organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2Z)-2-{[N-(2-Formyl­phen­yl)-4-methyl­benzene­sulfonamido]­meth­yl}-3-(4-methyl­phen­yl)prop-2-ene­nitrile

aDepartment of Organic Chemistry, University of Madras, Maraimalai Campus, Chennai 600 025, India, bDepartment of Physics, Ranipettai Engineering College, Thenkadappathangal, Walaja 632 513, India, and cDepartment of Physics, Thanthai Periyar Government Institute of Technology, Vellore 632 002, India
*Correspondence e-mail: smurugavel27@gmail.com

(Received 8 March 2012; accepted 10 March 2012; online 17 March 2012)

In the title compound, C25H22N2O3S, the sulfonyl-bound benzene ring forms dihedral angles of 36.8 (2) and 81.4 (2)°, respectively, with the formyl­benzene and methyl­benzene rings. The mol­ecular conformation is stabilized by an intra­molecular C—H⋯O hydrogen bond, which generates an S(5) ring motif. The crystal packing is stabilized by C—H⋯O hydrogen bonds, which generate C(11) chains along the b axis. The crystal packing is further stabilized by ππ inter­actions [centroid–centroid distance = 3.927 (2) Å].

Related literature

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988[Korolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699-716. New York: Wiley.]); Mandell & Sande (1992[Mandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047-1057. Singapore: McGraw-Hill.]). For related structures, see: Madhanraj et al. (2012[Madhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o56-o57.]); Aziz-ur-Rehman et al. (2010[Aziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C25H22N2O3S

  • Mr = 430.51

  • Orthorhombic, P 21 21 21

  • a = 8.9432 (5) Å

  • b = 10.3004 (6) Å

  • c = 24.9240 (15) Å

  • V = 2296.0 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.17 mm−1

  • T = 293 K

  • 0.25 × 0.23 × 0.17 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.959, Tmax = 0.972

  • 12317 measured reflections

  • 4663 independent reflections

  • 3385 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.117

  • S = 1.02

  • 4663 reflections

  • 282 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.23 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1990 Friedel pairs

  • Flack parameter: 0.19 (9)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯O3 0.97 2.45 2.904 (3) 109
C23—H23⋯O1i 0.93 2.50 3.142 (4) 127
Symmetry code: (i) x, y-1, z.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and XPREP (Bruker, 2004[Bruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia (1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988; Mandell & Sande, 1992). In view of this biological importance, the crystal structure of the title compound (I) has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The S1 atom shows a distorted tetrahedral geometry, with the O2—S1—O3 [119.9 (1)°] and N1—S1—C8[107.5 (1)°] angles deviating from ideal tetrahedral values. The sum of bond angles around N1 (351.9°) indicates that N1 has sp2 hybridization. The sulfonyl bound benzene (C8–C13) ring forms dihedral angles of 36.8 (2) and 81.4 (2)°, respectively, with the formyl benzene (C1–C6) and methylbenzene (C18—C23) rings. The dihedral angle between formyl benzene and methylbenzene rings is 87.4 (1)°. The carbonitrile side chain (C16–C24–N2) is almost linear, with the angle around the C24 atom being 177.1 (3)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Madhanraj et al., 2012, Aziz-ur-Rehman et al., 2010).

The molecular structure is stabilized by a C15—H15A···O3 intramolecular hydrogen bond, forming a S(5) ring motif (Bernstein et al., 1995) (Table 1). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. Atom C23 in the molecule at (x, y, z) donates one proton to atom O1 at (x, -1 + y, z), forming a C(11) chain along the b axis (Fig. 2). The crystal packing is further stabilized by ππ interactions with centroid—centroid distances: Cg1—Cg2iv = 3.927 (2) Å and Cg2—Cg1v = 3.927 (2) Å (Fig. 3; Cg1 and Cg2 are the centroids of C8–C13 benzene ring and C18–C23 benzene rings, respectively, symmetry code as in Fig. 3).

Related literature top

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Madhanraj et al. (2012); Aziz-ur-Rehman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

A solution of N-(formylphenyl)(4-methylbenzene)sulfonamide (1 mmol, 0.275 g) and potassium carbonate (1.5 mmol, 0.207 g) in acetonitrile was stirred for 15 minutes at room temperature. To this solution, (E)-2-(bromomethyl)-3-(4-methylphenyl)prop-2-enenitrile (1.2 mmol, 0.283 g) was added drop wise until the addition was completed. After the completion of the reaction, as indicated by TLC, acetonitrile was evaporated off. Ethylacetate (15 ml) and water (15 ml) were added to the crude mass. The organic layer was dried over anhydrous sodium sulfate. Removal of solvent led to the crude product, which was purified through a pad of silica gel (100–200 mesh) using ethylacetate and hexanes (1:9) as solvents. The pure title compound was obtained as a colourless solid (0.41 g, 95% yield). Recrystallization was carried out using ethylacetate as solvent.

Refinement top

H atoms were positioned geometrically, with C—H = 0.93–0.98 Å and constrained to ride on their parent atom with Uiso(H)=1.5Ueq for methyl H atoms and 1.2Ueq(C) for other H atoms.

Structure description top

Sulfonamide drugs are widely used for the treatment of certain infections caused by Gram-positive and Gram-negative microorganisms, some fungi, and certain protozoa (Korolkovas, 1988; Mandell & Sande, 1992). In view of this biological importance, the crystal structure of the title compound (I) has been determined and the results are presented here.

Fig. 1. shows a displacement ellipsoid plot of (I), with the atom numbering scheme. The S1 atom shows a distorted tetrahedral geometry, with the O2—S1—O3 [119.9 (1)°] and N1—S1—C8[107.5 (1)°] angles deviating from ideal tetrahedral values. The sum of bond angles around N1 (351.9°) indicates that N1 has sp2 hybridization. The sulfonyl bound benzene (C8–C13) ring forms dihedral angles of 36.8 (2) and 81.4 (2)°, respectively, with the formyl benzene (C1–C6) and methylbenzene (C18—C23) rings. The dihedral angle between formyl benzene and methylbenzene rings is 87.4 (1)°. The carbonitrile side chain (C16–C24–N2) is almost linear, with the angle around the C24 atom being 177.1 (3)°. The geometric parameters of the title molecule agrees well with those reported for similar structures (Madhanraj et al., 2012, Aziz-ur-Rehman et al., 2010).

The molecular structure is stabilized by a C15—H15A···O3 intramolecular hydrogen bond, forming a S(5) ring motif (Bernstein et al., 1995) (Table 1). The crystal packing is stabilized by intermolecular C—H···O hydrogen bonds. Atom C23 in the molecule at (x, y, z) donates one proton to atom O1 at (x, -1 + y, z), forming a C(11) chain along the b axis (Fig. 2). The crystal packing is further stabilized by ππ interactions with centroid—centroid distances: Cg1—Cg2iv = 3.927 (2) Å and Cg2—Cg1v = 3.927 (2) Å (Fig. 3; Cg1 and Cg2 are the centroids of C8–C13 benzene ring and C18–C23 benzene rings, respectively, symmetry code as in Fig. 3).

For background to the pharmacological uses of sulfonamides, see: Korolkovas (1988); Mandell & Sande (1992). For related structures, see: Madhanraj et al. (2012); Aziz-ur-Rehman et al. (2010). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia (1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 20% probability level. H atoms are presented as a small cycles of arbitrary radius.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing C—H···O hydrogen bonds (dotted lines), with the formation of C(11) chains along b axis. [Symmetry codes: (i)x, -1 + y, z; (ii)x, -2 + y, z; (iii)x, -3 + y, z].
[Figure 3] Fig. 3. A view of the ππ interactions (dotted lines) in the crystal structure of the title compound. Cg1 and Cg2 denotes centroids of the C8–C13 benzene ring and C18–C23 benzene ring, respectively. [Symmetry codes: (iv)-x, 1/2 + y, 3/2 - z; (v)-x, -1/2 + y, 3/2 - z].
(2Z)-2-{[N-(2-Formylphenyl)-4-methylbenzenesulfonamido]methyl}- 3-(4-methylphenyl)prop-2-enenitrile top
Crystal data top
C25H22N2O3SF(000) = 904
Mr = 430.51Dx = 1.245 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 4690 reflections
a = 8.9432 (5) Åθ = 2.1–26.4°
b = 10.3004 (6) ŵ = 0.17 mm1
c = 24.9240 (15) ÅT = 293 K
V = 2296.0 (2) Å3Block, colourless
Z = 40.25 × 0.23 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4663 independent reflections
Radiation source: fine-focus sealed tube3385 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.0 pixels mm-1θmax = 26.4°, θmin = 2.1°
ω scansh = 118
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 129
Tmin = 0.959, Tmax = 0.972l = 3031
12317 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.065P)2 + 0.0718P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4663 reflectionsΔρmax = 0.19 e Å3
282 parametersΔρmin = 0.23 e Å3
0 restraintsAbsolute structure: Flack (1983), 1990 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.19 (9)
Crystal data top
C25H22N2O3SV = 2296.0 (2) Å3
Mr = 430.51Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.9432 (5) ŵ = 0.17 mm1
b = 10.3004 (6) ÅT = 293 K
c = 24.9240 (15) Å0.25 × 0.23 × 0.17 mm
Data collection top
Bruker APEXII CCD
diffractometer
4663 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3385 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.972Rint = 0.024
12317 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.117Δρmax = 0.19 e Å3
S = 1.02Δρmin = 0.23 e Å3
4663 reflectionsAbsolute structure: Flack (1983), 1990 Friedel pairs
282 parametersAbsolute structure parameter: 0.19 (9)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.3120 (4)0.8483 (4)0.6292 (2)0.228 (2)
C140.2953 (8)0.3803 (7)0.98250 (18)0.198 (3)
H14A0.39920.35710.98120.297*
H14B0.23630.30390.98860.297*
H14C0.27910.44111.01110.297*
S10.12098 (6)0.62642 (6)0.77099 (3)0.0654 (2)
C160.1285 (2)0.3775 (2)0.65770 (8)0.0549 (5)
O30.03436 (17)0.60536 (19)0.76309 (8)0.0833 (5)
C170.1732 (3)0.2664 (2)0.63569 (9)0.0576 (6)
H170.23460.21630.65760.069*
O20.1799 (2)0.75371 (16)0.76813 (9)0.0884 (6)
N10.20652 (19)0.54286 (17)0.72366 (8)0.0561 (5)
C240.0421 (3)0.4723 (3)0.62915 (11)0.0734 (7)
C20.4743 (3)0.4998 (2)0.73721 (10)0.0672 (7)
H20.45050.43030.75940.081*
C10.3624 (2)0.5716 (2)0.71374 (8)0.0504 (5)
C30.6222 (3)0.5311 (3)0.72779 (13)0.0800 (8)
H30.69760.48240.74380.096*
C60.3987 (3)0.6749 (2)0.68055 (10)0.0597 (6)
C180.1425 (3)0.2092 (2)0.58296 (9)0.0595 (6)
C40.6589 (3)0.6330 (3)0.69519 (11)0.0744 (7)
H40.75870.65340.68890.089*
C150.1553 (3)0.4077 (2)0.71546 (9)0.0628 (6)
H15A0.06360.39400.73540.075*
H15B0.23010.34860.72950.075*
C230.2278 (3)0.1035 (3)0.56710 (12)0.0763 (7)
H230.30090.07130.59010.092*
C50.5495 (3)0.7035 (3)0.67231 (10)0.0683 (7)
H50.57510.77320.65040.082*
C200.0073 (5)0.1869 (3)0.50109 (13)0.1054 (11)
H200.07050.21450.47910.126*
N20.0240 (4)0.5520 (3)0.60771 (12)0.1084 (9)
C80.1702 (3)0.5580 (3)0.83244 (10)0.0652 (7)
C100.1288 (5)0.4016 (4)0.90171 (14)0.1050 (10)
H100.07200.33340.91520.126*
C130.2949 (3)0.6014 (4)0.85973 (15)0.1027 (11)
H130.35270.66880.84610.123*
C220.2061 (4)0.0452 (3)0.51797 (14)0.0961 (10)
H220.26730.02350.50770.115*
C190.0291 (4)0.2479 (3)0.54918 (12)0.0904 (9)
H190.03320.31600.55920.109*
C250.0719 (6)0.0218 (5)0.43028 (15)0.1551 (19)
H25A0.01170.07670.40790.233*
H25B0.02190.05970.43550.233*
H25C0.16680.00710.41330.233*
C70.2845 (4)0.7516 (3)0.65304 (15)0.1055 (12)
H70.18590.72320.65430.127*
C210.0960 (5)0.0869 (3)0.48418 (12)0.0964 (10)
C90.0865 (3)0.4586 (3)0.85373 (12)0.0816 (8)
H90.00140.42970.83590.098*
C110.2499 (5)0.4419 (5)0.92945 (15)0.1210 (14)
C120.3324 (4)0.5417 (6)0.90856 (18)0.1314 (17)
H120.41580.57090.92730.158*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.130 (2)0.192 (3)0.363 (5)0.020 (2)0.038 (3)0.212 (4)
C140.248 (7)0.247 (6)0.100 (3)0.073 (6)0.044 (4)0.005 (4)
S10.0426 (3)0.0560 (3)0.0975 (5)0.0013 (3)0.0086 (3)0.0120 (3)
C160.0484 (11)0.0527 (12)0.0636 (13)0.0027 (12)0.0040 (11)0.0009 (11)
O30.0409 (9)0.0969 (13)0.1122 (14)0.0073 (9)0.0007 (9)0.0069 (12)
C170.0535 (13)0.0545 (14)0.0647 (14)0.0001 (11)0.0035 (10)0.0060 (12)
O20.0722 (11)0.0487 (9)0.1445 (16)0.0002 (8)0.0266 (11)0.0155 (12)
N10.0475 (10)0.0491 (10)0.0718 (12)0.0060 (8)0.0032 (9)0.0044 (10)
C240.0756 (17)0.0689 (18)0.0757 (16)0.0102 (15)0.0020 (14)0.0112 (15)
C20.0635 (15)0.0590 (14)0.0792 (16)0.0129 (11)0.0054 (13)0.0094 (13)
C10.0453 (11)0.0465 (11)0.0595 (12)0.0036 (9)0.0008 (10)0.0049 (10)
C30.0534 (14)0.0804 (17)0.106 (2)0.0212 (14)0.0092 (16)0.0056 (17)
C60.0544 (14)0.0539 (13)0.0707 (15)0.0020 (10)0.0005 (12)0.0046 (12)
C180.0648 (15)0.0526 (14)0.0611 (14)0.0018 (12)0.0069 (12)0.0049 (11)
C40.0455 (14)0.0896 (19)0.0881 (18)0.0005 (14)0.0097 (13)0.0230 (17)
C150.0679 (15)0.0540 (13)0.0666 (14)0.0154 (11)0.0049 (12)0.0052 (12)
C230.0712 (17)0.0681 (17)0.0895 (19)0.0102 (14)0.0001 (14)0.0087 (16)
C50.0649 (17)0.0665 (16)0.0736 (16)0.0135 (13)0.0092 (13)0.0028 (13)
C200.141 (3)0.091 (2)0.085 (2)0.021 (2)0.032 (2)0.0105 (19)
N20.127 (2)0.0856 (18)0.112 (2)0.0383 (18)0.0249 (18)0.0046 (16)
C80.0452 (12)0.0717 (17)0.0787 (16)0.0009 (12)0.0043 (11)0.0293 (14)
C100.134 (3)0.097 (3)0.084 (2)0.001 (3)0.008 (2)0.0085 (19)
C130.0679 (18)0.142 (3)0.098 (2)0.026 (2)0.0056 (17)0.043 (2)
C220.108 (2)0.082 (2)0.099 (2)0.0099 (19)0.018 (2)0.0267 (19)
C190.110 (2)0.0745 (19)0.086 (2)0.0275 (18)0.0280 (17)0.0168 (16)
C250.223 (5)0.151 (4)0.092 (2)0.003 (4)0.014 (3)0.053 (3)
C70.082 (2)0.084 (2)0.150 (3)0.0029 (17)0.018 (2)0.056 (2)
C210.132 (3)0.086 (2)0.0709 (18)0.006 (2)0.005 (2)0.0170 (17)
C90.079 (2)0.084 (2)0.0825 (19)0.0122 (16)0.0012 (14)0.0170 (17)
C110.119 (3)0.159 (4)0.085 (3)0.027 (3)0.001 (2)0.029 (3)
C120.085 (3)0.216 (5)0.093 (3)0.002 (3)0.021 (2)0.056 (3)
Geometric parameters (Å, º) top
O1—C71.185 (4)C4—H40.9300
C14—C111.522 (6)C15—H15A0.9700
C14—H14A0.9600C15—H15B0.9700
C14—H14B0.9600C23—C221.378 (4)
C14—H14C0.9600C23—H230.9300
S1—O21.4148 (18)C5—H50.9300
S1—O31.4198 (17)C20—C211.367 (5)
S1—N11.649 (2)C20—C191.367 (4)
S1—C81.742 (3)C20—H200.9300
C16—C171.331 (3)C8—C91.375 (4)
C16—C241.434 (4)C8—C131.381 (4)
C16—C151.492 (3)C10—C111.351 (5)
C17—C181.466 (3)C10—C91.385 (5)
C17—H170.9300C10—H100.9300
N1—C11.447 (3)C13—C121.404 (6)
N1—C151.479 (3)C13—H130.9300
C24—N21.145 (3)C22—C211.365 (5)
C2—C11.375 (3)C22—H220.9300
C2—C31.381 (4)C19—H190.9300
C2—H20.9300C25—C211.517 (5)
C1—C61.386 (3)C25—H25A0.9600
C3—C41.367 (4)C25—H25B0.9600
C3—H30.9300C25—H25C0.9600
C6—C51.396 (4)C7—H70.9300
C6—C71.462 (4)C9—H90.9300
C18—C191.377 (4)C11—C121.368 (6)
C18—C231.388 (3)C12—H120.9300
C4—C51.345 (4)
C11—C14—H14A109.5C22—C23—C18121.2 (3)
C11—C14—H14B109.5C22—C23—H23119.4
H14A—C14—H14B109.5C18—C23—H23119.4
C11—C14—H14C109.5C4—C5—C6121.7 (3)
H14A—C14—H14C109.5C4—C5—H5119.1
H14B—C14—H14C109.5C6—C5—H5119.1
O2—S1—O3119.94 (12)C21—C20—C19122.3 (3)
O2—S1—N1105.95 (11)C21—C20—H20118.9
O3—S1—N1105.96 (11)C19—C20—H20118.9
O2—S1—C8108.98 (13)C9—C8—C13119.4 (3)
O3—S1—C8107.90 (12)C9—C8—S1120.2 (2)
N1—S1—C8107.49 (10)C13—C8—S1120.4 (3)
C17—C16—C24122.9 (2)C11—C10—C9122.0 (4)
C17—C16—C15121.9 (2)C11—C10—H10119.0
C24—C16—C15115.0 (2)C9—C10—H10119.0
C16—C17—C18131.2 (2)C8—C13—C12118.5 (4)
C16—C17—H17114.4C8—C13—H13120.7
C18—C17—H17114.4C12—C13—H13120.7
C1—N1—C15117.84 (18)C21—C22—C23120.8 (3)
C1—N1—S1117.57 (14)C21—C22—H22119.6
C15—N1—S1116.52 (15)C23—C22—H22119.6
N2—C24—C16177.1 (3)C20—C19—C18120.5 (3)
C1—C2—C3119.9 (2)C20—C19—H19119.7
C1—C2—H2120.0C18—C19—H19119.7
C3—C2—H2120.0C21—C25—H25A109.5
C2—C1—C6119.7 (2)C21—C25—H25B109.5
C2—C1—N1121.3 (2)H25A—C25—H25B109.5
C6—C1—N1118.99 (19)C21—C25—H25C109.5
C4—C3—C2120.7 (2)H25A—C25—H25C109.5
C4—C3—H3119.7H25B—C25—H25C109.5
C2—C3—H3119.7O1—C7—C6123.0 (3)
C1—C6—C5118.4 (2)O1—C7—H7118.5
C1—C6—C7122.1 (2)C6—C7—H7118.5
C5—C6—C7119.5 (3)C22—C21—C20117.8 (3)
C19—C18—C23117.2 (2)C22—C21—C25120.6 (4)
C19—C18—C17124.8 (2)C20—C21—C25121.6 (4)
C23—C18—C17117.9 (2)C8—C9—C10120.0 (3)
C5—C4—C3119.5 (2)C8—C9—H9120.0
C5—C4—H4120.3C10—C9—H9120.0
C3—C4—H4120.3C10—C11—C12118.0 (4)
N1—C15—C16112.3 (2)C10—C11—C14122.0 (5)
N1—C15—H15A109.1C12—C11—C14120.0 (5)
C16—C15—H15A109.1C11—C12—C13122.0 (4)
N1—C15—H15B109.1C11—C12—H12119.0
C16—C15—H15B109.1C13—C12—H12119.0
H15A—C15—H15B107.9
C24—C16—C17—C184.5 (4)C3—C4—C5—C60.6 (4)
C15—C16—C17—C18170.8 (2)C1—C6—C5—C40.7 (4)
O2—S1—N1—C136.60 (19)C7—C6—C5—C4177.6 (3)
O3—S1—N1—C1165.03 (17)O2—S1—C8—C9156.4 (2)
C8—S1—N1—C179.81 (18)O3—S1—C8—C924.6 (2)
O2—S1—N1—C15175.28 (18)N1—S1—C8—C989.2 (2)
O3—S1—N1—C1546.8 (2)O2—S1—C8—C1324.7 (3)
C8—S1—N1—C1568.32 (19)O3—S1—C8—C13156.5 (2)
C17—C16—C24—N2151 (6)N1—S1—C8—C1389.7 (2)
C15—C16—C24—N233 (7)C9—C8—C13—C120.3 (5)
C3—C2—C1—C60.2 (4)S1—C8—C13—C12178.7 (3)
C3—C2—C1—N1178.8 (2)C18—C23—C22—C212.5 (5)
C15—N1—C1—C252.1 (3)C21—C20—C19—C180.5 (6)
S1—N1—C1—C295.6 (2)C23—C18—C19—C202.7 (5)
C15—N1—C1—C6128.9 (2)C17—C18—C19—C20178.7 (3)
S1—N1—C1—C683.4 (2)C1—C6—C7—O1171.7 (4)
C1—C2—C3—C40.1 (4)C5—C6—C7—O110.1 (6)
C2—C1—C6—C50.5 (3)C23—C22—C21—C200.8 (5)
N1—C1—C6—C5178.5 (2)C23—C22—C21—C25179.6 (4)
C2—C1—C6—C7177.8 (3)C19—C20—C21—C222.3 (6)
N1—C1—C6—C73.3 (4)C19—C20—C21—C25179.0 (4)
C16—C17—C18—C1916.3 (4)C13—C8—C9—C101.0 (4)
C16—C17—C18—C23167.7 (2)S1—C8—C9—C10177.9 (2)
C2—C3—C4—C50.3 (4)C11—C10—C9—C81.2 (5)
C1—N1—C15—C1679.8 (3)C9—C10—C11—C120.5 (6)
S1—N1—C15—C16132.11 (18)C9—C10—C11—C14179.3 (4)
C17—C16—C15—N1136.8 (2)C10—C11—C12—C130.3 (6)
C24—C16—C15—N147.5 (3)C14—C11—C12—C13179.9 (4)
C19—C18—C23—C224.2 (4)C8—C13—C12—C110.4 (6)
C17—C18—C23—C22179.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O30.972.452.904 (3)109
C23—H23···O1i0.932.503.142 (4)127
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC25H22N2O3S
Mr430.51
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)8.9432 (5), 10.3004 (6), 24.9240 (15)
V3)2296.0 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.17
Crystal size (mm)0.25 × 0.23 × 0.17
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.959, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
12317, 4663, 3385
Rint0.024
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.117, 1.02
No. of reflections4663
No. of parameters282
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.23
Absolute structureFlack (1983), 1990 Friedel pairs
Absolute structure parameter0.19 (9)

Computer programs: APEX2 (Bruker, 2004), APEX2 and SAINT (Bruker, 2004), SAINT and XPREP (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia (1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···O30.972.452.904 (3)109
C23—H23···O1i0.932.503.142 (4)127
Symmetry code: (i) x, y1, z.
 

Footnotes

Additional correspondence author, e-mail: bhakthadoss@yahoo.com.

Acknowledgements

The authors thank Dr Babu Vargheese, SAIF, IIT, Madras, India, for his help with the data collection.

References

First citationAziz-ur-Rehman, Tanveer, W., Akkurt, M., Sattar, A., Abbasi, M. A. & Khan, I. U. (2010). Acta Cryst. E66, o2980.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2004). APEX2, SAINT and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKorolkovas, A. (1988). Essentials of Medicinal Chemistry, 2nd ed., pp. 699–716. New York: Wiley.  Google Scholar
First citationMadhanraj, R., Murugavel, S., Kannan, D. & Bakthadoss, M. (2012). Acta Cryst. E68, o56–o57.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMandell, G. L. & Sande, M. A. (1992). In Goodman and Gilman, The Pharmacological Basis of Therapeutics 2, edited by A. Gilman, T. W. Rall, A. S. Nies & P. Taylor, 8th ed., pp. 1047–1057. Singapore: McGraw–Hill.  Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds