metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(Acetato-κO)(aqua-κO)(2-{bis­­[(3,5-di­methyl-1H-pyrazol-1-yl-κN2)methyl]amino-κN}ethanol-κO)nickel(II) perchlorate monohydrate

aState Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
*Correspondence e-mail: mhshu@sjtu.edu.cn

(Received 16 February 2012; accepted 22 February 2012; online 10 March 2012)

In the structure of the title complex, [Ni(CH3CO2)(C14H23N5O)(H2O)]ClO4·H2O, the NiII centre has a distorted octa­hedral environment defined by one O and three N atoms derived from the tetra­dentate ligand, and two O atoms, one from a water mol­ecule and the other from an acetate anion. The mol­ecules are connected into a three-dimensional architecture by O—H⋯O hydrogen bonds. The perchlorate anion is disordered over two positions; the major component has a site-occupancy factor of 0.525 (19).

Related literature

For the preparation of the tripodal ligand, see: Malachowski et al. (1992[Malachowski, M. R., Davidson, M. G. & Davis, J. D. (1992). Heterocycles, 34, 1227-1230.]). For background to hydrolytic enzymes, see: Koike et al. (1995[Koike, T., Kajitani, S., Nakamura, I., Kimura, E. & Shiro, M. (1995). J. Am. Chem. Soc. 117, 1210-1219.]); Lipscomb & Sträter (1996[Lipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375-2434.]). For related structures, see: Shin et al. (2011[Shin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G. & Min, K. S. (2011). Dalton Trans. 40, 5762-5773.]); Sundaravel et al. (2011[Sundaravel, K., Sankaralingam, M., Suresh, E. & Palaniandavar, M. (2011). Dalton Trans. 40, 8444-8458.]); Xia et al. (2001[Xia, J., Xu, Y., Li, S., Sun, W., Yu, K. & Tang, W. (2001). Inorg. Chem. 40, 2394-2401.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C2H3O2)(C14H23N5O)(H2O)]ClO4·H2O

  • Mr = 530.61

  • Monoclinic, P 21 /c

  • a = 9.6055 (11) Å

  • b = 9.9889 (11) Å

  • c = 24.258 (3) Å

  • β = 90.284 (2)°

  • V = 2327.5 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.00 mm−1

  • T = 293 K

  • 0.43 × 0.37 × 0.21 mm

Data collection
  • Bruker APEX CCD diffractometer

  • Absorption correction: empirical (using intensity measurements) (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.732, Tmax = 1.000

  • 13249 measured reflections

  • 5057 independent reflections

  • 2284 reflections with I > 2σ(I)

  • Rint = 0.082

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.142

  • S = 0.82

  • 5057 reflections

  • 310 parameters

  • 26 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H26⋯O3i 0.86 (1) 1.80 (1) 2.631 (10) 163 (1)
O4—H27⋯O5ii 0.86 (1) 2.03 (1) 2.882 (10) 171 (1)
O4—H28⋯O3 0.86 (1) 1.87 (1) 2.684 (10) 158 (5)
O5—H29⋯O11′ 0.86 (1) 1.84 (1) 2.695 (10) 174 (1)
O5—H29⋯O11 0.86 (1) 2.09 (1) 2.940 (10) 168 (1)
O5—H30⋯O12′iii 0.86 (1) 2.59 (1) 3.162 (10) 125 (1)
Symmetry codes: (i) [-x-1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x-1, y, z; (iii) -x, -y+2, -z+2.

Data collection: SMART (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

ZnII-bound alkoxides, resulting from the deprotonation of the ZnII-coordinated alcoholic hydroxides in ZnII-containing enzymes (Lipscomb & Sträter, 1996), usually act as nucleophiles to attack the substrates (e.g. phosphates, CO2, and carboxy esters). Polyamines with a pendant ethoxyl group can mimic the chemical surroundings of ZnII in the active site of the ZnII-containing enzymes (Koike et al., 1995). This encouraged us to investigate the coordination chemistry of transition metal ions with a new ligand containing a N3O donor set. In this work, N,N-bis(3,5-dimethyl-pyrazol-1-yl-methylene)aminoethanol (Malachowski et al., 1992) was reacted with nickel acetate in the presence of sodium perchlorate to yield the title complex as blue crystals in 68% yield. Related structures have been reported previously (Shin et al., 2011; Sundaravel et al., 2011; Xia et al., 2001).

In the structure, the NiII cation has a six-coordinated geometry consisting of three N atoms and an O atom from the organic ligand, and two O atoms from a water molecule and an acetate (Fig. 1). The Ni—Npyrazolyl bond distances are 2.071 (4) and 2.044 (4) Å, which are shorter than the Ni—Namino bond length (2.124 (3) Å). The Ni—Oacetate bond distance is 1.999 (3) Å, which is about 0.1 Å shorter than those of Ni—Oalcohol (2.097 (3) Å) and Ni—Owater (2.126 (4) Å). The cis bond angles are deviate from 90° by about 10°, and the trans bond angles deviate from 180° by about 20°. Therefore, the coordination geometry of the NiII centre is a distorted octahedron. In the crystal, there are O—H···O hydrogen bonds. The unit contents are illustrated in Fig. 2.

Related literature top

For the preparation of the tripodal ligand, see: Malachowski et al. (1992). For background to hydrolytic enzymes, see: Koike et al. (1995); Lipscomb & Sträter (1996). For related structures, see: Shin et al. (2011); Sundaravel et al. (2011); Xia et al. (2001).

Experimental top

A solution of Ni(OAc)2.4H2O(0.2 mmol) in 2 ml H2O was added dropwise to a solution of N,N-bis(3,5-dimethyl-pyrazol-1-yl-methylene-)aminoethanol (0.2 mmol) in 10 ml of methanol. The blue solution was stirred for 30 min and a drop of saturated NaClO4 solution was added to the mixture. The clear solution in a test tube was left undisturbed. Blue crystals were obtained after a week.

Refinement top

H atoms bonded to O atoms were located in a difference map and refined with distance restraints of O—H = 0.86±0.01 Å. Other H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 (aromatic), C—H = 0.97 (CH2) and C—H = 0.96 (CH3) Å. All H atoms were refined with Uiso(H) = 1.2 (1.5 for methyl groups) Ueq(C). The perchlorate is disordered and refined over two positions. The site occupancy factors of the two positions were refined to a ratio 0.525 (19) and 0.475 (19), and with distances restraints of Cl—O = 1.44 (1) Å.

Structure description top

ZnII-bound alkoxides, resulting from the deprotonation of the ZnII-coordinated alcoholic hydroxides in ZnII-containing enzymes (Lipscomb & Sträter, 1996), usually act as nucleophiles to attack the substrates (e.g. phosphates, CO2, and carboxy esters). Polyamines with a pendant ethoxyl group can mimic the chemical surroundings of ZnII in the active site of the ZnII-containing enzymes (Koike et al., 1995). This encouraged us to investigate the coordination chemistry of transition metal ions with a new ligand containing a N3O donor set. In this work, N,N-bis(3,5-dimethyl-pyrazol-1-yl-methylene)aminoethanol (Malachowski et al., 1992) was reacted with nickel acetate in the presence of sodium perchlorate to yield the title complex as blue crystals in 68% yield. Related structures have been reported previously (Shin et al., 2011; Sundaravel et al., 2011; Xia et al., 2001).

In the structure, the NiII cation has a six-coordinated geometry consisting of three N atoms and an O atom from the organic ligand, and two O atoms from a water molecule and an acetate (Fig. 1). The Ni—Npyrazolyl bond distances are 2.071 (4) and 2.044 (4) Å, which are shorter than the Ni—Namino bond length (2.124 (3) Å). The Ni—Oacetate bond distance is 1.999 (3) Å, which is about 0.1 Å shorter than those of Ni—Oalcohol (2.097 (3) Å) and Ni—Owater (2.126 (4) Å). The cis bond angles are deviate from 90° by about 10°, and the trans bond angles deviate from 180° by about 20°. Therefore, the coordination geometry of the NiII centre is a distorted octahedron. In the crystal, there are O—H···O hydrogen bonds. The unit contents are illustrated in Fig. 2.

For the preparation of the tripodal ligand, see: Malachowski et al. (1992). For background to hydrolytic enzymes, see: Koike et al. (1995); Lipscomb & Sträter (1996). For related structures, see: Shin et al. (2011); Sundaravel et al. (2011); Xia et al. (2001).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title complex with atom labels and 30% probability displacement ellipsoids for non-H atoms. H atoms bound to the C atoms were omitted for clarity.
[Figure 2] Fig. 2. The packing of the complex, viewed approximately down the a axis, showing the O—H···O hydrogen bonds (dashed lines).
(Acetato-κO)(aqua-κO)(2-{bis[(3,5-dimethyl-1H- pyrazol-1-yl-κN2)methyl]amino-κN}ethanol-κO)nickel(II) perchlorate monohydrate top
Crystal data top
[Ni(C2H3O2)(C14H23N5O)(H2O)]ClO4·H2OF(000) = 1112
Mr = 530.61Dx = 1.514 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1110 reflections
a = 9.6055 (11) Åθ = 5.3°
b = 9.9889 (11) ŵ = 1.00 mm1
c = 24.258 (3) ÅT = 293 K
β = 90.284 (2)°Block, blue
V = 2327.5 (5) Å30.43 × 0.37 × 0.21 mm
Z = 4
Data collection top
Bruker APEX CCD
diffractometer
5057 independent reflections
Radiation source: fine-focus sealed tube2284 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.082
φ and ω scansθmax = 27.0°, θmin = 1.7°
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2003)
h = 1212
Tmin = 0.732, Tmax = 1.000k = 912
13249 measured reflectionsl = 3024
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.82 w = 1/[σ2(Fo2) + (0.0493P)2]
where P = (Fo2 + 2Fc2)/3
5057 reflections(Δ/σ)max = 0.001
310 parametersΔρmax = 0.66 e Å3
26 restraintsΔρmin = 0.50 e Å3
Crystal data top
[Ni(C2H3O2)(C14H23N5O)(H2O)]ClO4·H2OV = 2327.5 (5) Å3
Mr = 530.61Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.6055 (11) ŵ = 1.00 mm1
b = 9.9889 (11) ÅT = 293 K
c = 24.258 (3) Å0.43 × 0.37 × 0.21 mm
β = 90.284 (2)°
Data collection top
Bruker APEX CCD
diffractometer
5057 independent reflections
Absorption correction: empirical (using intensity measurements)
(SADABS; Sheldrick, 2003)
2284 reflections with I > 2σ(I)
Tmin = 0.732, Tmax = 1.000Rint = 0.082
13249 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05926 restraints
wR(F2) = 0.142H atoms treated by a mixture of independent and constrained refinement
S = 0.82Δρmax = 0.66 e Å3
5057 reflectionsΔρmin = 0.50 e Å3
310 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.44003 (7)1.26474 (6)0.84018 (3)0.0315 (2)
Cl0.00311 (17)0.76885 (16)0.95183 (7)0.0575 (4)0.525 (19)
Cl'0.00311 (17)0.76885 (16)0.95183 (7)0.0575 (4)0.475 (19)
N10.2854 (4)1.2368 (4)0.90201 (15)0.0328 (10)
N20.2798 (4)1.1888 (4)0.79269 (17)0.0342 (10)
N30.1741 (4)1.1411 (4)0.82475 (17)0.0355 (10)
N40.5531 (5)1.3175 (4)0.90797 (17)0.0374 (11)
N50.4845 (5)1.2870 (4)0.95579 (18)0.0436 (12)
O10.3473 (4)1.4547 (3)0.83710 (15)0.0383 (9)
H260.357 (6)1.491 (5)0.8051 (10)0.07 (2)*
O20.5772 (3)1.3140 (3)0.78136 (14)0.0383 (9)
O30.6299 (4)1.1117 (3)0.74957 (14)0.0437 (9)
O40.5166 (4)1.0662 (4)0.84915 (19)0.0434 (9)
H270.572 (4)1.067 (5)0.8766 (14)0.050 (19)*
H280.565 (5)1.062 (6)0.8195 (14)0.08 (2)*
O50.2962 (5)1.0394 (6)0.9409 (2)0.0831 (15)
H290.240 (5)0.972 (4)0.938 (2)0.09 (3)*
H300.276 (6)1.100 (4)0.965 (2)0.08 (3)*
O110.1400 (8)0.7866 (11)0.9351 (5)0.088 (3)0.525 (19)
O11'0.1098 (13)0.8400 (14)0.9279 (5)0.106 (3)0.475 (19)
O120.0120 (12)0.7935 (11)1.0102 (3)0.088 (3)0.525 (19)
O12'0.0278 (16)0.8426 (13)1.0018 (4)0.106 (3)0.475 (19)
O130.1096 (9)0.8469 (13)0.9288 (5)0.088 (3)0.525 (19)
O13'0.1122 (10)0.7788 (18)0.9127 (5)0.106 (3)0.475 (19)
O140.0262 (12)0.6290 (7)0.9444 (5)0.088 (3)0.525 (19)
O14'0.0112 (16)0.6299 (8)0.9658 (6)0.106 (3)0.475 (19)
C10.1981 (6)1.1237 (5)0.8832 (2)0.0438 (14)
H1A0.11021.12300.90300.053*
H1B0.24521.03940.88990.053*
C20.0605 (6)1.1114 (5)0.7946 (2)0.0459 (15)
C30.0943 (6)1.1418 (5)0.7411 (2)0.0482 (16)
H3A0.03741.13140.71050.058*
C40.2312 (6)1.1917 (5)0.7410 (2)0.0409 (14)
C50.3171 (6)1.2402 (5)0.6948 (2)0.0535 (16)
H5A0.40671.26720.70830.080*
H5B0.32871.16980.66830.080*
H5C0.27211.31520.67780.080*
C60.0674 (6)1.0516 (6)0.8194 (3)0.072 (2)
H6A0.05591.04370.85850.107*
H6B0.14581.10810.81180.107*
H6C0.08290.96460.80380.107*
C70.3614 (6)1.2020 (5)0.9529 (2)0.0475 (15)
H7A0.38851.10840.95220.057*
H7B0.30241.21660.98500.057*
C80.5593 (7)1.3211 (6)1.0010 (2)0.0497 (16)
C90.6788 (7)1.3771 (5)0.9807 (2)0.0536 (17)
H9A0.75171.41131.00140.064*
C100.6722 (6)1.3739 (5)0.9235 (2)0.0442 (15)
C110.7764 (6)1.4210 (5)0.8818 (3)0.0629 (18)
H11B0.74161.40470.84540.094*
H11C0.79231.51520.88660.094*
H11D0.86231.37340.88670.094*
C120.5118 (7)1.2947 (6)1.0577 (2)0.078 (2)
H12A0.42131.25401.05690.117*
H12B0.57611.23541.07550.117*
H12C0.50701.37741.07780.117*
C130.2072 (6)1.3644 (5)0.9084 (2)0.0425 (14)
H13A0.11201.34460.91910.051*
H13B0.24901.41670.93770.051*
C140.2067 (6)1.4462 (5)0.8560 (2)0.0424 (14)
H14A0.17001.53500.86320.051*
H14B0.14911.40350.82840.051*
C150.6364 (5)1.2371 (5)0.7480 (2)0.0351 (12)
C160.7201 (6)1.3043 (5)0.7039 (2)0.0552 (16)
H16A0.71451.39960.70840.083*
H16B0.81551.27630.70640.083*
H16C0.68401.28000.66840.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0311 (4)0.0329 (4)0.0304 (4)0.0005 (3)0.0002 (3)0.0012 (3)
Cl0.0533 (10)0.0626 (11)0.0566 (10)0.0156 (8)0.0060 (8)0.0043 (9)
Cl'0.0533 (10)0.0626 (11)0.0566 (10)0.0156 (8)0.0060 (8)0.0043 (9)
N10.037 (3)0.032 (2)0.029 (2)0.003 (2)0.0011 (19)0.0008 (19)
N20.031 (3)0.039 (2)0.032 (3)0.0024 (19)0.000 (2)0.0026 (19)
N30.029 (3)0.041 (3)0.036 (3)0.005 (2)0.002 (2)0.001 (2)
N40.039 (3)0.039 (2)0.034 (3)0.001 (2)0.003 (2)0.000 (2)
N50.051 (3)0.044 (3)0.036 (3)0.008 (2)0.012 (2)0.003 (2)
O10.037 (2)0.036 (2)0.042 (2)0.0039 (16)0.0077 (19)0.0048 (18)
O20.039 (2)0.036 (2)0.040 (2)0.0020 (16)0.0108 (18)0.0072 (17)
O30.052 (3)0.034 (2)0.045 (2)0.0001 (17)0.0064 (19)0.0017 (17)
O40.042 (3)0.044 (2)0.045 (3)0.0032 (18)0.003 (2)0.001 (2)
O50.084 (4)0.073 (4)0.092 (4)0.034 (3)0.006 (3)0.006 (3)
O110.086 (5)0.067 (4)0.109 (5)0.005 (3)0.015 (3)0.000 (3)
O11'0.118 (7)0.093 (6)0.106 (6)0.028 (4)0.013 (4)0.003 (4)
O120.086 (5)0.067 (4)0.109 (5)0.005 (3)0.015 (3)0.000 (3)
O12'0.118 (7)0.093 (6)0.106 (6)0.028 (4)0.013 (4)0.003 (4)
O130.086 (5)0.067 (4)0.109 (5)0.005 (3)0.015 (3)0.000 (3)
O13'0.118 (7)0.093 (6)0.106 (6)0.028 (4)0.013 (4)0.003 (4)
O140.086 (5)0.067 (4)0.109 (5)0.005 (3)0.015 (3)0.000 (3)
O14'0.118 (7)0.093 (6)0.106 (6)0.028 (4)0.013 (4)0.003 (4)
C10.047 (4)0.042 (3)0.043 (4)0.008 (3)0.008 (3)0.001 (3)
C20.036 (4)0.046 (3)0.056 (4)0.000 (3)0.009 (3)0.004 (3)
C30.036 (4)0.052 (4)0.056 (4)0.001 (3)0.019 (3)0.006 (3)
C40.046 (4)0.037 (3)0.040 (4)0.004 (3)0.008 (3)0.005 (3)
C50.054 (4)0.078 (4)0.029 (3)0.002 (3)0.007 (3)0.003 (3)
C60.039 (4)0.081 (5)0.095 (6)0.014 (3)0.005 (4)0.011 (4)
C70.059 (4)0.052 (4)0.031 (3)0.001 (3)0.004 (3)0.006 (3)
C80.059 (5)0.053 (4)0.037 (4)0.017 (3)0.018 (3)0.009 (3)
C90.051 (4)0.054 (4)0.055 (4)0.012 (3)0.027 (4)0.020 (3)
C100.044 (4)0.030 (3)0.058 (4)0.011 (3)0.018 (3)0.011 (3)
C110.039 (4)0.057 (4)0.092 (5)0.008 (3)0.009 (4)0.014 (4)
C120.103 (6)0.096 (5)0.036 (4)0.014 (4)0.020 (4)0.008 (3)
C130.046 (4)0.042 (3)0.040 (3)0.007 (3)0.004 (3)0.006 (3)
C140.044 (4)0.041 (3)0.042 (4)0.007 (3)0.010 (3)0.003 (3)
C150.028 (3)0.045 (3)0.033 (3)0.001 (3)0.002 (2)0.002 (3)
C160.051 (4)0.055 (4)0.059 (4)0.000 (3)0.021 (3)0.002 (3)
Geometric parameters (Å, º) top
Ni—O21.999 (3)C2—C61.490 (7)
Ni—N42.044 (4)C3—C41.406 (7)
Ni—N22.071 (4)C3—H3A0.9300
Ni—O12.097 (3)C4—C51.471 (7)
Ni—N12.124 (4)C5—H5A0.9600
Ni—O42.126 (4)C5—H5B0.9600
Cl—O131.401 (7)C5—H5C0.9600
Cl—O141.426 (7)C6—H6A0.9600
Cl—O121.439 (7)C6—H6B0.9600
Cl—O111.446 (7)C6—H6C0.9600
N1—C71.480 (6)C7—H7A0.9700
N1—C11.481 (6)C7—H7B0.9700
N1—C131.487 (6)C8—C91.368 (8)
N2—C41.339 (6)C8—C121.471 (8)
N2—N31.362 (5)C9—C101.389 (7)
N3—C21.349 (6)C9—H9A0.9300
N3—C11.447 (6)C10—C111.495 (7)
N4—C101.332 (6)C11—H11B0.9600
N4—N51.366 (5)C11—H11C0.9600
N5—C81.358 (6)C11—H11D0.9600
N5—C71.458 (6)C12—H12A0.9600
O1—C141.427 (6)C12—H12B0.9600
O1—H260.863 (10)C12—H12C0.9600
O2—C151.251 (6)C13—C141.512 (6)
O3—C151.255 (5)C13—H13A0.9700
O4—H270.858 (10)C13—H13B0.9700
O4—H280.856 (10)C14—H14A0.9700
O5—H290.861 (10)C14—H14B0.9700
O5—H300.862 (10)C15—C161.494 (7)
C1—H1A0.9700C16—H16A0.9600
C1—H1B0.9700C16—H16B0.9600
C2—C31.371 (7)C16—H16C0.9600
O2—Ni—N499.19 (16)C3—C4—C5129.7 (5)
O2—Ni—N2100.50 (15)C4—C5—H5A109.5
N4—Ni—N2160.25 (17)C4—C5—H5B109.5
O2—Ni—O191.73 (14)H5A—C5—H5B109.5
N4—Ni—O191.29 (15)C4—C5—H5C109.5
N2—Ni—O189.70 (15)H5A—C5—H5C109.5
O2—Ni—N1172.99 (14)H5B—C5—H5C109.5
N4—Ni—N180.69 (16)C2—C6—H6A109.5
N2—Ni—N179.96 (16)C2—C6—H6B109.5
O1—Ni—N181.27 (14)H6A—C6—H6B109.5
O2—Ni—O494.35 (15)C2—C6—H6C109.5
N4—Ni—O488.45 (16)H6A—C6—H6C109.5
N2—Ni—O488.49 (16)H6B—C6—H6C109.5
O1—Ni—O4173.88 (16)N5—C7—N1107.8 (4)
N1—Ni—O492.65 (16)N5—C7—H7A110.1
O13—Cl—O14112.4 (5)N1—C7—H7A110.1
O13—Cl—O12104.5 (6)N5—C7—H7B110.1
O14—Cl—O12106.4 (5)N1—C7—H7B110.1
O13—Cl—O11120.9 (6)H7A—C7—H7B108.5
O14—Cl—O11103.4 (6)N5—C8—C9104.9 (5)
O12—Cl—O11108.4 (7)N5—C8—C12123.3 (6)
C7—N1—C1111.1 (4)C9—C8—C12131.9 (6)
C7—N1—C13111.4 (4)C8—C9—C10108.0 (5)
C1—N1—C13113.6 (4)C8—C9—H9A126.0
C7—N1—Ni105.9 (3)C10—C9—H9A126.0
C1—N1—Ni106.1 (3)N4—C10—C9109.6 (6)
C13—N1—Ni108.2 (3)N4—C10—C11121.0 (5)
C4—N2—N3106.2 (4)C9—C10—C11129.4 (5)
C4—N2—Ni140.9 (4)C10—C11—H11B109.5
N3—N2—Ni111.4 (3)C10—C11—H11C109.5
C2—N3—N2111.7 (4)H11B—C11—H11C109.5
C2—N3—C1129.6 (5)C10—C11—H11D109.5
N2—N3—C1118.6 (4)H11B—C11—H11D109.5
C10—N4—N5105.4 (4)H11C—C11—H11D109.5
C10—N4—Ni142.9 (4)C8—C12—H12A109.5
N5—N4—Ni111.7 (3)C8—C12—H12B109.5
C8—N5—N4112.1 (5)H12A—C12—H12B109.5
C8—N5—C7128.1 (5)C8—C12—H12C109.5
N4—N5—C7118.5 (4)H12A—C12—H12C109.5
C14—O1—Ni109.7 (3)H12B—C12—H12C109.5
C14—O1—H26114 (4)N1—C13—C14112.3 (4)
Ni—O1—H26112 (4)N1—C13—H13A109.2
C15—O2—Ni127.3 (3)C14—C13—H13A109.2
Ni—O4—H27107 (3)N1—C13—H13B109.2
Ni—O4—H2899 (4)C14—C13—H13B109.2
H27—O4—H28108 (5)H13A—C13—H13B107.9
H29—O5—H30117 (3)O1—C14—C13107.2 (4)
N3—C1—N1107.7 (4)O1—C14—H14A110.3
N3—C1—H1A110.2C13—C14—H14A110.3
N1—C1—H1A110.2O1—C14—H14B110.3
N3—C1—H1B110.2C13—C14—H14B110.3
N1—C1—H1B110.2H14A—C14—H14B108.5
H1A—C1—H1B108.5O2—C15—O3124.8 (5)
N3—C2—C3106.0 (5)O2—C15—C16115.4 (5)
N3—C2—C6122.5 (5)O3—C15—C16119.8 (5)
C3—C2—C6131.5 (5)C15—C16—H16A109.5
C2—C3—C4107.3 (5)C15—C16—H16B109.5
C2—C3—H3A126.4H16A—C16—H16B109.5
C4—C3—H3A126.4C15—C16—H16C109.5
N2—C4—C3108.8 (5)H16A—C16—H16C109.5
N2—C4—C5121.5 (5)H16B—C16—H16C109.5
O2—Ni—N1—C7118.3 (11)O4—Ni—O1—C1418.1 (16)
N4—Ni—N1—C728.7 (3)N4—Ni—O2—C15115.7 (4)
N2—Ni—N1—C7147.3 (3)N2—Ni—O2—C1562.7 (4)
O1—Ni—N1—C7121.4 (3)O1—Ni—O2—C15152.7 (4)
O4—Ni—N1—C759.3 (3)N1—Ni—O2—C15155.8 (11)
O2—Ni—N1—C1123.5 (11)O4—Ni—O2—C1526.6 (4)
N4—Ni—N1—C1146.9 (3)C2—N3—C1—N1145.0 (5)
N2—Ni—N1—C129.1 (3)N2—N3—C1—N138.1 (6)
O1—Ni—N1—C1120.4 (3)C7—N1—C1—N3157.0 (4)
O4—Ni—N1—C158.9 (3)C13—N1—C1—N376.5 (5)
O2—Ni—N1—C131.3 (13)Ni—N1—C1—N342.3 (4)
N4—Ni—N1—C1390.9 (3)N2—N3—C2—C30.3 (6)
N2—Ni—N1—C1393.1 (3)C1—N3—C2—C3177.3 (5)
O1—Ni—N1—C131.9 (3)N2—N3—C2—C6177.1 (5)
O4—Ni—N1—C13178.9 (3)C1—N3—C2—C60.1 (8)
O2—Ni—N2—C420.1 (6)N3—C2—C3—C40.6 (6)
N4—Ni—N2—C4164.6 (5)C6—C2—C3—C4177.7 (6)
O1—Ni—N2—C471.6 (5)N3—N2—C4—C31.4 (5)
N1—Ni—N2—C4152.8 (6)Ni—N2—C4—C3165.0 (4)
O4—Ni—N2—C4114.2 (5)N3—N2—C4—C5179.1 (4)
O2—Ni—N2—N3176.8 (3)Ni—N2—C4—C515.5 (8)
N4—Ni—N2—N31.5 (6)C2—C3—C4—N21.3 (6)
O1—Ni—N2—N391.5 (3)C2—C3—C4—C5179.3 (5)
N1—Ni—N2—N310.3 (3)C8—N5—C7—N1157.5 (5)
O4—Ni—N2—N382.7 (3)N4—N5—C7—N136.8 (6)
C4—N2—N3—C21.1 (5)C1—N1—C7—N5155.8 (4)
Ni—N2—N3—C2170.1 (3)C13—N1—C7—N576.5 (5)
C4—N2—N3—C1178.5 (4)Ni—N1—C7—N541.0 (4)
Ni—N2—N3—C112.5 (5)N4—N5—C8—C90.9 (6)
O2—Ni—N4—C104.3 (6)C7—N5—C8—C9167.4 (5)
N2—Ni—N4—C10179.7 (5)N4—N5—C8—C12177.7 (5)
O1—Ni—N4—C1087.6 (6)C7—N5—C8—C1211.2 (8)
N1—Ni—N4—C10168.6 (6)N5—C8—C9—C100.4 (6)
O4—Ni—N4—C1098.5 (6)C12—C8—C9—C10178.0 (6)
O2—Ni—N4—N5176.8 (3)N5—N4—C10—C90.7 (5)
N2—Ni—N4—N51.4 (6)Ni—N4—C10—C9179.7 (4)
O1—Ni—N4—N591.3 (3)N5—N4—C10—C11179.9 (4)
N1—Ni—N4—N510.3 (3)Ni—N4—C10—C111.2 (8)
O4—Ni—N4—N582.6 (3)C8—C9—C10—N40.2 (6)
C10—N4—N5—C81.0 (5)C8—C9—C10—C11179.2 (5)
Ni—N4—N5—C8179.6 (3)C7—N1—C13—C14143.8 (4)
C10—N4—N5—C7169.0 (4)C1—N1—C13—C1489.8 (5)
Ni—N4—N5—C711.7 (5)Ni—N1—C13—C1427.7 (5)
O2—Ni—O1—C14155.1 (3)Ni—O1—C14—C1346.3 (4)
N4—Ni—O1—C14105.7 (3)N1—C13—C14—O149.7 (5)
N2—Ni—O1—C1454.6 (3)Ni—O2—C15—O37.7 (7)
N1—Ni—O1—C1425.3 (3)Ni—O2—C15—C16172.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H26···O3i0.86 (1)1.80 (1)2.631 (10)163 (1)
O4—H27···O5ii0.86 (1)2.03 (1)2.882 (10)171 (1)
O4—H28···O30.86 (1)1.87 (1)2.684 (10)158 (5)
O5—H29···O110.86 (1)1.84 (1)2.695 (10)174 (1)
O5—H29···O110.86 (1)2.09 (1)2.940 (10)168 (1)
O5—H30···O12iii0.86 (1)2.59 (1)3.162 (10)125 (1)
Symmetry codes: (i) x1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x, y+2, z+2.

Experimental details

Crystal data
Chemical formula[Ni(C2H3O2)(C14H23N5O)(H2O)]ClO4·H2O
Mr530.61
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)9.6055 (11), 9.9889 (11), 24.258 (3)
β (°) 90.284 (2)
V3)2327.5 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.00
Crystal size (mm)0.43 × 0.37 × 0.21
Data collection
DiffractometerBruker APEX CCD
Absorption correctionEmpirical (using intensity measurements)
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.732, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13249, 5057, 2284
Rint0.082
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.142, 0.82
No. of reflections5057
No. of parameters310
No. of restraints26
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.50

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H26···O3i0.863 (10)1.795 (10)2.631 (10)163 (1)
O4—H27···O5ii0.858 (10)2.031 (10)2.882 (10)171 (1)
O4—H28···O30.856 (10)1.872 (10)2.684 (10)158 (5)
O5—H29···O11'0.861 (10)1.837 (10)2.695 (10)174 (1)
O5—H29···O110.861 (10)2.092 (10)2.940 (10)168 (1)
O5—H30···O12'iii0.862 (10)2.585 (10)3.162 (10)125 (1)
Symmetry codes: (i) x1, y+1/2, z+3/2; (ii) x1, y, z; (iii) x, y+2, z+2.
 

Acknowledgements

The authors thank Professor D.-J. Xu, Zhejiang University, China, for his helpful suggestions.

References

First citationBruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationKoike, T., Kajitani, S., Nakamura, I., Kimura, E. & Shiro, M. (1995). J. Am. Chem. Soc. 117, 1210–1219.  CSD CrossRef CAS Web of Science Google Scholar
First citationLipscomb, W. N. & Sträter, N. (1996). Chem. Rev. 96, 2375–2434.  CrossRef PubMed CAS Web of Science Google Scholar
First citationMalachowski, M. R., Davidson, M. G. & Davis, J. D. (1992). Heterocycles, 34, 1227–1230.  CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShin, J. W., Rowthu, S. R., Hyun, M. Y., Song, Y. J., Kim, C., Kim, B. G. & Min, K. S. (2011). Dalton Trans. 40, 5762–5773.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationSundaravel, K., Sankaralingam, M., Suresh, E. & Palaniandavar, M. (2011). Dalton Trans. 40, 8444–8458.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationXia, J., Xu, Y., Li, S., Sun, W., Yu, K. & Tang, W. (2001). Inorg. Chem. 40, 2394–2401.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds