metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[2-(di­phenyl­phosphanyl-κP)benzaldehyde]­iodidogold(I)

aSchool of Biomolecular and Physical Sciences, Griffith University, Brisbane, Queensland 4111, Australia, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 16 March 2012; accepted 17 March 2012; online 24 March 2012)

In the title compound, [AuI(C19H15OP)2], the complete mol­ecule is generated by the application of twofold symmetry. The AuI atom is in a trigonal–planar geometry within an IP2 donor set with the greatest distortion seen in the P—Au—P angle [128.49 (3) °]. Close intra­molecular Au⋯O inter­actions [3.172 (3) Å] are observed. No specific inter­molecular inter­actions are noted in the crystal packing.

Related literature

For a discussion on intra­molecular Au⋯O inter­actions, see: Kuan et al. (2008[Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548-564.]). For related structures, see: Bowmaker et al. (1987[Bowmaker, G. A., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1089-1098.]); Elsegood et al. (2006[Elsegood, M. R. J., Smith, M. B. & Dale, S. H. (2006). Acta Cryst. E62, m1850-m1852.]).

[Scheme 1]

Experimental

Crystal data
  • [AuI(C19H15OP)2]

  • Mr = 904.43

  • Monoclinic, C 2/c

  • a = 18.1099 (13) Å

  • b = 10.1856 (6) Å

  • c = 19.8438 (13) Å

  • β = 115.965 (2)°

  • V = 3290.9 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.54 mm−1

  • T = 223 K

  • 0.40 × 0.30 × 0.05 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.392, Tmax = 1.000

  • 13430 measured reflections

  • 4792 independent reflections

  • 4319 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.026

  • wR(F2) = 0.059

  • S = 1.01

  • 4792 reflections

  • 200 parameters

  • H-atom parameters constrained

  • Δρmax = 1.47 e Å−3

  • Δρmin = −1.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Au—I1 2.7188 (3)
Au—P1 2.3200 (6)
P1—Au—I1 115.755 (16)
P1i—Au—P1 128.49 (3)
Symmetry code: (i) [-x+2, y, -z+{\script{1\over 2}}].

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The crystal structure of the monophosphinegold(I) chloride complex, (2-CHOC6H4)Ph2PAuCl, where one of the organic substituents on the phosphine has been functionalized with an aldehyde group, has been reported previously (Elsegood et al., 2006). Herein, the crystal structure of the title bis(phosphine)gold(I) iodide analogue (I) is described.

In (I), Fig. 1, the complete molecule is generated by the application of twofold symmetry. The Au atom is in a trigonal planar geometry within a IP2 donor set, Table 1, with the greatest distortion manifested in the angle, i.e. 128.49 (3)°, subtended by the phosphine ligands, Table 1. The Au—I and Au—P bond lengths in the comparable (Ph3P)2AuI complex, which also has crystallographic twofold symmetry are 2.754 (1) and 2.333 (2) Å, respectively (Bowmaker et al., 1987); the P—Au—P angle is 132.13 (7)°.

In (I), close intramolecular Au···O interactions of 3.172 (3) Å are noted. Similar interactions of 3.109 (4) and 3.106 (4) Å (two independent molecules) were observed in (2-CHOC6H4)Ph2PAuCl (Elsegood et al., 2006) and their significance has been discussed in the literature (Kuan et al., 2008).

No specific intermolecular interactions are noted in the crystal packing. Globally, molecules are arranged in layers that stack along the c axis.

Related literature top

For a discussion on intramolecular Au···O interactions, see: Kuan et al. (2008). For related structures, see: Bowmaker et al. (1987); Elsegood et al. (2006).

Experimental top

[NBu4][AuI2] (100 mg, 0.184 mmol) and (2-CHOC6H4)Ph2P (107 mg, 0.368 mmol) were dissolved in warm DMF (10 ml) to give a clear solution. Cooling to room temperature and slow evaporation of solvent yielded clear, colourless crystals of the title complex. M.pt: 471–283 K. Analysis: Found C 50.33, H 3.34%. Calculated for C38H30AuIO2P2: C 50.46, H 3.34%.

Refinement top

The H atoms were geometrically placed (C—H = 0.94–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 1.47 and 1.34 e Å-3, respectively, were located 0.82 Å and 0.86 Å from the Au atom.

Structure description top

The crystal structure of the monophosphinegold(I) chloride complex, (2-CHOC6H4)Ph2PAuCl, where one of the organic substituents on the phosphine has been functionalized with an aldehyde group, has been reported previously (Elsegood et al., 2006). Herein, the crystal structure of the title bis(phosphine)gold(I) iodide analogue (I) is described.

In (I), Fig. 1, the complete molecule is generated by the application of twofold symmetry. The Au atom is in a trigonal planar geometry within a IP2 donor set, Table 1, with the greatest distortion manifested in the angle, i.e. 128.49 (3)°, subtended by the phosphine ligands, Table 1. The Au—I and Au—P bond lengths in the comparable (Ph3P)2AuI complex, which also has crystallographic twofold symmetry are 2.754 (1) and 2.333 (2) Å, respectively (Bowmaker et al., 1987); the P—Au—P angle is 132.13 (7)°.

In (I), close intramolecular Au···O interactions of 3.172 (3) Å are noted. Similar interactions of 3.109 (4) and 3.106 (4) Å (two independent molecules) were observed in (2-CHOC6H4)Ph2PAuCl (Elsegood et al., 2006) and their significance has been discussed in the literature (Kuan et al., 2008).

No specific intermolecular interactions are noted in the crystal packing. Globally, molecules are arranged in layers that stack along the c axis.

For a discussion on intramolecular Au···O interactions, see: Kuan et al. (2008). For related structures, see: Bowmaker et al. (1987); Elsegood et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The molecule has twofold symmetry and unlabelled atoms are related by the symmetry operation 2 - x, y, 1/2 - z.
[Figure 2] Fig. 2. A view in projection down the a axis of the unit-cell contents of (I).
Bis[2-(diphenylphosphanyl-κP)benzaldehyde]iodidogold(I) top
Crystal data top
[AuI(C19H15OP)2]F(000) = 1744
Mr = 904.43Dx = 1.825 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 7249 reflections
a = 18.1099 (13) Åθ = 2.1–40.5°
b = 10.1856 (6) ŵ = 5.54 mm1
c = 19.8438 (13) ÅT = 223 K
β = 115.965 (2)°Prism, colourless
V = 3290.9 (4) Å30.40 × 0.30 × 0.05 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4792 independent reflections
Radiation source: fine-focus sealed tube4319 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 30.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2525
Tmin = 0.392, Tmax = 1.000k = 914
13430 measured reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0253P)2]
where P = (Fo2 + 2Fc2)/3
4792 reflections(Δ/σ)max = 0.001
200 parametersΔρmax = 1.47 e Å3
0 restraintsΔρmin = 1.34 e Å3
Crystal data top
[AuI(C19H15OP)2]V = 3290.9 (4) Å3
Mr = 904.43Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.1099 (13) ŵ = 5.54 mm1
b = 10.1856 (6) ÅT = 223 K
c = 19.8438 (13) Å0.40 × 0.30 × 0.05 mm
β = 115.965 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4792 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4319 reflections with I > 2σ(I)
Tmin = 0.392, Tmax = 1.000Rint = 0.042
13430 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0260 restraints
wR(F2) = 0.059H-atom parameters constrained
S = 1.01Δρmax = 1.47 e Å3
4792 reflectionsΔρmin = 1.34 e Å3
200 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Au1.00000.290105 (13)0.25000.02140 (5)
I11.00000.55703 (3)0.25000.04282 (8)
P11.01880 (4)0.19113 (6)0.36168 (3)0.01989 (13)
O11.17648 (14)0.2889 (2)0.38822 (14)0.0404 (5)
C11.05497 (18)0.2836 (2)0.44986 (15)0.0245 (5)
C21.12816 (18)0.3569 (3)0.47629 (17)0.0329 (6)
C31.1539 (2)0.4272 (3)0.5433 (2)0.0478 (9)
H31.20250.47680.56090.057*
C41.1084 (3)0.4246 (3)0.58394 (19)0.0512 (10)
H41.12630.47160.62910.061*
C51.0371 (2)0.3533 (3)0.55821 (16)0.0430 (8)
H51.00640.35100.58600.052*
C61.0100 (2)0.2843 (3)0.49109 (16)0.0327 (7)
H60.96040.23730.47350.039*
C71.1813 (2)0.3609 (4)0.4379 (2)0.0453 (8)
H71.22270.42520.45350.054*
C80.91749 (15)0.1302 (3)0.34615 (13)0.0218 (5)
C90.8497 (2)0.2101 (3)0.30578 (18)0.0345 (7)
H90.85770.29440.29080.041*
C100.7712 (2)0.1663 (4)0.28772 (19)0.0447 (8)
H100.72620.22140.26050.054*
C110.7575 (2)0.0440 (4)0.30874 (18)0.0414 (8)
H110.70380.01600.29700.050*
C120.8231 (2)0.0368 (3)0.34700 (17)0.0368 (7)
H120.81420.12130.36100.044*
C130.90263 (17)0.0048 (3)0.36533 (15)0.0287 (6)
H130.94690.05240.39100.034*
C141.08135 (16)0.0436 (2)0.38691 (14)0.0212 (5)
C151.10862 (17)0.0130 (3)0.45739 (16)0.0307 (6)
H151.10020.03080.49510.037*
C161.14815 (18)0.1334 (3)0.47260 (19)0.0391 (7)
H161.16750.17000.52080.047*
C171.1591 (2)0.1991 (3)0.4175 (2)0.0447 (9)
H171.18390.28240.42740.054*
C181.1339 (2)0.1434 (4)0.3476 (2)0.0519 (9)
H181.14240.18800.31010.062*
C191.09597 (19)0.0217 (3)0.33260 (16)0.0334 (6)
H191.08000.01700.28530.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Au0.02340 (8)0.02290 (8)0.01865 (7)0.0000.00992 (5)0.000
I10.0565 (2)0.02093 (14)0.0547 (2)0.0000.02773 (17)0.000
P10.0234 (3)0.0198 (3)0.0171 (3)0.0003 (2)0.0095 (3)0.0002 (2)
O10.0317 (12)0.0451 (14)0.0453 (14)0.0044 (10)0.0176 (10)0.0003 (11)
C10.0315 (14)0.0184 (13)0.0201 (12)0.0036 (10)0.0081 (11)0.0012 (10)
C20.0316 (16)0.0266 (15)0.0329 (15)0.0010 (12)0.0070 (12)0.0041 (12)
C30.048 (2)0.0341 (18)0.043 (2)0.0060 (15)0.0031 (17)0.0143 (14)
C40.070 (3)0.0409 (19)0.0264 (17)0.0090 (17)0.0058 (17)0.0148 (14)
C50.065 (2)0.0395 (19)0.0250 (15)0.0110 (17)0.0197 (15)0.0016 (13)
C60.0443 (18)0.0297 (16)0.0256 (14)0.0004 (12)0.0167 (13)0.0037 (11)
C70.0307 (17)0.0416 (19)0.055 (2)0.0137 (15)0.0108 (15)0.0047 (17)
C80.0232 (13)0.0254 (13)0.0177 (11)0.0004 (11)0.0097 (10)0.0018 (10)
C90.0330 (16)0.0359 (17)0.0383 (16)0.0090 (13)0.0189 (14)0.0083 (13)
C100.0277 (16)0.064 (2)0.0415 (19)0.0130 (16)0.0147 (15)0.0103 (17)
C110.0278 (16)0.065 (2)0.0333 (17)0.0088 (15)0.0149 (14)0.0056 (15)
C120.0380 (18)0.0402 (17)0.0342 (16)0.0158 (14)0.0177 (14)0.0038 (13)
C130.0285 (14)0.0298 (15)0.0263 (13)0.0023 (12)0.0106 (11)0.0024 (11)
C140.0188 (12)0.0208 (12)0.0225 (12)0.0012 (10)0.0075 (10)0.0006 (10)
C150.0258 (14)0.0359 (16)0.0305 (14)0.0028 (12)0.0124 (12)0.0083 (12)
C160.0251 (15)0.0381 (17)0.0478 (19)0.0041 (13)0.0102 (14)0.0174 (15)
C170.0318 (17)0.0269 (17)0.059 (2)0.0096 (13)0.0052 (16)0.0034 (15)
C180.052 (2)0.042 (2)0.053 (2)0.0166 (17)0.0151 (18)0.0146 (17)
C190.0378 (17)0.0335 (16)0.0276 (14)0.0088 (13)0.0130 (13)0.0011 (12)
Geometric parameters (Å, º) top
Au—P1i2.3200 (6)C9—C101.381 (4)
Au—I12.7188 (3)C9—H90.9400
Au—P12.3200 (6)C10—C111.370 (5)
P1—C141.816 (3)C10—H100.9400
P1—C11.837 (3)C11—C121.369 (5)
P1—C81.831 (3)C11—H110.9400
O1—C71.200 (4)C12—C131.388 (4)
C1—C61.384 (4)C12—H120.9400
C1—C21.407 (4)C13—H130.9400
C2—C31.398 (4)C14—C151.388 (4)
C2—C71.467 (5)C14—C191.387 (4)
C3—C41.383 (6)C15—C161.385 (4)
C3—H30.9400C15—H150.9400
C4—C51.369 (5)C16—C171.368 (5)
C4—H40.9400C16—H160.9400
C5—C61.392 (4)C17—C181.378 (5)
C5—H50.9400C17—H170.9400
C6—H60.9400C18—C191.384 (4)
C7—H70.9400C18—H180.9400
C8—C91.396 (4)C19—H190.9400
C8—C131.392 (4)
P1—Au—I1115.755 (16)C10—C9—C8120.5 (3)
P1i—Au—P1128.49 (3)C10—C9—H9119.8
P1i—Au—I1115.755 (16)C8—C9—H9119.8
C14—P1—C1104.04 (12)C9—C10—C11121.2 (3)
C14—P1—C8102.94 (12)C9—C10—H10119.4
C1—P1—C8104.32 (12)C11—C10—H10119.4
C14—P1—Au115.85 (9)C12—C11—C10119.1 (3)
C1—P1—Au121.94 (8)C12—C11—H11120.4
C8—P1—Au105.63 (8)C10—C11—H11120.4
C6—C1—C2118.6 (3)C11—C12—C13120.7 (3)
C6—C1—P1120.6 (2)C11—C12—H12119.6
C2—C1—P1120.8 (2)C13—C12—H12119.6
C3—C2—C1119.5 (3)C12—C13—C8120.7 (3)
C3—C2—C7117.3 (3)C12—C13—H13119.7
C1—C2—C7123.1 (3)C8—C13—H13119.7
C4—C3—C2120.6 (3)C15—C14—C19118.6 (3)
C4—C3—H3119.7C15—C14—P1121.7 (2)
C2—C3—H3119.7C19—C14—P1119.4 (2)
C5—C4—C3119.8 (3)C14—C15—C16120.6 (3)
C5—C4—H4120.1C14—C15—H15119.7
C3—C4—H4120.1C16—C15—H15119.7
C4—C5—C6120.3 (3)C17—C16—C15120.0 (3)
C4—C5—H5119.8C17—C16—H16120.0
C6—C5—H5119.8C15—C16—H16120.0
C5—C6—C1121.1 (3)C16—C17—C18120.2 (3)
C5—C6—H6119.5C16—C17—H17119.9
C1—C6—H6119.5C18—C17—H17119.9
O1—C7—C2125.5 (3)C19—C18—C17120.0 (3)
O1—C7—H7117.2C19—C18—H18120.0
C2—C7—H7117.2C17—C18—H18120.0
C9—C8—C13117.7 (2)C18—C19—C14120.5 (3)
C9—C8—P1117.6 (2)C18—C19—H19119.8
C13—C8—P1124.4 (2)C14—C19—H19119.8
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[AuI(C19H15OP)2]
Mr904.43
Crystal system, space groupMonoclinic, C2/c
Temperature (K)223
a, b, c (Å)18.1099 (13), 10.1856 (6), 19.8438 (13)
β (°) 115.965 (2)
V3)3290.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)5.54
Crystal size (mm)0.40 × 0.30 × 0.05
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.392, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13430, 4792, 4319
Rint0.042
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.026, 0.059, 1.01
No. of reflections4792
No. of parameters200
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.47, 1.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006), publCIF (Westrip, 2010).

Selected geometric parameters (Å, º) top
Au—I12.7188 (3)Au—P12.3200 (6)
P1—Au—I1115.755 (16)P1i—Au—P1128.49 (3)
Symmetry code: (i) x+2, y, z+1/2.
 

Footnotes

Additional correspondence author, e-mail: michael.williams@griffith.edu.au.

Acknowledgements

We thank Griffith University for support of this work. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

References

First citationBowmaker, G. A., Dyason, J. C., Healy, P. C., Engelhardt, L. M., Pakawatchai, C. & White, A. H. (1987). J. Chem. Soc. Dalton Trans. pp. 1089–1098.  CSD CrossRef Web of Science Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2000). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationElsegood, M. R. J., Smith, M. B. & Dale, S. H. (2006). Acta Cryst. E62, m1850–m1852.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds