824 (11)0.03208 (12)0.00024 (6)0.01061 (7)0.00117 (6)
Cl10.0265 (3)0.0266 (3)0.0400 (3)0.0036 (2)0.0068 (2)0.0002 (2)
Cl20.0493 (4)0.0285 (3)0.0308 (3)0.0028 (2)0.0130 (3)0.0049 (2)
Geometric parameters (Å, º) top
C1—C21.492 (4)C8—H8A0.9300
C1—H1A0.9600C9—C101.491 (4)
C1—H1B0.9600C9—H9A0.9600
C1—H1C0.9600C9—H9B0.9600
C2—N11.331 (3)C9—H9C0.9600
C2—N21.348 (3)C10—N51.330 (3)
C3—C41.350 (4)C10—N61.358 (3)
C3—N11.386 (3)C11—C121.351 (4)
C3—H3A0.9300C11—N61.370 (3)
C4—N21.374 (4)C11—H11A0.9300
C4—H4A0.9300C12—N51.388 (3)
C5—C61.501 (4)C12—H12A0.9300
C5—H5A0.9600N1—Cd12.2781 (19)
C5—H5B0.9600N2—H2A0.8600
C5—H5C0.9600N3—Cd12.359 (2)
C6—N31.325 (3)N4—H4B0.8600
C6—N41.345 (3)N5—Cd12.292 (2)
C7—C81.356 (4)N6—H6A0.8600
C7—N31.389 (3)Cd1—Cl22.4984 (8)
C7—H7A0.9300Cd1—Cl12.6283 (8)
C8—N41.370 (4)
C2—C1—H1A109.5N5—C10—C9126.8 (2)
C2—C1—H1B109.5N6—C10—C9123.7 (2)
H1A—C1—H1B109.5C12—C11—N6105.7 (2)
C2—C1—H1C109.5C12—C11—H11A127.1
H1A—C1—H1C109.5N6—C11—H11A127.1
H1B—C1—H1C109.5C11—C12—N5109.9 (2)
N1—C2—N2109.5 (2)C11—C12—H12A125.0
N1—C2—C1127.2 (2)N5—C12—H12A125.0
N2—C2—C1123.4 (2)C2—N1—C3106.5 (2)
C4—C3—N1109.3 (2)C2—N1—Cd1126.89 (17)
C4—C3—H3A125.3C3—N1—Cd1122.94 (17)
N1—C3—H3A125.3C2—N2—C4108.6 (2)
C3—C4—N2106.0 (2)C2—N2—H2A125.7
C3—C4—H4A127.0C4—N2—H2A125.7
N2—C4—H4A127.0C6—N3—C7106.2 (2)
C6—C5—H5A109.5C6—N3—Cd1123.87 (17)
C6—C5—H5B109.5C7—N3—Cd1129.69 (17)
H5A—C5—H5B109.5C6—N4—C8108.8 (2)
C6—C5—H5C109.5C6—N4—H4B125.6
H5A—C5—H5C109.5C8—N4—H4B125.6
H5B—C5—H5C109.5C10—N5—C12106.1 (2)
N3—C6—N4109.9 (2)C10—N5—Cd1127.62 (17)
N3—C6—C5126.2 (2)C12—N5—Cd1125.68 (16)
N4—C6—C5123.8 (2)C10—N6—C11108.7 (2)
C8—C7—N3109.3 (2)C10—N6—H6A125.6
C8—C7—H7A125.4C11—N6—H6A125.6
N3—C7—H7A125.4N1—Cd1—N5129.84 (8)
C7—C8—N4105.7 (2)N1—Cd1—N385.82 (8)
C7—C8—H8A127.1N5—Cd1—N388.17 (7)
N4—C8—H8A127.1N1—Cd1—Cl2119.45 (6)
C10—C9—H9A109.5N5—Cd1—Cl2110.70 (6)
C10—C9—H9B109.5N3—Cd1—Cl296.14 (6)
H9A—C9—H9B109.5N1—Cd1—Cl189.07 (6)
C10—C9—H9C109.5N5—Cd1—Cl186.50 (5)
H9A—C9—H9C109.5N3—Cd1—Cl1167.67 (5)
H9B—C9—H9C109.5Cl2—Cd1—Cl196.15 (3)
N5—C10—N6109.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl1i0.862.603.387 (2)152
N4—H4B···Cl2ii0.862.593.382 (2)154
N2—H2A···Cl1iii0.862.453.253 (2)156
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y1/2, z+3/2.

Experimental details

Crystal data
Chemical formula[CdCl2(C4H6N2)3]
Mr429.62
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.2983 (17), 15.069 (3), 14.266 (3)
β (°) 104.76 (3)
V3)1725.1 (6)
Z4
Radiation typeMo Kα
µ (mm1)1.58
Crystal size (mm)0.28 × 0.26 × 0.20
Data collection
DiffractometerRigaku SCXmini
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.649, 0.729
No. of measured, independent and
observed [I > 2σ(I)] reflections
17235, 3919, 3608
Rint0.048
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.063, 1.12
No. of reflections3919
No. of parameters191
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.92

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N6—H6A···Cl1i0.862.603.387 (2)152
N4—H4B···Cl2ii0.862.593.382 (2)154
N2—H2A···Cl1iii0.862.453.253 (2)156
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y1/2, z+3/2; (iii) x1/2, y1/2, z+3/2.
 

Acknowledgements

This work was supported by Southeast University.

References

First citationBrandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationFu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun. 12, 994–997.  Web of Science CSD CrossRef CAS Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, Q., Song, Y.-M., Wang, G.-X., Chen, K. & Fu, D.-W. (2006). J. Am. Chem. Soc. 128, 6554–6555.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Xiong, R.-G. & Huang, S.-P. D. (2008). J. Am. Chem. Soc. 130, 10468–10469.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZhang, W., Ye, H.-Y., Cai, H.-L., Ge, J.-Z. & Xiong, R.-G. (2010). J. Am. Chem. Soc. 132, 7300–7302.  Web of Science CSD CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds