metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(4-di­methyl­amino-1-ethyl­pyridinium) bis­­(1,2-di­cyano­ethene-1,2-di­thiol­ato-κ2S,S′)nickelate(II)

aCollege of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and bSchool of Biochemical and Environmental Engineering, Nanjing Xiaozhuang College, Nanjing 210017, People's Republic of China
*Correspondence e-mail: yushanshan_2005@163.com

(Received 21 February 2012; accepted 23 February 2012; online 10 March 2012)

The asymmetric unit of the title complex, (C9H15N2)2[Ni(C4N2S2)2], comprises one 4-dimethyl­amino-1-ethyl­pyri­din­ium cation and one half of a [Ni(mnt)2]2− (mnt2− = maleo­nitrile­dithiol­ate) anion; the complete anion is generated by the application of a centre of inversion. The NiII ion is coordinated by four S atoms of two mnt2− ligands and exhibits a square-planar coordination geometry.

Related literature

For the magnetic and conducting properties of related complexes, see: Belo & Almedia (2010[Belo, B. & Almedia, M. (2010). Coord. Chem. Rev. 254, 1479-1492.]); Nishijo et al. (2000[Nishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Lyoda, M. (2000). Solid State Commun. 116, 661-664.]); Duan et al. (2010[Duan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509-1522.]); Ni et al. (2005[Ni, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330-14338.]). For novel magnetic behaviour, see: Ni et al. (2004[Ni, C. L., Dang, D. B., Song, Y., Song, G., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). Chem. Phys. Lett. 396, 353-358.]); Ren et al. (2004[Ren, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569-2576.]). For a related [Ni(mnt)2]2− complex, see: Yao et al. (2008[Yao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833-2844.]). For the synthesis of the starting materials, see: Davison & Holm (1967[Davison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8-26.]); Duan et al. (2011[Duan, H. B., Ren, X. M., Shen, L. J., Jin, W. Q., Tian, Z. F. & Zhou, S. M. (2011). Dalton Trans. 40, 3622-3630.]).

[Scheme 1]

Experimental

Crystal data
  • (C9H15N2)2[Ni(C4N2S2)2]

  • Mr = 641.55

  • Triclinic, [P \overline 1]

  • a = 8.1468 (14) Å

  • b = 9.3305 (16) Å

  • c = 11.663 (3) Å

  • α = 108.243 (3)°

  • β = 100.034 (3)°

  • γ = 107.830 (2)°

  • V = 765.0 (3) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.94 mm−1

  • T = 296 K

  • 0.3 × 0.1 × 0.1 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002[Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.]) Tmin = 0.894, Tmax = 0.910

  • 5798 measured reflections

  • 2827 independent reflections

  • 2371 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.128

  • S = 0.95

  • 2827 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.34 e Å−3

Table 1
Selected geometric parameters (Å, °)

Ni1—S2 2.1776 (8)
Ni1—S1 2.1794 (8)
S2—Ni1—S1 88.00 (3)

Data collection: SMART (Bruker, 2000[Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Bis-1,2-dithiolene complexes of transition metals have been widely studied due to their novel properties in the areas of magnetic and conducting materials for example (Belo & Almedia, 2010; Nishijo et al., 2000; Duan et al., 2010; Ni et al., 2005). The mesomorphous neutral nickel-dithiolene complexes, with a focus on aspects of crystalline to liquid crystal transition behaviour has attracted attention and our research focus has been to try to design and assemble ionic and planar nickel-dithiolene mesogens with novel magnetic behaviour (Ni et al., 2004; Ren et al., 2004). Herein, we report the crystal structure of the title complex (I).

The molecular structure of (I) is illustrated in Fig. 1. and selected bond lengths and bond angles are given in Table 1. Complex (I) crystallizes in the triclinic space group P1 at 293 K and the asymmetric units comprises one half of a [Ni(mnt)2]2- anion and one 1-ethyl-4-N,N-dimethylpyridinium cation. The NiII ion in the centrosymmetric [Ni(mnt)2]2- anion is coordinated by four sulfur atoms of two mnt2- ligands, and exhibits square-planar coordination geometry. Bond lengths and angles of the anion are in good agreement with the other [Ni(mnt)2]2- compounds (e.g. Yao et al., 2008). In the crystal packing, the cations and anions are arranged in alternate layers, which are parallel to bc plane.

Related literature top

For the magnetic and conducting properties of related complexes, see: Belo & Almedia (2010); Nishijo et al. (2000); Duan et al. (2010); Ni et al. (2005). For novel magnetic behaviour, see: Ni et al. (2004); Ren et al. (2004). For a related [Ni(mnt)2]2- complex, see: Yao et al. (2008). For the synthesis of the starting materials, see: Davison & Holm (1967); Duan et al. (2011).

Experimental top

All reagents and chemicals were purchased from commercial sources and used without further purification. The staring materials disodium maleonitriledithiolate, and 1-ethyl-4-N,N-dimethylpyridinium bromide were synthesized following the literature procedures (Davison & Holm, 1967; Duan et al., 2011). Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 ml) at room temperature. Subsequently, a solution of 1-ethyl-4-N,N-dimethylpyridinium bromide (2.5 mmol) in water (10 ml) was added to the mixture, and the red precipitate that was immediately formed was filtered off and washed with water. The crude product was recrystallized in acetone to give red blocks.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H 0.93 to 0.97 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation.

Structure description top

Bis-1,2-dithiolene complexes of transition metals have been widely studied due to their novel properties in the areas of magnetic and conducting materials for example (Belo & Almedia, 2010; Nishijo et al., 2000; Duan et al., 2010; Ni et al., 2005). The mesomorphous neutral nickel-dithiolene complexes, with a focus on aspects of crystalline to liquid crystal transition behaviour has attracted attention and our research focus has been to try to design and assemble ionic and planar nickel-dithiolene mesogens with novel magnetic behaviour (Ni et al., 2004; Ren et al., 2004). Herein, we report the crystal structure of the title complex (I).

The molecular structure of (I) is illustrated in Fig. 1. and selected bond lengths and bond angles are given in Table 1. Complex (I) crystallizes in the triclinic space group P1 at 293 K and the asymmetric units comprises one half of a [Ni(mnt)2]2- anion and one 1-ethyl-4-N,N-dimethylpyridinium cation. The NiII ion in the centrosymmetric [Ni(mnt)2]2- anion is coordinated by four sulfur atoms of two mnt2- ligands, and exhibits square-planar coordination geometry. Bond lengths and angles of the anion are in good agreement with the other [Ni(mnt)2]2- compounds (e.g. Yao et al., 2008). In the crystal packing, the cations and anions are arranged in alternate layers, which are parallel to bc plane.

For the magnetic and conducting properties of related complexes, see: Belo & Almedia (2010); Nishijo et al. (2000); Duan et al. (2010); Ni et al. (2005). For novel magnetic behaviour, see: Ni et al. (2004); Ren et al. (2004). For a related [Ni(mnt)2]2- complex, see: Yao et al. (2008). For the synthesis of the starting materials, see: Davison & Holm (1967); Duan et al. (2011).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Unlabelled atoms are related by the symmetry operation 2-x, 1-y, 1-z.
Bis(4-dimethylamino-1-ethylpyridinium) bis(1,2-dicyanoethene-1,2-dithiolato-κ2S,S')nickelate(II) top
Crystal data top
(C9H15N2)2[Ni(C4N2S2)2]V = 765.0 (3) Å3
Mr = 641.55Z = 1
Triclinic, P1F(000) = 334
Hall symbol: -P 1Dx = 1.393 Mg m3
a = 8.1468 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.3305 (16) ŵ = 0.94 mm1
c = 11.663 (3) ÅT = 296 K
α = 108.243 (3)°Block, red
β = 100.034 (3)°0.3 × 0.1 × 0.1 mm
γ = 107.830 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2827 independent reflections
Radiation source: fine-focus sealed tube2371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
φ and ω scansθmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 99
Tmin = 0.894, Tmax = 0.910k = 1111
5798 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.091P)2 + 0.1169P]
where P = (Fo2 + 2Fc2)/3
2827 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
(C9H15N2)2[Ni(C4N2S2)2]γ = 107.830 (2)°
Mr = 641.55V = 765.0 (3) Å3
Triclinic, P1Z = 1
a = 8.1468 (14) ÅMo Kα radiation
b = 9.3305 (16) ŵ = 0.94 mm1
c = 11.663 (3) ÅT = 296 K
α = 108.243 (3)°0.3 × 0.1 × 0.1 mm
β = 100.034 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2827 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2371 reflections with I > 2σ(I)
Tmin = 0.894, Tmax = 0.910Rint = 0.031
5798 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.128H-atom parameters constrained
S = 0.95Δρmax = 0.25 e Å3
2827 reflectionsΔρmin = 0.34 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni11.00000.50000.50000.04490 (19)
S10.82193 (11)0.48140 (9)0.32858 (7)0.0569 (2)
S20.98454 (10)0.73406 (8)0.59749 (7)0.0544 (2)
N10.6004 (5)0.2159 (4)0.0092 (3)0.0933 (10)
N21.1487 (5)1.0752 (4)0.9081 (3)0.1059 (12)
N30.4538 (3)0.6143 (3)0.2736 (2)0.0612 (6)
C90.6202 (4)0.8572 (3)0.5178 (3)0.0537 (6)
C10.6864 (5)0.2485 (4)0.0912 (3)0.0653 (8)
C20.7958 (4)0.2948 (3)0.2175 (3)0.0524 (6)
C31.1208 (4)0.7989 (3)0.7514 (3)0.0514 (6)
C41.1395 (4)0.9529 (4)0.8407 (3)0.0664 (8)
C50.1777 (5)0.4619 (5)0.0912 (4)0.0947 (12)
H5A0.10890.43610.14610.142*
H5B0.12560.37450.00890.142*
H5C0.17620.56140.08440.142*
C60.3668 (5)0.4828 (4)0.1439 (3)0.0798 (10)
H6A0.43600.50970.08840.096*
H6B0.36820.38050.14680.096*
C70.4085 (4)0.5897 (4)0.3731 (3)0.0648 (8)
H70.32150.48930.35930.078*
C80.4840 (4)0.7048 (4)0.4930 (3)0.0634 (8)
H80.44620.68340.55890.076*
N40.7030 (4)0.9716 (3)0.6353 (2)0.0637 (6)
C100.6603 (6)0.9431 (5)0.7439 (3)0.0926 (11)
H10A0.53310.91450.73250.139*
H10B0.72681.04060.81900.139*
H10C0.69250.85540.75230.139*
C110.8478 (5)1.1248 (4)0.6603 (3)0.0776 (9)
H11A0.94611.10300.63410.116*
H11B0.88911.19140.74930.116*
H11C0.80421.18150.61420.116*
C120.6630 (4)0.8805 (3)0.4110 (3)0.0567 (7)
H120.74900.97960.42130.068*
C130.5803 (4)0.7602 (4)0.2938 (3)0.0599 (7)
H130.61160.77860.22520.072*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0457 (3)0.0453 (3)0.0501 (3)0.0200 (2)0.0176 (2)0.0227 (2)
S10.0658 (5)0.0571 (4)0.0549 (4)0.0324 (4)0.0152 (3)0.0238 (3)
S20.0605 (4)0.0485 (4)0.0584 (4)0.0259 (3)0.0153 (3)0.0228 (3)
N10.105 (2)0.106 (2)0.0599 (18)0.047 (2)0.0083 (17)0.0229 (17)
N20.119 (3)0.070 (2)0.105 (3)0.0448 (19)0.021 (2)0.0028 (18)
N30.0563 (14)0.0638 (15)0.0696 (16)0.0287 (12)0.0214 (12)0.0273 (13)
C90.0549 (16)0.0583 (15)0.0637 (17)0.0323 (13)0.0240 (13)0.0302 (14)
C10.072 (2)0.0681 (18)0.0600 (19)0.0303 (16)0.0212 (16)0.0262 (15)
C20.0498 (15)0.0568 (15)0.0490 (15)0.0174 (12)0.0174 (12)0.0205 (12)
C30.0507 (15)0.0496 (14)0.0544 (16)0.0160 (12)0.0209 (12)0.0215 (12)
C40.0656 (19)0.0556 (17)0.075 (2)0.0259 (14)0.0180 (16)0.0202 (16)
C50.072 (2)0.079 (2)0.096 (3)0.0212 (19)0.001 (2)0.008 (2)
C60.079 (2)0.069 (2)0.081 (2)0.0338 (18)0.0181 (18)0.0127 (17)
C70.0547 (17)0.0584 (17)0.086 (2)0.0189 (14)0.0233 (16)0.0355 (16)
C80.0620 (18)0.0736 (19)0.073 (2)0.0286 (15)0.0327 (16)0.0427 (17)
N40.0721 (16)0.0657 (15)0.0679 (16)0.0372 (13)0.0305 (13)0.0289 (13)
C100.113 (3)0.110 (3)0.065 (2)0.051 (2)0.041 (2)0.032 (2)
C110.082 (2)0.0630 (19)0.078 (2)0.0297 (17)0.0146 (18)0.0192 (17)
C120.0554 (16)0.0566 (15)0.0668 (18)0.0200 (13)0.0229 (14)0.0341 (14)
C130.0572 (17)0.0734 (18)0.0645 (18)0.0293 (15)0.0264 (14)0.0380 (16)
Geometric parameters (Å, º) top
Ni1—S22.1776 (8)C5—H5A0.9600
Ni1—S2i2.1776 (8)C5—H5B0.9600
Ni1—S1i2.1794 (8)C5—H5C0.9600
Ni1—S12.1794 (8)C6—H6A0.9700
S1—C21.738 (3)C6—H6B0.9700
S2—C31.742 (3)C7—C81.358 (4)
N1—C11.147 (4)C7—H70.9300
N2—C41.136 (4)C8—H80.9300
N3—C71.342 (4)N4—C111.452 (4)
N3—C131.351 (4)N4—C101.451 (4)
N3—C61.493 (4)C10—H10A0.9600
C9—N41.339 (4)C10—H10B0.9600
C9—C81.415 (4)C10—H10C0.9600
C9—C121.412 (4)C11—H11A0.9600
C1—C21.435 (4)C11—H11B0.9600
C2—C3i1.354 (4)C11—H11C0.9600
C3—C2i1.354 (4)C12—C131.356 (4)
C3—C41.431 (4)C12—H120.9300
C5—C61.483 (5)C13—H130.9300
S2—Ni1—S2i180.0C5—C6—H6B109.2
S2—Ni1—S1i92.00 (3)N3—C6—H6B109.2
S2i—Ni1—S1i88.00 (3)H6A—C6—H6B107.9
S2—Ni1—S188.00 (3)N3—C7—C8122.9 (3)
S2i—Ni1—S192.00 (3)N3—C7—H7118.5
S1i—Ni1—S1180.000 (1)C8—C7—H7118.5
C2—S1—Ni1103.04 (10)C7—C8—C9120.0 (3)
C3—S2—Ni1103.41 (10)C7—C8—H8120.0
C7—N3—C13118.5 (3)C9—C8—H8120.0
C7—N3—C6120.5 (3)C9—N4—C11121.5 (3)
C13—N3—C6121.0 (3)C9—N4—C10121.3 (3)
N4—C9—C8121.9 (3)C11—N4—C10117.0 (3)
N4—C9—C12122.3 (3)N4—C10—H10A109.5
C8—C9—C12115.8 (3)N4—C10—H10B109.5
N1—C1—C2178.1 (3)H10A—C10—H10B109.5
C3i—C2—C1122.2 (3)N4—C10—H10C109.5
C3i—C2—S1121.3 (2)H10A—C10—H10C109.5
C1—C2—S1116.5 (2)H10B—C10—H10C109.5
C2i—C3—C4122.6 (3)N4—C11—H11A109.5
C2i—C3—S2120.3 (2)N4—C11—H11B109.5
C4—C3—S2117.2 (2)H11A—C11—H11B109.5
N2—C4—C3177.2 (4)N4—C11—H11C109.5
C6—C5—H5A109.5H11A—C11—H11C109.5
C6—C5—H5B109.5H11B—C11—H11C109.5
H5A—C5—H5B109.5C13—C12—C9120.8 (3)
C6—C5—H5C109.5C13—C12—H12119.6
H5A—C5—H5C109.5C9—C12—H12119.6
H5B—C5—H5C109.5N3—C13—C12122.0 (3)
C5—C6—N3112.0 (3)N3—C13—H13119.0
C5—C6—H6A109.2C12—C13—H13119.0
N3—C6—H6A109.2
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formula(C9H15N2)2[Ni(C4N2S2)2]
Mr641.55
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.1468 (14), 9.3305 (16), 11.663 (3)
α, β, γ (°)108.243 (3), 100.034 (3), 107.830 (2)
V3)765.0 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.94
Crystal size (mm)0.3 × 0.1 × 0.1
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.894, 0.910
No. of measured, independent and
observed [I > 2σ(I)] reflections
5798, 2827, 2371
Rint0.031
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.128, 0.95
No. of reflections2827
No. of parameters181
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.34

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Selected geometric parameters (Å, º) top
Ni1—S22.1776 (8)Ni1—S12.1794 (8)
S2—Ni1—S188.00 (3)
 

Acknowledgements

The authors thank Nanjing Xiaozhuang College of Jiangsu Province, People's Republic of China, for financial support (grant No. 2010KYQN28).

References

First citationBelo, B. & Almedia, M. (2010). Coord. Chem. Rev. 254, 1479–1492.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2000). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDavison, A. & Holm, H. R. (1967). Inorg. Synth. 10, 8–26.  CrossRef CAS Google Scholar
First citationDuan, H. B., Ren, X. M. & Meng, Q. J. (2010). Coord. Chem. Rev. 254, 1509–1522.  Web of Science CrossRef CAS Google Scholar
First citationDuan, H. B., Ren, X. M., Shen, L. J., Jin, W. Q., Tian, Z. F. & Zhou, S. M. (2011). Dalton Trans. 40, 3622–3630.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationNi, C. L., Dang, D. B., Song, Y., Song, G., Li, Y. Z., Ni, Z. P., Tian, Z. F., Wen, L. L. & Meng, Q. J. (2004). Chem. Phys. Lett. 396, 353–358.  Web of Science CSD CrossRef CAS Google Scholar
First citationNi, Z. P., Ren, X. M., Ma, J., Xie, J. L., Ni, C. L., Chen, Z. D. & Meng, Q. J. (2005). J. Am. Chem. Soc. 127, 14330–14338.  Web of Science CrossRef PubMed CAS Google Scholar
First citationNishijo, J., Ogura, E., Yamaura, J., Miyazaki, A., Enoki, T., Takano, T., Kuwatani, Y. & Lyoda, M. (2000). Solid State Commun. 116, 661–664.  Web of Science CSD CrossRef CAS Google Scholar
First citationRen, X. M., Okudera, H., Kremer, R. K., Song, Y., He, C., Meng, Q. J. & Wu, P. H. (2004). Inorg. Chem. 43, 2569–2576.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYao, B. Q., Sun, J. S., Tian, Z. F., Ren, X. M., Gu, D. W., Shen, L. J. & Xie, J. L. (2008). Polyhedron, 27, 2833–2844.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds