metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acridine-κN)(pyridine-2,6-di­carboxyl­ato-κ3O2,N,O6)palladium(II)

aSchool of Applied Chemical Engineering, Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 14 March 2012; accepted 15 March 2012; online 21 March 2012)

In the title complex, [Pd(C7H3NO4)(C13H9N)], the PdII ion is four-coordinated in a distorted square-planar environment by one N and two O atoms from the tridentate pyridine-2,6-dicarboxyl­ate (dipic) anionic ligand and one N atom of the acridine (acr) ligand. The dipic and acr ligands are nearly planar [maximum deviation = 0.069 (3) Å in dipic and 0.091 (4) Å in acr] and the dihedral angle between their mean planes is 58.67 (7)°. The Pd—O bond lengths are nearly equal, but the Pd—N bond lengths are slightly different. There is a short C—H⋯O inter­action in the mol­ecule involving the two ligands. In the crystal, complex mol­ecules are linked through C—H⋯O inter­actions, forming a three-dimensional network. There are also a number of inter­molecular ππ inter­actions present, the shortest ring centroid–centroid distance being 3.622 (3) Å.

Related literature

For the crystal structure of the related PtII complex [Pt(C7H3NO4)(C13H9N)], see: Ha (2011[Ha, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 481-482.]).

[Scheme 1]

Experimental

Crystal data
  • [Pd(C7H3NO4)(C13H9N)]

  • Mr = 450.72

  • Monoclinic, C 2/c

  • a = 25.299 (6) Å

  • b = 9.193 (2) Å

  • c = 13.917 (3) Å

  • β = 94.289 (5)°

  • V = 3227.8 (13) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.18 mm−1

  • T = 200 K

  • 0.19 × 0.18 × 0.14 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.754, Tmax = 1.000

  • 9414 measured reflections

  • 3152 independent reflections

  • 2263 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.100

  • S = 0.99

  • 3152 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 1.21 e Å−3

  • Δρmin = −1.14 e Å−3

Table 1
Selected geometric parameters (Å, °)

Pd1—N1 1.923 (4)
Pd1—O1 2.036 (3)
Pd1—O3 2.037 (3)
Pd1—N2 2.063 (4)
N1—Pd1—O1 81.25 (14)
N1—Pd1—O3 81.17 (14)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C19—H19⋯O3 0.95 2.48 3.196 (6) 132
C2—H2⋯O4i 0.95 2.26 3.193 (6) 166
C14—H14⋯O1ii 0.95 2.47 3.307 (6) 147
C18—H18⋯O4iii 0.95 2.47 3.285 (6) 144
Symmetry codes: (i) [x, -y+2, z+{\script{1\over 2}}]; (ii) -x, -y+1, -z+1; (iii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title complex is isomorphous with the previously reported analogous PtII complex [Pt(dipic)(acr)] (Ha, 2011).

In the title complex, the PdII ion is four-coordinated in a distorted square-planar environment by one N and two O atoms from the tridentate pyridine-2,6-dicarboxylate (dipic) anionic ligand and one N atom of the acridine (acr) ligand (Fig. 1). The main contribution to the distortion is the tight N—Pd—O chelate angles [N1—Pd1—O1 = 81.25 (14)° and N1—Pd1—O3 = 81.17 (14)°], which results in a non-linear trans arrangement of the O1—Pd1—O3 bond with 162.40 (12)°, whereas the N1—Pd1—N2 bond is almost linear, 178.40 (16)°. The Pd—O bond lengths are nearly equal [2.036 (3) Å and 2.037 (3) Å], but the Pd—N bond lengths are slightly different. The Pd1—N1(dipic) bond [1.923 (4) Å] is somewhat shorter than the Pd1—N2(acr) bond [2.063 (4) Å] (Table 1). The dipic and acr ligands are nearly planar [maximum deviation = 0.069 (3) Å in dipic and 0.091 (4) Å in acr] and the dihedral angle between the least-squares planes of the two ligands is 58.67 (7)°. In the molecule, there is a short C19—H19···O3 interaction involving the two ligands.

In the crystal, complex molecules are linked through C—H···O interactions, forming a three-dimensional network (Fig. 2 and Table 2). The crystal structure also displays numerous intermolecular π···π interactions between adjacent six-membered rings: Cg1···Cg1i 3.822 (3) Å; Cg2···Cg2ii 3.622 (3) Å; Cg2···Cg2iii 3.854 (3) Å; Cg2···Cg3iii 3.638 (3) Å; Cg3···Cg4iii 3.986 (3) Å [Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N1/C1-C5, N2/C8/C13-C15/C20, C8-C13 and C15-C20, respectively; symmetry codes: (i) x+1/2, -y+3/2, z+3/2; (ii) -x, y, -z+1/2; (iii) -x, -y+1, -z+1].

Related literature top

For the crystal structure of the related PtII complex [Pt(C7H3NO4)(C13H9N)], see: Ha (2011).

Experimental top

To a solution of acridine (0.0898 g, 0.501 mmol) in EtOH (20 ml) and MeOH (10 ml) were added pyridine-2,6-dicarboxylic acid (0.0838 g, 0.501 mmol) and Na2PdCl4 (0.1465 g, 0.498 mmol) and stirred for 3 h at room temperature. After addition of H2O (10 ml) to the reaction mixture, the formed precipitate was separated by filtration, washed with EtOH and ether, and dried at 333 K, to give a yellow powder (0.1546 g). Block-like yellow crystals, suitable for X-ray analysis, were obtained by slow evaporation of an acetone solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms: C—H = 0.95 Å with Uiso(H) = 1.2Ueq(C). The highest peak (1.21 e Å-3) and the deepest hole (-1.14 e Å-3) in the difference Fourier map are located 1.38 Å and 0.99 Å, respectively, from the Pd1 atom.

Structure description top

The title complex is isomorphous with the previously reported analogous PtII complex [Pt(dipic)(acr)] (Ha, 2011).

In the title complex, the PdII ion is four-coordinated in a distorted square-planar environment by one N and two O atoms from the tridentate pyridine-2,6-dicarboxylate (dipic) anionic ligand and one N atom of the acridine (acr) ligand (Fig. 1). The main contribution to the distortion is the tight N—Pd—O chelate angles [N1—Pd1—O1 = 81.25 (14)° and N1—Pd1—O3 = 81.17 (14)°], which results in a non-linear trans arrangement of the O1—Pd1—O3 bond with 162.40 (12)°, whereas the N1—Pd1—N2 bond is almost linear, 178.40 (16)°. The Pd—O bond lengths are nearly equal [2.036 (3) Å and 2.037 (3) Å], but the Pd—N bond lengths are slightly different. The Pd1—N1(dipic) bond [1.923 (4) Å] is somewhat shorter than the Pd1—N2(acr) bond [2.063 (4) Å] (Table 1). The dipic and acr ligands are nearly planar [maximum deviation = 0.069 (3) Å in dipic and 0.091 (4) Å in acr] and the dihedral angle between the least-squares planes of the two ligands is 58.67 (7)°. In the molecule, there is a short C19—H19···O3 interaction involving the two ligands.

In the crystal, complex molecules are linked through C—H···O interactions, forming a three-dimensional network (Fig. 2 and Table 2). The crystal structure also displays numerous intermolecular π···π interactions between adjacent six-membered rings: Cg1···Cg1i 3.822 (3) Å; Cg2···Cg2ii 3.622 (3) Å; Cg2···Cg2iii 3.854 (3) Å; Cg2···Cg3iii 3.638 (3) Å; Cg3···Cg4iii 3.986 (3) Å [Cg1, Cg2, Cg3 and Cg4 are the centroids of rings N1/C1-C5, N2/C8/C13-C15/C20, C8-C13 and C15-C20, respectively; symmetry codes: (i) x+1/2, -y+3/2, z+3/2; (ii) -x, y, -z+1/2; (iii) -x, -y+1, -z+1].

For the crystal structure of the related PtII complex [Pt(C7H3NO4)(C13H9N)], see: Ha (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title complex, with atom numbering. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title complex. Intermolecular C—H···O interactions are drawn as dashed lines.
(Acridine-κN)(pyridine-2,6-dicarboxylato- κ3O2,N,O6)palladium(II) top
Crystal data top
[Pd(C7H3NO4)(C13H9N)]F(000) = 1792
Mr = 450.72Dx = 1.855 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3572 reflections
a = 25.299 (6) Åθ = 2.4–25.8°
b = 9.193 (2) ŵ = 1.18 mm1
c = 13.917 (3) ÅT = 200 K
β = 94.289 (5)°Block, yellow
V = 3227.8 (13) Å30.19 × 0.18 × 0.14 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
3152 independent reflections
Radiation source: fine-focus sealed tube2263 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.074
φ and ω scansθmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 3124
Tmin = 0.754, Tmax = 1.000k = 1111
9414 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0299P)2]
where P = (Fo2 + 2Fc2)/3
3152 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 1.21 e Å3
0 restraintsΔρmin = 1.14 e Å3
Crystal data top
[Pd(C7H3NO4)(C13H9N)]V = 3227.8 (13) Å3
Mr = 450.72Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.299 (6) ŵ = 1.18 mm1
b = 9.193 (2) ÅT = 200 K
c = 13.917 (3) Å0.19 × 0.18 × 0.14 mm
β = 94.289 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
3152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
2263 reflections with I > 2σ(I)
Tmin = 0.754, Tmax = 1.000Rint = 0.074
9414 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 0.99Δρmax = 1.21 e Å3
3152 reflectionsΔρmin = 1.14 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pd10.134139 (13)0.71007 (4)0.40295 (3)0.02570 (14)
O10.11671 (13)0.7844 (4)0.5347 (2)0.0352 (8)
O20.14722 (14)0.9431 (4)0.6479 (3)0.0439 (9)
O30.17122 (12)0.6757 (3)0.2800 (2)0.0287 (8)
O40.23893 (13)0.7628 (3)0.2027 (2)0.0339 (8)
N10.19313 (14)0.8401 (4)0.4277 (3)0.0239 (8)
C10.19562 (18)0.9152 (5)0.5092 (3)0.0268 (11)
C20.23707 (18)1.0133 (5)0.5271 (4)0.0314 (11)
H20.24071.06710.58550.038*
C30.27301 (19)1.0302 (5)0.4574 (4)0.0332 (12)
H30.30121.09780.46780.040*
C40.26854 (17)0.9507 (5)0.3732 (3)0.0272 (11)
H40.29350.96210.32610.033*
C50.22685 (16)0.8542 (5)0.3591 (3)0.0225 (10)
C60.15056 (19)0.8822 (5)0.5717 (4)0.0303 (11)
C70.21303 (19)0.7596 (5)0.2724 (4)0.0264 (11)
N20.06979 (14)0.5735 (4)0.3794 (3)0.0272 (9)
C80.01981 (17)0.6267 (5)0.3831 (3)0.0255 (10)
C90.0109 (2)0.7782 (5)0.3909 (4)0.0341 (12)
H90.04010.84360.39430.041*
C100.0395 (2)0.8306 (6)0.3935 (4)0.0379 (13)
H100.04480.93250.39930.046*
C110.08419 (19)0.7374 (6)0.3878 (4)0.0386 (13)
H110.11890.77670.38780.046*
C120.07704 (18)0.5922 (6)0.3823 (4)0.0327 (12)
H120.10690.52940.38020.039*
C130.02531 (18)0.5317 (5)0.3796 (3)0.0273 (11)
C140.01654 (18)0.3828 (5)0.3726 (3)0.0305 (11)
H140.04560.31770.37350.037*
C150.03403 (18)0.3279 (5)0.3645 (3)0.0270 (11)
C160.0441 (2)0.1783 (5)0.3529 (4)0.0343 (12)
H160.01570.11090.35310.041*
C170.0936 (2)0.1295 (5)0.3414 (4)0.0361 (12)
H170.09950.02840.33300.043*
C180.1361 (2)0.2263 (5)0.3419 (4)0.0349 (12)
H180.17050.19060.33250.042*
C190.12879 (18)0.3722 (5)0.3557 (3)0.0283 (11)
H190.15830.43640.35700.034*
C200.07736 (17)0.4280 (5)0.3680 (3)0.0248 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pd10.0201 (2)0.0276 (2)0.0302 (2)0.00417 (15)0.00736 (14)0.00110 (17)
O10.0278 (19)0.041 (2)0.039 (2)0.0089 (15)0.0170 (15)0.0026 (17)
O20.053 (2)0.047 (2)0.035 (2)0.0052 (18)0.0240 (18)0.0064 (18)
O30.0262 (18)0.0322 (19)0.0281 (19)0.0041 (14)0.0041 (14)0.0009 (14)
O40.037 (2)0.038 (2)0.029 (2)0.0028 (15)0.0153 (16)0.0019 (15)
N10.023 (2)0.024 (2)0.025 (2)0.0022 (16)0.0078 (16)0.0022 (17)
C10.031 (3)0.023 (2)0.027 (3)0.005 (2)0.005 (2)0.003 (2)
C20.033 (3)0.034 (3)0.027 (3)0.003 (2)0.001 (2)0.003 (2)
C30.030 (3)0.034 (3)0.036 (3)0.014 (2)0.004 (2)0.001 (2)
C40.021 (3)0.030 (3)0.032 (3)0.0014 (19)0.007 (2)0.008 (2)
C50.018 (2)0.024 (2)0.027 (3)0.0002 (18)0.0066 (19)0.003 (2)
C60.030 (3)0.030 (3)0.032 (3)0.003 (2)0.013 (2)0.005 (2)
C70.027 (3)0.023 (3)0.029 (3)0.002 (2)0.004 (2)0.004 (2)
N20.022 (2)0.032 (2)0.028 (2)0.0041 (17)0.0055 (17)0.0018 (17)
C80.018 (2)0.037 (3)0.022 (3)0.003 (2)0.0056 (18)0.006 (2)
C90.031 (3)0.028 (3)0.044 (3)0.004 (2)0.009 (2)0.010 (2)
C100.031 (3)0.035 (3)0.049 (4)0.004 (2)0.011 (2)0.006 (2)
C110.019 (3)0.057 (4)0.040 (3)0.003 (2)0.004 (2)0.004 (3)
C120.019 (3)0.041 (3)0.038 (3)0.003 (2)0.004 (2)0.006 (2)
C130.023 (3)0.038 (3)0.022 (3)0.005 (2)0.0060 (19)0.002 (2)
C140.025 (3)0.034 (3)0.033 (3)0.011 (2)0.005 (2)0.001 (2)
C150.023 (3)0.037 (3)0.021 (3)0.008 (2)0.0039 (19)0.002 (2)
C160.033 (3)0.031 (3)0.039 (3)0.011 (2)0.010 (2)0.002 (2)
C170.040 (3)0.028 (3)0.042 (3)0.003 (2)0.013 (2)0.002 (2)
C180.031 (3)0.039 (3)0.037 (3)0.000 (2)0.011 (2)0.001 (2)
C190.023 (3)0.031 (3)0.031 (3)0.006 (2)0.006 (2)0.002 (2)
C200.025 (3)0.030 (3)0.020 (2)0.004 (2)0.0053 (19)0.0005 (19)
Geometric parameters (Å, º) top
Pd1—N11.923 (4)C8—C131.435 (6)
Pd1—O12.036 (3)C9—C101.367 (7)
Pd1—O32.037 (3)C9—H90.9500
Pd1—N22.063 (4)C10—C111.416 (7)
O1—C61.319 (6)C10—H100.9500
O2—C61.208 (6)C11—C121.350 (7)
O3—C71.320 (6)C11—H110.9500
O4—C71.211 (6)C12—C131.425 (6)
N1—C11.325 (6)C12—H120.9500
N1—C51.333 (6)C13—C141.391 (6)
C1—C21.391 (6)C14—C151.388 (6)
C1—C61.515 (6)C14—H140.9500
C2—C31.388 (7)C15—C161.410 (7)
C2—H20.9500C15—C201.429 (6)
C3—C41.378 (7)C16—C171.351 (7)
C3—H30.9500C16—H160.9500
C4—C51.381 (6)C17—C181.395 (7)
C4—H40.9500C17—H170.9500
C5—C71.507 (7)C18—C191.369 (7)
N2—C81.360 (5)C18—H180.9500
N2—C201.362 (6)C19—C201.421 (6)
C8—C91.417 (6)C19—H190.9500
N1—Pd1—O181.25 (14)C9—C8—C13118.1 (4)
N1—Pd1—O381.17 (14)C10—C9—C8120.2 (4)
O1—Pd1—O3162.40 (12)C10—C9—H9119.9
N1—Pd1—N2178.40 (16)C8—C9—H9119.9
O1—Pd1—N297.22 (14)C9—C10—C11121.9 (5)
O3—Pd1—N2100.37 (14)C9—C10—H10119.1
C6—O1—Pd1113.7 (3)C11—C10—H10119.1
C7—O3—Pd1113.5 (3)C12—C11—C10119.5 (5)
C1—N1—C5124.7 (4)C12—C11—H11120.3
C1—N1—Pd1117.6 (3)C10—C11—H11120.3
C5—N1—Pd1117.5 (3)C11—C12—C13121.0 (4)
N1—C1—C2118.6 (4)C11—C12—H12119.5
N1—C1—C6113.4 (4)C13—C12—H12119.5
C2—C1—C6128.0 (4)C14—C13—C12122.5 (4)
C3—C2—C1118.1 (5)C14—C13—C8118.1 (4)
C3—C2—H2120.9C12—C13—C8119.4 (4)
C1—C2—H2120.9C15—C14—C13121.1 (4)
C4—C3—C2121.3 (4)C15—C14—H14119.4
C4—C3—H3119.4C13—C14—H14119.4
C2—C3—H3119.4C14—C15—C16122.7 (4)
C3—C4—C5118.3 (4)C14—C15—C20118.2 (4)
C3—C4—H4120.8C16—C15—C20119.2 (4)
C5—C4—H4120.8C17—C16—C15121.0 (4)
N1—C5—C4118.9 (4)C17—C16—H16119.5
N1—C5—C7113.2 (4)C15—C16—H16119.5
C4—C5—C7127.9 (4)C16—C17—C18120.5 (5)
O2—C6—O1124.9 (4)C16—C17—H17119.7
O2—C6—C1121.1 (4)C18—C17—H17119.7
O1—C6—C1114.0 (4)C19—C18—C17120.9 (5)
O4—C7—O3124.3 (4)C19—C18—H18119.5
O4—C7—C5121.3 (4)C17—C18—H18119.5
O3—C7—C5114.4 (4)C18—C19—C20120.3 (4)
C8—N2—C20119.8 (4)C18—C19—H19119.9
C8—N2—Pd1120.0 (3)C20—C19—H19119.9
C20—N2—Pd1120.0 (3)N2—C20—C19120.4 (4)
N2—C8—C9120.7 (4)N2—C20—C15121.5 (4)
N2—C8—C13121.3 (4)C19—C20—C15118.0 (4)
N1—Pd1—O1—C61.6 (3)O3—Pd1—N2—C8124.7 (3)
O3—Pd1—O1—C64.0 (6)O1—Pd1—N2—C20118.8 (3)
N2—Pd1—O1—C6178.0 (3)O3—Pd1—N2—C2060.6 (4)
N1—Pd1—O3—C74.1 (3)C20—N2—C8—C9177.3 (4)
O1—Pd1—O3—C76.6 (6)Pd1—N2—C8—C98.0 (6)
N2—Pd1—O3—C7175.4 (3)C20—N2—C8—C132.9 (6)
O1—Pd1—N1—C11.5 (3)Pd1—N2—C8—C13171.8 (3)
O3—Pd1—N1—C1179.3 (3)N2—C8—C9—C10179.3 (5)
O1—Pd1—N1—C5177.7 (3)C13—C8—C9—C100.9 (7)
O3—Pd1—N1—C53.0 (3)C8—C9—C10—C110.5 (8)
C5—N1—C1—C22.1 (7)C9—C10—C11—C121.9 (8)
Pd1—N1—C1—C2178.0 (3)C10—C11—C12—C131.7 (8)
C5—N1—C1—C6177.1 (4)C11—C12—C13—C14179.1 (5)
Pd1—N1—C1—C61.2 (5)C11—C12—C13—C80.2 (7)
N1—C1—C2—C31.7 (7)N2—C8—C13—C140.2 (6)
C6—C1—C2—C3177.4 (4)C9—C8—C13—C14179.5 (4)
C1—C2—C3—C41.1 (7)N2—C8—C13—C12179.1 (4)
C2—C3—C4—C50.7 (7)C9—C8—C13—C121.1 (6)
C1—N1—C5—C41.8 (7)C12—C13—C14—C15176.2 (4)
Pd1—N1—C5—C4177.7 (3)C8—C13—C14—C153.2 (7)
C1—N1—C5—C7177.5 (4)C13—C14—C15—C16177.0 (4)
Pd1—N1—C5—C71.5 (5)C13—C14—C15—C202.9 (7)
C3—C4—C5—N11.0 (7)C14—C15—C16—C17177.4 (5)
C3—C4—C5—C7178.1 (4)C20—C15—C16—C172.5 (7)
Pd1—O1—C6—O2178.3 (4)C15—C16—C17—C180.7 (8)
Pd1—O1—C6—C11.4 (5)C16—C17—C18—C191.2 (8)
N1—C1—C6—O2179.4 (4)C17—C18—C19—C201.2 (7)
C2—C1—C6—O20.3 (8)C8—N2—C20—C19174.6 (4)
N1—C1—C6—O10.2 (6)Pd1—N2—C20—C1910.7 (6)
C2—C1—C6—O1179.3 (4)C8—N2—C20—C153.2 (6)
Pd1—O3—C7—O4175.6 (4)Pd1—N2—C20—C15171.5 (3)
Pd1—O3—C7—C54.4 (5)C18—C19—C20—N2178.4 (4)
N1—C5—C7—O4177.9 (4)C18—C19—C20—C150.6 (7)
C4—C5—C7—O41.2 (7)C14—C15—C20—N20.3 (7)
N1—C5—C7—O32.1 (6)C16—C15—C20—N2179.8 (4)
C4—C5—C7—O3178.8 (4)C14—C15—C20—C19177.5 (4)
O1—Pd1—N2—C855.9 (3)C16—C15—C20—C192.4 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O30.952.483.196 (6)132
C2—H2···O4i0.952.263.193 (6)166
C14—H14···O1ii0.952.473.307 (6)147
C18—H18···O4iii0.952.473.285 (6)144
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Pd(C7H3NO4)(C13H9N)]
Mr450.72
Crystal system, space groupMonoclinic, C2/c
Temperature (K)200
a, b, c (Å)25.299 (6), 9.193 (2), 13.917 (3)
β (°) 94.289 (5)
V3)3227.8 (13)
Z8
Radiation typeMo Kα
µ (mm1)1.18
Crystal size (mm)0.19 × 0.18 × 0.14
Data collection
DiffractometerBruker SMART 1000 CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.754, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9414, 3152, 2263
Rint0.074
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.100, 0.99
No. of reflections3152
No. of parameters244
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.21, 1.14

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) top
Pd1—N11.923 (4)Pd1—O32.037 (3)
Pd1—O12.036 (3)Pd1—N22.063 (4)
N1—Pd1—O181.25 (14)N1—Pd1—O381.17 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C19—H19···O30.952.483.196 (6)132
C2—H2···O4i0.952.263.193 (6)166
C14—H14···O1ii0.952.473.307 (6)147
C18—H18···O4iii0.952.473.285 (6)144
Symmetry codes: (i) x, y+2, z+1/2; (ii) x, y+1, z+1; (iii) x+1/2, y1/2, z+1/2.
 

Acknowledgements

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education, Science and Technology (grant No. 2011-0030747).

References

First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHa, K. (2011). Z. Kristallogr. New Cryst. Struct. 226, 481–482.  CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds